
XML in the Development of
Component Systems

XPath

2

XPath Overview

Non-XML language for identifying particular parts of XML
documents
– First “person” element of a document
– Seventh child element of third person element
– ID attribute of the first person element whose contents are “Fred Jones”
– All “xml-stylesheet” processing instructions
– …

Originally developed for XSLT
– Split off XSLT to support also Xpointer

Also integrated into XML Schema, DOM, …
http://www.w3.org/TR/xpath

3

XML Tree Structure according to XPath

Document made up of nodes containing other nodes
Seven kinds of nodes:
– Root node

• Like DOM, different from document element
– Element nodes
– Text nodes
– Attribute nodes

• Excludes namespace attributes
– Comment nodes
– Processing instruction nodes
– Namespace nodes

Not included: CDATA section, entity references, DTD “things”

4

Location Path

Typical top-level expression
Identifies a set of nodes in the document
Consists of “location steps”
– Each location step is evaluated in a “context”

Root location path: /
– Identifies root node of the document independent of

context

5

Child Location Steps

A child location step selects all immediate child
elements of the context
Consists just of the element name:
– Relative location path, e.g. “body”
– Must have context to resolve the step

Can be combined to form compound location paths
– With root location path: /html
– With compound location path, using “/” as the separator

(immediate children): /html/body
– Using “//” as the separator (all descendents): /html//p

• Starting with // denotes all descendents of the context: //a

6

Attribute Location Steps

Selects named attributes from a context
Consists of “@” followed by the attribute name
– //a/@href selects the href attributes of all “a” elements
– //@id selects all “id” attributes in the document

Location step selects the attribute nodes of the tree, not
the attribute values
– Conversion to strings will cause attribute values to be

retrieved

7

Other Location Steps

comment() selects all comment nodes of the context
text() selects all text nodes in the context
– CDATA sections and entity references are resolved
– Each text node is the maximum contiguous text block without

intervening markup (like DOM normalize())

processing-instruction() selects all PIs in the context
– processing-instruction(‘name’) selects PIs with target ‘name’

8

Wildcards

“*” selects all elements in the context regardless of
element name
– //* selects all elements in the document
– Can be prefixed with a namespace:

• svg:* selects all elements with the same namespace that the svg
prefix maps to

node() selects all nodes in the context
@* selects all attributes in the context
– Can be prefixed again, e.g. @xlink:*

9

Alternatives

“|” forms the union of selections
– “a | link” selects all elements named “a” or “link”
– @id|@xlink:type selects all attributes of name “id” or

“xlink:type”
– *|@* matches all element and attribute nodes

10

Traversing the Axis

“..” selects the parent node
– //@id/.. selects all element nodes which have an ID

attribute

“.” selects the context node
– Can be used to make “//” not start at the root:

• .//p selects all p nodes nested in the context node

– In XSLT, used to access the string value of the
current node

11

Predicates

Select subset of the selected node
Evaluated in the context of each node
Written in square brackets:
– //profession[. = ‘physicist’] selects all profession nodes whose

string value is ‘physicist’
• String value of an element is the text content of the element

– //p[@id = ‘foo’] selects all “p” nodes for which the string value
of the ‘id’ attribute equals ‘foo’

• The string value of an attribute is the attribute value

12

Predicates (2)

Predicate subexpressions can have multiple data types:
– Strings, numbers, booleans, node sets

Various operators are available:
– Arithmetic and relational operations on numbers

• //person[@born < 1970]

– Relational operations on strings
– Logical operations on booleans

Implicit conversions between data types
If the result is a number, the predicate holds if the
position of the context node equals the number
– person[3] selects the third “person” in the context

13

Unabbreviated Location Paths

Location step consists of three parts: axis, test, and predicates
XPath defines 13 axes:

– ancestor: selects all ancestor nodes of the context
– ancestor-or-self: like ancestor, but includes the context
– attribute: selects all attributes
– child: selects immediate child nodes
– descendant: selects all descendents
– descendent-or-self: like descendant, but includes the context
– following, preceding: all nodes before or after the context (in document order)
– following-sibling, preceding-sibling: all sibling nodes
– parent: select the parent node
– namespace: selects all namespaces of the context
– self: selects the context

14

Unabbreviated Location Paths (2)

child::para selects all immediate child elements of type “para”
– Abbreviated as “para”

child::text() selects all text node children of the context
– Abbreviated as “text”

attribute::name selects all “name” attributes
– Abbreviated as “@name”

child::chapter/descendant::para selects all “para” descendants of all “chapter”
children

– Abbreviated as “chapter//para”
‘//’ is short for /descendant-or-self::node()/
.//para is short for self::node()/descendant-or-self::node()/child::para

– //para[3] is the set of all para elements which are third para children

15

Unabbreviated Location Paths (3)

following-sibling::chapter[1] selects the next “chapter” sibling
– No abbreviation possible

self::para selects the current node if it is a “para” node, else
selects nothing:
– child::*[self::chapter or self::appendix] selects all “chapter” and “appendix”

children of the context
– child::*[self::chapter or self::appendix][position()=last()] selects the last

such element

Ordering of selected nodes depends on the axis
– An axis containing only elements before the context is a reverse axis
– The “proximity position” always follows the order on the axis, node

numbers start with 1

16

Syntax: Location Paths

[1] LocationPath ::= RelativeLocationPath
| AbsoluteLocationPath

[2] AbsoluteLocationPath ::= '/' RelativeLocationPath?
| AbbreviatedAbsoluteLocationPath

[3] RelativeLocationPath ::= Step
| RelativeLocationPath '/' Step
| AbbreviatedRelativeLocationPath

17

Syntax: Location Steps

[4] Step ::= AxisSpecifier NodeTest Predicate*
| AbbreviatedStep

[5] AxisSpecifier ::= AxisName '::'
| AbbreviatedAxisSpecifier

18

Syntax: Node Tests

[7] NodeTest ::= NameTest
| NodeType '(' ')'
| 'processing-instruction' '(' Literal ')'

[38] NodeType ::= 'comment'
| 'text'
| 'processing-instruction'
| 'node'

19

Syntax: Predicates

[8] Predicate ::= '[' PredicateExpr ']'
[9] PredicateExpr ::= Expr

PredicateExpr is evaluated in the context of the selected steps
Result is converted to boolean
– Numbers are converted to boolean by comparing them with position()

20

Syntax: Abbreviations

[10] AbbreviatedAbsoluteLocationPath ::=
'//' RelativeLocationPath

[11] AbbreviatedRelativeLocationPath ::=
RelativeLocationPath '//' Step

[12] AbbreviatedStep ::= '.'
| '..'

[13] AbbreviatedAxisSpecifier ::= '@'?

21

Syntax: Expressions

[14] Expr ::= OrExpr
[15] PrimaryExpr ::= VariableReference

| '(' Expr ')'
| Literal
| Number
| FunctionCall

[36] VariableReference ::= '$' QName
Variables are provided by the XPath application as part of the
context

22

Syntax: Function Calls

[16] FunctionCall ::=
FunctionName '(' (Argument (',' Argument)*)? ')'

[17] Argument ::= Expr
[35] FunctionName ::= QName - NodeType

Functions are built-in or provided by the XPath application
Arguments are converted to their argument types
– As if by calling string(), number(), boolean() built-ins

23

Syntax: Node Sets

[18] UnionExpr ::= PathExpr
| UnionExpr '|' PathExpr

[19] PathExpr ::= LocationPath
| FilterExpr
| FilterExpr '/' RelativeLocationPath
| FilterExpr '//' RelativeLocationPath

[20] FilterExpr ::= PrimaryExpr
| FilterExpr Predicate

24

Syntax: Boolean Expressions

[21] OrExpr ::= AndExpr
| OrExpr 'or' AndExpr

[22] AndExpr ::= EqualityExpr
| AndExpr 'and' EqualityExpr

[23] EqualityExpr ::= RelationalExpr
| EqualityExpr '=' RelationalExpr
| EqualityExpr '!=' RelationalExpr

[24] RelationalExpr ::= AdditiveExpr
| RelationalExpr '<' AdditiveExpr
| RelationalExpr '>' AdditiveExpr
| RelationalExpr '<=' AdditiveExpr
| RelationalExpr '>=' AdditiveExpr

25

Boolean Expressions

Arguments of boolean operators (or, and) are converted to
boolean first
Comparing node sets in relational operations:
– If both arguments are node sets:

• True, if a node can be selected from each set so that their string values
compare true

– If one argument is a number:
• True if a node can be converted to a string, then a number, so that it

compares true
– If one argument is a string:

• True if a node can be converted to a string so that it compares true
– If one argument is boolean:

• True if the nodeset, when converted to boolean(), compares true

26

Boolean Expressions (2)

Comparing other values for equality/inequality:
– If one value is a boolean, convert the other to boolean
– [Otherwise] If one value is a number, convert the other to a

number
– [Otherwise] convert both arguments to strings

Comparing values for <, <=, >, >=:
– Convert both arguments to numbers

27

Syntax: Numbers

[25] AdditiveExpr ::= MultiplicativeExpr
| AdditiveExpr '+' MultiplicativeExpr
| AdditiveExpr '-' MultiplicativeExpr

[26] MultiplicativeExpr ::= UnaryExpr
| MultiplicativeExpr MultiplyOperator UnaryExpr
| MultiplicativeExpr 'div' UnaryExpr
| MultiplicativeExpr 'mod' UnaryExpr

[27] UnaryExpr ::= UnionExpr
| '-' UnaryExpr

[34] MultiplyOperator ::= '*'
Computations are floating-point normally; mod is the same as ‘%’ in Java
Whether “*” is a multiply operator or a wildcard depends on the lexical context

28

Core Functions

Certain functions are provided built-in in XPath
– XSLT adds more built-in functions on top of that
– Applications may provide custom functions, in a proprietary

fashion
• Should use QNames, to scope extensions by XML namespace

Each function defined with name, parameter types,
return type, semantics

29

Node Functions

number last()
number position()
number count(node-set)
node-set id(object)
– If argument is a node set, apply string() to each one, then id()
– Otherwise: convert argument to string, split at whitespace boundaries,

then find node with id

string local-name(node-set?)
– If nodeset is given, return local-name for first node, else for context node

string namespace-uri(node-set?)
string name(node-set?)

30

String Functions

string string(object?)
– Node-set: convert first node in document order into string

• Empty string for empty node-set
– Numbers: decimal, with sign, possibly “NaN”, “Infinity”
– Booleans: “true”, “false”
– Nodes: Depending on type

• Root node/Element node: concatenation of all string values of all text node
descendants

• Attributes: attribute value
• Namespace node: namespace URI
• PI: PI contents
• Comment: Comment text
• Text: Text value (always non-empty)

31

String Functions (2)

string concat(string, string, string*)
boolean starts-with(string, string)
boolean contains(string, string)
string substring-before(string, string)
string substring-after(string, string)
string substring(string, number, number?)
– Character indices start at 1, indices are rounded

number string-length(string?)
string normalize-space(string?)
string translate(string, string, string)

32

Boolean Functions

boolean boolean(object)
– Number: true if != +/-0, !=NaN
– Node-set: true if non-empty
– String: true if length is non-zero

boolean not(boolean)
boolean true()
boolean false()
boolean lang(string)
– Looks for xml:lang in the context node
– Case-insensitive, ignoring country separated by “-”

33

Number Functions

number number(object?)
– Strings: convert to nearest IEEE-754 number, or NaN
– Boolean: true gives 1, false gives 0
– Node-set: convert to string first

number sum(node-set)
number floor(number)
number ceiling(number)
number round(number)

