
XML in the Development of
Component Systems

Document Types

2

Purpose

§ Document Type Definitions define a vocabulary
– set of allowed element names
– set of attributes per element name

• data type given for each attribute

– content model: elements and data allowed inside the content of the
element

§ Validation: checking the conformance of a document
§ Association of semantics: explanation of the meaning of each

element, for a certain kind of processing

3

Things not specified

§ root element of the document
– Some DTDs (e.g. DocBook) are used with different root elements (e.g.

book, article)

§ number of instances of each element
§ structure of the character data
§ semantics of each element

– specified in natural language; e.g. DocBook gives “processing
expectations”

4

An Example

<!ELEMENT person (name, profession*)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT profession (#PCDATA)>

5

DTD Usage Example

<?xml version=“1.0” standalone=“no” ?>
<!DOCTYPE person SYSTEM “http://cafeconleche.org/dtds/person.dtd”>
<person>
<name>
<first_name>Alan</first_name>
<last_name>Turing</last_name>

</name>
<profession>computer scientist</profession>
<profession>mathematician</profession>

</person>

6

Document Identifier

§ SYSTEM: meaningful only on the local system
– XML: must be URI Reference (RFC2732)

• no fragment identifier
• relative identifiers are relative to the location of the original resource

§ PUBLIC: intended to be meaningful across systems
– inherited from SGML
– located on the local system by means of catalogs
– FPI: Formal Public Identifier

7

Formal Public Identifier

Syntax: prefix//owner-identifier//text-class text-description//language//display
version

§ prefix: + (registered), – (unregistered), ISO (reserved to ISO)
§ owner-identifier: organization issuing FPI

– IDN allows to use domain names

§ text-class: DOCUMENT, DTD, ELEMENTS, ENTITIES, NONSGML,
NOTATION, …

§ text-description: free form text
§ language: ISO code
§ display version (optional): distinguishes different forms

8

FPI Examples

-//OASIS//DTD DocBook V3.1//EN
-//W3C//DTD XHTML 1.0 Strict//EN
-//W3C//ENTITIES Latin 1 for XHTML//EN
ISO 646//NOTATION IS 646-IRV//EN
+//IDN python.org//DTD XML Bookmark Exchange Language 1.0//EN//XML

9

Internal DTD Subset

<?xml version=“1.0”?>
<!DOCTYPE person [
<!ELEMENT person (name, profession*)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT profession (#PCDATA)>
]>
<person>
<name><first_name>Alan</first_name><last_name>Turing</last_name></name>
</person>

10

DTD Subsets

§ external subset specified through system or public identifier
§ internal subset included in document
§ must not have overlapping element definitions
§ internal subset occurs before external subset, so internal

definitions of entities and attribute lists take precedence

11

Validation

§ Process of checking all validity constraints
§ validating processor must read external DTD subset

– non-validating processor may still read external subset, to find entity
definitions

§ access to external entities resolves either through public
identifier or system identifier, at the processor’s (or application’s)
choice

12

Element Specifications

[45] elementdecl ::= '<!ELEMENT' S
Name S contentspec S? '>'

§ VC: element names must be unique
[46] contentspec ::=

'EMPTY' | 'ANY' | Mixed | children
§ Elements with EMPTY content model are valid if they have no

content
– for interoperability, empty-element tag should be used iff content

model is EMPTY
§ Elements with ANY content model are valid if all child elements

have been declared

13

Element Content

[47] children ::= (choice | seq) ('?' | '*' | '+')?
[48] cp ::= (Name | choice | seq) ('?' | '*' | '+')?
[49] choice ::= '(' S? cp (S? '|' S? cp)+ S? ')'
[50] seq ::= '(' S? cp (S? ',' S? cp)* S? ')'
§ content is valid if it is possible to trace through the content model, following

choices and sequences appropriately
– for compatibility, the content model must be deterministic

§ space (S) is allowed around child elements

14

Mixed Content

[51] Mixed ::= '(' S? '#PCDATA'
(S? '|' S? Name)* S? ')*'

| '(' S? '#PCDATA' S? ')'
§ Names of child nodes, unordered
§ VC: element names must not appear twice

15

Attribute Declarations

<!ATTLIST image1 source CDATA #REQUIRED>
<!ATTLIST image2 source CDATA #REQUIRED

width CDATA #REQUIRED
height CDATA #REQUIRED
alt CDATA #IMPLIED>

16

Attribute List Syntax

[52] AttlistDecl ::= '<!ATTLIST' S Name AttDef* S? '>'
[53] AttDef ::= S Name S AttType S DefaultDecl
§ multiple AttlistDecl for the same Name are merged
§ for multiple declarations of the same attribute, only the first declaration is binding

17

Attribute Types

§ Three kinds of types: strings, tokenized lists, and enumerations
[54] AttType ::= StringType | TokenizedType | EnumeratedType

18

Character Data Attributes

[55] StringType ::= 'CDATA'
§ contains arbitrary text
§ references are expanded; otherwise, data is uninterpreted
§ default type for a non-validating parser

19

Tokenized Attributes

[56] TokenizedType ::= 'ID'
| 'IDREF'
| 'IDREFS'
| 'ENTITY'
| 'ENTITIES'
| 'NMTOKEN'
| 'NMTOKENS'

20

ID

§ Unique identification of elements within a document
§ VC: Must match Name production;

in a document, all values of this type must be unique
§ VC: At most one ID attribute per element type
§ VC: Default value must be #REQUIRED or #IMPLIED
<!ATTLIST employee social_security_number ID #REQUIRED>

<employee social_security_number=“_078-05-1120”>…

21

IDREF

§ refers to elements with an ID
§ VC: there must be an attribute of type ID with the same value
<!ATTLIST team_member person IDREF #REQUIRED>

<team_member person=“_078-05-1120”>

22

IDREFS

§ List of multiple IDs, space separated
§ VC: must match production Names; individual names must be ID

values

23

ENTITY/ENTITIES

§ Refers to unparsed entities (not yet discussed)
§ VC: Value must match Name production; must refer to unparsed

entity declaration
§ ENTITIES: likewise list of unparsed entity names

24

NMTOKEN(S)

§ VC: value must match production Nmtoken(s)
§ used to constrain attributes to “identifier-like” things:

– allows “.cshrc”, “March”, “2003”
– disallows “March 2003”, “Sally had a lamb”

25

Enumerated Attributes

[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= 'NOTATION' S '(' S? Name (S? '|' S? Name)* S? ')‘
§ VC: Names must be notation names; attribute values must match one of the names

(examples given later)
§ VC: Each element must have at most one attribute of notation type
§ VC: For compatibility, empty elements must not have notation attributes
[59] Enumeration ::= '(' S? Nmtoken (S? '|' S? Nmtoken)* S? ')‘
§ VC: attribute values must match one of the Nmtokens
<!ATTLIST date month (Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec>
<!ELEMENT date empty>
<date day=“20” month=“Oct” year=“2003”/>

26

Attribute Defaults

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED'
| (('#FIXED' S)? AttValue)

§ VC: #REQUIRED attributes must be specified on all elements
§ WFC: AttValue must not contain ‘<‘
§ VC: AttValue must be follow lexical constraints of the attribute type
§ VC: values of #FIXED attributes must match the AttValue
<!ATTLIST termdef

id ID #REQUIRED
name CDATA #IMPLIED>

<!ATTLIST list
type (bullets|ordered|glossary) "ordered">

<!ATTLIST form
method CDATA #FIXED "POST">

27

Attribute Value Normalization

1. Line breaks are normalized to #xA
2. For each character/reference,

1. replace character references with referenced characters
2. replace entity references recursively with replacement text
3. replace white space (#x20, #xD, #xA, #X9) with a space character

3. For non-CDATA attributes, remove leading and trailing space,
and replace sequences of space with a single #x20

28

General Entities

§ Text replacement mechanism
§ Predefined: gt, lt, amp, quot, apos
§ User-defined: Using entity declarations
<!ENTITY super “supercalifragilisticexpialidocious”>
…
&super;
§ Replacement text can contain further markup (elements and references)
§ Can be internal to the DTD, or external
<!ENTITY footer SYSTEM “http://www.oreilly.com/boilerplate/footer.xml”>

29

Entity Declarations

[70] EntityDecl ::= GEDecl | PEDecl
[71] GEDecl ::= '<!ENTITY' S Name S EntityDef S? '>'
[72] PEDecl ::= '<!ENTITY' S '%' S Name S PEDef S? '>'
[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)
[74] PEDef ::= EntityValue | ExternalID
§ General entities: usable anywhere inside character data for replacement text
§ Parameter entities: usable only in DTD, to allow parameterization of DTD
§ General entities are either parsed or unparsed (NDATA)

30

Internal Entities

§ Defined through EntityValue
[9] EntityValue ::= '"' ([^%&"] | PEReference | Reference)* '"'

| "'" ([^%&'] | PEReference | Reference)* "'“

§ Internal entities are always parsed

31

External Entities

[75] ExternalID ::= 'SYSTEM' S SystemLiteral
| 'PUBLIC' S PubidLiteral S SystemLiteral

[76] NDataDecl ::= S 'NDATA' S Name
§ Parser may use SystemLiteral to obtain alternative URI
§ Otherwise, SystemLiteral must be used to retrieve resource

– SystemLiteral is encoded as UTF-8, non-ASCII characters are escaped using
%HH

– non-validating parser may refuse resource download, and report the reference
instead (providing declaration details if available)

§ Presence of NDataDecl indicates unparsed entity
§ VC: Name in NDataDecl must be a declared notation

32

Parsed Entities

§ Must be well-formed, i.e. match production extParsedEnt
[78] extParsedEnt ::= TextDecl? content
§ TextDecl (<?xml …?>) must be used to denote non-UTF-8

entities
§ Production content guarantees that markup cannot split across

replacement texts, and that start-tag and end-tag must be
balanced

33

Unparsed Entities and Notations

<!NOTATION gif SYSTEM “image/gif”>
<!NOTATION jpeg SYSTEM “image/jpeg”>
<!NOTATION png SYSTEM “image/png”>
<!ENTITY turing_getting_off_bus

SYSTEM “http://www.turing.org.uk/turing/pi1/bus.jpg”
NDATA jpg>

§ usage of unparsed entity references only in attributes of type entity
<!ELEMENT image EMPTY>
<!ATTLIST image source ENTITY #REQUIRED>
…
<image source=“turing_getting_off_bus”/>
§ no further processing of entity by parser; application must interpret notation and

download the resource

34

Notation Syntax

[82] NotationDecl ::= '<!NOTATION' S Name S (ExternalID | PublicID) S? '>‘
[83] PublicID ::= 'PUBLIC' S PubidLiteral
§ XML processor must pass notation name and identifiers to the application

– optionally, processor may resolve public id into system identifier indicating processor for the application

§ VC: Notation names must be unique within the document

35

Further Notation Usage

§ Processing Instruction Targets
<!NOTATION tex “/usr/local/bin/tex”>
§ Notation attributes
<!ATTLIST image type NOTATION (gif | jpeg | png)>

36

Parameter Entities

§ Macro replacement mechanism in DTDs
§ allows multiple usage of the same content model
§ also allows parametrization, by means of conditional inclusion

37

PE Example (XHTML)

<!ENTITY % coreattrs
"id ID #IMPLIED
class CDATA #IMPLIED
style % StyleSheet; #IMPLIED
title %Text; #IMPLIED"
>

<!ENTITY % attrs "% coreattrs; %i18n; %events;">
<!ENTITY % Block "(%block; | form | % misc;)*">
<!ELEMENT body %Block;>
<!ATTLIST body
% attrs;
onload %Script; #IMPLIED
onunload %Script; #IMPLIED
>

38

PE Syntax

[72] PEDecl ::= '<!ENTITY' S '%' S Name S PEDef S? '>'
[74] PEDef ::= EntityValue | ExternalID
[69] PEReference ::= '%' Name ';'
§ External PEs: recursively downloaded in validating processor; allow modular definition

of DTD
<!ENTITY % HTMLlat1 PUBLIC

"-//W3C//ENTITIES Latin 1 for XHTML//EN"
"xhtml-lat1.ent">

%HTMLlat1;
§ VC: entity in PEReference must be declared
§ WFC: PEDefs must not be recursive, and must occur only in DTDs

39

Parameterization

§ Redeclaration of PEs in internal subset
– first declaration is binding
– can be used to add or remove attributes from attribute lists, or change the

content model, if the DTD allows it

§ In addition, conditional inclusion allows omitting parts of the DTD

40

Conditional Inclusion

§ INCLUDE vs. IGNORE
<![IGNORE[
<!ELEMENT production_node (#PCDATA)>

]]>
<![INCLUDE[
<!ELEMENT production_node (#PCDATA)>

]]>
§ Conditional inclusion: define PE that expands to either INCLUDE or IGNORE
<!ENTITY % notes_allowed “INCLUDE”>
<![%notes_allowed;[
<!ELEMENT production_node (#PCDATA)>

]]>

41

Comparison with SGML

§ More Keywords (beyond DOCTYPE, ELEMENT, ATTLIST, NOTATION):
– SHORTREF, USEMAP as a macro mechanism

§ Optional markup minimization
– can omit either start tag or end tag (need to declare minimizable tags in DTD)
– Can minimize end tags to </>
– Can omit semicolons
– Can omit quotes/apostrophes in attribute values
– Can omit attribute names

§ More attribute types (NUMBER(S), NUTOKEN(s))

