
XML in the Development of
Component Systems

Character Sets

Character Sets: Rationale

Computer stores data in sequences of bytes
– each byte represents a value in range 0..255

Text data are intended to denote characters, not
numbers
Encoding defines a mechanism to associate bytes and
characters
Encoding can only cover finite number of character ?
character set
– Many terminology issues (character set, repertoire, encoding,

coded character set, …)

Character Sets: History

ASCII: American Standard Code for Information
– 7-bit character set, 1963 proposed, 1968 finalized

• ANSI X3.4-1986
– 32(34) control characters, 96(94) graphical

characters
– Also known as CCITT International Alphabet #5

(IA5), ISO 646
• national variants, international reference version
• DIN 66003: @ vs. §, [vs. Ä, \ vs. Ö,] vs. Ü, …

Character Sets: History (2)

8-bit character sets: 190..224 graphic characters
ISO 8859: European/Middle-East alphabets

– ISO-8859-1: Western Europe (Latin-1)
– ISO-8859-2: Central/Eastern Europe (Latin-2)
– ISO-8859-3: Southern Europe (Latin-3)
– ISO-8859-4: Northern Europe (Latin-4)
– ISO-8859-5: Cyrillic
– ISO-8859-6: Arabic
– ISO-8859-7: Greek
– ISO-8859-8: Hebrew
– ISO-8859-9: Turkish (Latin-5; replace Icelandic chars with Turkish)
– ISO-8859-10: Nordic (Latin-6; Latin 4 + Inuit, non-Skolt Sami)
– ISO-8859-11 (1999): Thai
– ISO-8859-13: Baltic Rim (Latin-7)
– ISO-8859-14: Celtic (Latin-8)
– ISO-8859-15: Western Europe (Latin-9, Latin-1 w/o fraction characters, plus Euro sign, Š, Ž, Œ, Ÿ)
– ISO-8859-16: European (Latin-10, omit many symbols in favor of letters)

Character Sets: History (3)

Many proprietary 8-bit characters sets:
– IBM code pages (e.g. cp437)
– Windows code pages (e.g. windows-1252)
– Macintosh character sets (e.g. Mac-Roman)

Multibyte Character Sets: one- or two-byte sequences
– Chinese: Big5 (traditional Chinese), GB-2312 (simplified Chinese)
– Japanese: JIS 0208, JIS 0212
– Korean, Vietnamese

Multi-encoding standards: ISO 2022 escape sequences
– ISO-2022-JP (RFC 1554):

• ASCII: ESC (B
• JIS X 0208-1978: ESC $ @
• JIS X 0208-1983: ESC $ B
• JIS X 0201-Roman: ESC (J
• GB2312-1980: ESC $ A
• KSC5601-1987: ESC $ (C
• JIS X 0212-1990: ESC $ (D

Character Sets: Terminology

Character Model for the Web (http://www.w3.org/TR/charmod/)
Character: “The smallest component of written language that has
semantic meaning; refers to the abstract meaning and/or shape”
(Unicode)
Glyph: Unit of visual rendering
– different glyphs for the same character depending on font; also consider

ligatures, Arabic character shapes

Repertoire: Set of characters to be encoded
Coded character set: assigning each character a number/code
position
Character encoding form: representation of character codes in
code units (not necessarily bytes)

Character Sets: Terminology (2)

Character encoding scheme: serialization of code units into byte
sequences
– IANA charset

Unicode

Simultaneously published by Unicode Consortium and ISO
– Current version Unicode 4.0 == ISO/IEC 10646-2003
– ISO 10646 has only character assignments; Unicode defines also

algorithms, character properties, …

96248 graphic characters
134 format characters
65 control characters
878083 reserved characters
Coded Character Set is called UCS-4
– UCS-2 is a subset with < 65536 characters

Unicode Principles

Universality: A single repertoire for all languages
Efficiency: Simple to parse and process
Characters, not glyphs
Semantics: characters shall have well-defined meaning
Plain text: characters represent plain text
Logical order: In memory, characters come in logical order
Unification: characters duplicate across scripts are unified
Dynamic composition: Accented characters can be composed dynamically
Equivalent sequences: Precomposed characters have decomposed
equivalence
Convertibility: Unicode can be converted accurately into other CCS

Unicode Characters

Have stable code point
– e.g. U+00DF

Have stable character name
– e.g. LATIN SMALL LETTER SHARP S

Unicode standard gives “demo” glyph
– e.g. ß

Unicode character database gives properties
– e.g. “Letter, lower case” (Ll)

Combining Characters

Characters of class “combining” can be composed to new forms
– Used for accented characters and Hangul syllables
– e.g. U+0055,U+0308 -> U+00DB

(LATIN CAPITAL LETTER U, COMBINING DIAERESIS -> LATIN
CAPITAL LETTER U WITH DIAERESIS)

Normal Form D (NFD): canonical decomposition
– considers canonical order of multiple combining characters

Normal Form C (NFC): canonical decomposition, followed by
canonical composition

Compatibility Characters

encoded in Unicode solely for compatibility with existing
standards
– non-compatibility encodings already exist

compatibility decomposition
– e.g. U+212B (ANGSTROM SIGN) -> U+00C5 (LATIN CAPITAL LETTER

A WITH RING ABOVE)
– e.g. U+0133 (LATIN SMALL LIGATURE IJ) -> U+0069, U+006A

Normal Form KD (NFKD): compatibility-decompose, then apply
NFD
Normal Form KC (NFKC): compatibility-decompose, then apply
NFC

Types of Code Points

Graphic
Format (e.g. paragraph separator)
Control: usage defined outside Unicode
Private-use: usage defined outside Unicode
Surrogate: reserved for use with UTF-16
Non-character: reserved for internal use, restricted
interchange
Reserved: reserved for future assignment

Allocation of Code Points

Structured in planes (216), rows (28), cells (1)
– Plane 0: Basic Multilingual Plane (BMP)
– Plane 1: Supplementary Multilingual Plane
– Plane 2: CJK Unified Ideographs Extension B
– Plane 14: Tags
– Plane 15, 16: Private Use Areas

BMP is further subdivided into blocks:
– Alphabets, extension symbols, CJK Ideographs, Hangul,

Surrogates, Private Use Area, Compatibility characters

Encoding Forms

Unicode supports code units of 8, 16, and 32 bits
UTF-32: made code point 1:1 to code unit
– encoding schemes need to specify byte order (e.g. UTF-32BE) or Byte

Order Mark (BOM, U+FEFF)

UTF-16: 16-bit code units
– characters < 65536 map 1:1
– other characters use surrogate pair (two code units)
– CES needs to specify byte order or use BOM

UTF-8: 8-bit code units
– variable length (1..4 bytes), ASCII subset uses 1 byte
– maps 1:1 to CES, optional usage of BOM as “UTF-8 signature”
– null-byte free (except for U+0000)

Usage of Unicode in XML

All characters in a document come from Unicode
– usage of unassigned (reserved) characters is well-formed

[84] Letter ::= BaseChar | Ideographic
[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] | [#x00D8-

#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131] … | [#xAC00-#xD7A3]
[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]
[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] … | #x309A
[88] Digit ::= …
[89] Extender ::= …

XML 1.1 replaces explicit lists with ranges that also span yet-unassigned
characters

Encodings of XML Documents

All XML processors must support UTF-8 and UTF-16
– UTF-16 documents must begin with byte order mark

Other documents must include XML declaration, and must provide encoding=
parameter

– Standard values are “UTF-8”, “UTF-16”, “ISO-10646-UCS-2”, “ISO-10646-UCS-4”,
“ISO-8859-n”, “ISO-2022-JP”, “Shift_JIS”, “EUC-JP”

– Other CES should use registered IANA names, or start with “x-”
Higher layers may provide encoding (e.g. HTTP, MIME)
If no encoding is provided by a higher layer, it is an error if

– the declared encoding differs from the actual one,
– or no encoding is declared, and the document does not start with a BOM, and is

not encoded in UTF-8
It is a fatal error if a document is passed to the processor in an unsupported
encoding

Auto-Detection of Encodings

non-normative: the parser may or may not implement this
algorithm
Reading four bytes is sufficient
With BOM:
– 00 00 FE FF: UTF-32, big endian (1234)
– FF FE 00 00: UTF-32, little endian (4321)
– 00 00 FF FE: UTF-32, unusual byte order
– FE FF 00 00: UTF-32, unusual byte order
– FE FF ## ##: UTF-16, big endian
– FF FE ## ##: UTF-16, little endian
– EF BB BF: UTF-8

Auto-Detection of Encodings (2)

Without BOM
– 00 00 00 3C: UTF-32BE
– 3C 00 00 00: UTF-32LE
– 00 00 3C 00, 00 3C 00 00 : UTF32, unusual byte order
– 00 3C 00 3F: UTF-16BE
– 3C 00 3F 00: UTF-16LE
– 3C 3F 78 6D: UTF-8, ASCII, ISO-8859, … (<?xm)
– 4C 6F A7 94: EBCDIC with some code page

