
Master Thesis

Using Machine Learning for Intrusion
Detection in a Combined Car and Train

Monitoring System
Intrusionsdetektion in einem kombinierten Monitoringsystem für

Automobil und Bahn mit Hilfe von maschinellem Lernen

by

Mario Freund

Supervisors

Prof. Dr. Andreas Polze, Prof. Dr. Anja Lehmann
Professur für Betriebssysteme und Middleware, Professur für Cybersecurity - Identity

Management

Dominik Spychalski
Industrial Cyber Defense GmbH

Hasso Plattner Institute at University of Potsdam

November 3, 2023

Abstract

Automotive and railway vehicles are developing towards an increased digitilization for
an improved user experience, optimized maintenance, autonomous driving, and more
efficient operation. This also increases the surface for cyber attacks. This thesis deals with
a comparison of Controller Area Network (CAN) and Multifunction Vehicle Bus (MVB)
and the proposal of a joint intrusion detection system for automotive and railway vehicles
based on machine learning. To do so, concrete approaches are investigated for their
suitability. A semi-supervised by Hoang and Kim [18] and an unsupervised approach by
Jeong et al. [21] are analyzed deeply under the usage of available datasets. It is shown
that the approach by Hoang and Kim is not suitable for the objective of this thesis. The
unsupervised method X-CANIDS [21] is more effective and is applied to CAN and MVB
networks to assess the performance. Masquerade and unstealthy fabrication attacks can be
detected with high recall and precision. Other attacks, like suspension attakcs and stealthy
fabrication attacks, are not detected well. Furthermore, the popular HCRL dataset [47] is
proven to be an inappropriate benchmark for intrusion detection methods and should be
replaced by other ones like SynCAN [17] or ROAD [55]. Finally, a joint intrusion detection
system is described based on well-defined use cases. It is discussed that X-CANIDS can
be well installed in combination with other intrusion detection methods like timing-based
or rule-based methods.

Zusammenfassung

Automobil- und Schienenfahrzeuge entwickeln sich in Richtung einer zunehmenden Di-
gitalisierung für ein verbessertes Benutzererlebnis, eine optimierte Wartung, autonomes
Fahren und einen effizienteren Betrieb. Dies erhöht auch die Angriffsfläche für Cyberan-
griffe. Diese Arbeit beschäftigt sich mit einem Vergleich von Controller Area Network
(CAN) und Multifunction Vehicle Bus (MVB) und dem Vorschlag eines gemeinsamen
Intrusionsdetektionssystems für Automobil- und Schienenfahrzeuge auf Basis von ma-
schinellem Lernen. Dazu werden konkrete Ansätze auf ihre Eignung hin untersucht. Ein
teil-überwachter Ansatz von Hoang und Kim [18] und ein unüberwachter Ansatz von
Jeong et al. [21] werden unter Verwendung von verfügbaren Datensätzen eingehend ana-
lysiert. Es zeigt sich, dass der Ansatz von Hoang und Kim für das Ziel dieser Arbeit
nicht geeignet ist und generell für Intrusionsdetektion nur eingeschränkt geeignet ist.
Die unüberwachte Methode X-CANIDS [21] ist effektiver und wird auf CAN- und MVB-
Netzwerke angewendet, um die Leistung zu bewerten. Masquerade- und offensichtliche
Fabrication-Angriffe können mit hoher Wiedererkennung und Präzision erkannt werden.
Andere Angriffe, wie Suspension-Angriffe und subtile Fabrication-Angriffe, werden nicht
gut erkannt. Darüber hinaus hat sich der beliebte HCRL-Datensatz [47] als ungeeigne-
ter Benchmark für Intrusionsdetektionsmethoden erwiesen und sollte durch andere wie
SynCAN [17] oder ROAD [55] ersetzt werden. Schließlich wird ein gemeinsames System
zur Erkennung von Intrusionen auf der Grundlage genau definierter Anwendungsfälle
beschrieben. Es wird erörtert, dass X-CANIDS gut in Kombination mit anderen Intrusi-
onsdetektionen wie zeit- oder regelbasierten Methoden eingesetzt werden kann.

ii

Acknowledgments

The FINESSE collaborative research project "Vehicle intrusion detection and prevention
in a uniform structure for road and rail" on which this thesis is based was funded by
the German Federal Ministry of Education and Research under grant number 16KIS1584K.

I want to thank Robert, Kordian, and Katja from the HPI OSM chair for the constructive
feedback throughout this work. Thank you as well to Dominik, Markus, and Christoph
from INCYDE for insights into the FINESSE project and the support.

Thank you to my computer science teacher in high school for encouraging me to study
computer science.

Finally, I owe a huge thank you to all my family and friends who have always supported
me, especially my parents and my partner.

iii

Contents

1 Introduction 1
1.1 Structure of the Thesis . 3

1.2 Contributions . 4

2 Foundations 5
2.1 Intrusion Detection and Collaborative Intrusion Detection 5

2.2 Machine Learning . 6

2.2.1 Basic Considerations . 6

2.2.2 Special Considerations for Intrusion Detection 9

2.2.3 Autoencoder . 10

2.2.4 Generative Adversarial Networks . 11

2.2.5 Sequence Learning with LSTMs . 12

2.3 Protocols . 14

2.3.1 Controller Area Network . 14

2.3.1.1 Message Transfer . 15

2.3.1.2 Error Handling . 16

2.3.2 Multifunction Vehicle Bus . 16

2.3.2.1 Message Transfer . 17

2.3.2.2 Telegrams . 18

2.3.2.3 Events . 19

2.3.2.4 Error Handling . 19

2.4 Joint Intrusion Detection System . 19

3 Related Work 21
3.1 Project FINESSE . 21

3.2 AI-based Intrusion Detection on CAN . 22

3.3 AI-based Intrusion Detection on other In-Vehicle Networks 24

3.4 Collaborative Intrusion Detection . 24

4 Security and Attack Considerations 27
4.1 Comparison of CAN and MVB . 27

4.2 Attacker model . 29

4.3 Attacks . 31

4.3.1 Attacks on CAN . 31

4.3.2 Attacks on MVB . 33

4.4 Datasets . 34

4.4.1 HCRL . 35

4.4.2 TU Eindhoven . 35

4.4.3 SynCAN . 36

iv

Contents

4.4.4 ROAD . 37

4.4.5 MVB . 38

5 Methodology 40
5.1 Challenges . 40

5.2 Consequences and General Method . 41

5.3 Detecting In-Vehicle Intrusion via Semi-supervised Learning-Based CAAEs 42

5.4 X-CANIDS . 44

5.5 X-MVBIDS . 46

5.6 Implementation and Experimental Setup . 47

5.6.1 Clarifying Training Parameters of the CAAE 50

5.6.2 Deriving Training Parameters for X-CANIDS and X-MVBIDS 51

6 Evaluation 59
6.1 Evaluation Results . 59

6.1.1 Detecting In-Vehicle Intrusion via Semi-supervised Learning-Based
CAAEs . 59

6.1.2 X-CANIDS . 61

6.1.2.1 SynCAN . 62

6.1.2.2 ROAD . 63

6.1.2.3 ROAD byte-based . 64

6.1.2.4 Performance on an Embedded Device 66

6.1.3 X-MVBIDS . 67

6.2 Result Analysis . 68

6.2.1 Detecting In-Vehicle Intrusion via Semi-supervised Learning-Based
CAAEs . 68

6.2.2 X-CANIDS . 70

6.2.2.1 Differences between ROAD and SynCAN 70

6.2.2.2 Masquerade Attacks . 71

6.2.2.3 Fabrication Attacks . 71

6.2.2.4 Suspension Attacks . 72

6.2.3 X-MVBIDS . 72

6.2.3.1 Masquerade Attacks . 72

6.2.3.2 Suspension and Fabrication Attacks 73

7 Discussion 74
7.1 Feasibility in Practice . 74

7.2 Joint Architecture . 75

8 Conclusion 78
8.1 Future Work . 79

References 80

A Appendix– Evaluation Result Tables 85

v

1 Introduction

In the modern world, mobility infrastructure is more and more connected via networks.
This trend can be mainly observed within the two main sectors, railway and automotive.
Both have several use cases for increased connectivity. For instance, both sectors are
developing in the direction of autonomous driving, the optimization of traffic through
the processing of real-time data, optimized maintenance, or a more convenient user
experience. This development leads to the occurrence of more external and internal
interfaces to services [50]. From a security point-of-view, this also implies a bigger attack
surface, which threatens security as well as safety.

Security flaws in vehicles were already demonstrated by various publications. One of
the most famous works is about the remote hack of a Jeep Cherokee [31]. The authors
showed that they were able to establish a remote connection to any vehicle of a certain
type in the USA, and with some effort could inject arbitrary Controller Area Network
(CAN) payloads. Thus, physical actions could be performed that could potentially harm
passengers.

To address those security issues, there are domain-specific standards that regulate and
describe the methods of establishing an information security management system and
thus a risk management process. The most important standard for Operational Technology
(OT) security is IEC 62443 [46]. For railway, there is the derivation TS50701 [36], and for
automotive ISO/SAE 21434 [41]. The risk assessment processes of those standards lead
to the implementation of security measures depending on the risk that was assessed and
the remaining risk that is accepted. For industrial automation and control systems (IACS),
usually a low to medium risk can be accepted. However, to evaluate the effectiveness of
those security measures, security monitoring detecting possible intrusions is necessary.
Successful detection is also a requirement to identify common attacks and attack patterns.

On the other hand, security events need to be detected to be able to react quickly and
apply incident response measures. IEC 62443-2-1 directly asks to report events that are
relevant for security [46].

One way to generate security-relevant events is the implementation and usage of an
intrusion detection system (IDS). According to Lazarevic et al. [25], IDSs consist of several
components. There are one or more devices collecting data (sensor), a detector that
analyzes data to generate alarms, a knowledge base that provides collected information
in a preprocessed form, a configuration device, and a response component to initiate
actions from detected intrusions [25]. Lazarevic et al. also formulate some characteristics
an intrusion detection system should fulfill. A very central requirement for an IDS is that
it should deliver a small false alarm rate while detecting intrusions reliably [25]. Chapter
2 goes more into detail about how to measure the performance of an IDS.

The goal of this work is to provide an approach for a joint intrusion detection system in
the context of a combined security monitoring of railway and automotive. Recent publi-
cations such as [50] show that from abstract point-of-view railway and automotive have

1

1 Introduction

Figure 1.1: This is a layer model comparing rail and automotive vehicles based on IEC62264. Espe-
cially on layers three and four, railway and automotive vehicles have many similarities like the
implementation of passenger interfaces. Source: [50]

several similarities despite railway being a non-individual, guided way of transportation
and automotive being an individual way of transportation.

Figure 1.1 shows a schematical model based on IEC62264. As can be seen, railway and
automotive vehicles share the underlying basis of having Engine Control Units respec-
tively Electronical Control Units (ECUs) that are crucial for operating the vehicle. On
higher layers, there are systems for monitoring and diagnoses alongside systems for envi-
ronmental perception (L3) and interfaces for passengers (L3/L4). Recent developments
also led to the installation of passenger infotainment systems with increased functionality.

Internally, different technologies are used for communication. In the railway sector,
the combination of Wired Train Bus (WTB) and Multifunction Vehicle Bus (MVB), which
were originally introduced in the 1990s, dominate [50]. Next to that, also CAN, Profibus,
or Train Communication Network (TCN) are installed on trains [50]. Communication
technologies for internal train communication are standardized in IEC 61375 [12]. Nowa-
days, other technologies like Real-Time Ethernet or Ethernet Train Backbone (ETB) are
supported by this standard as well. In the automotive sector, the most important bus tech-
nology is CAN. However, new vehicles use Automotive Ethernet as well. Those different
technologies have different characteristics but generally serve the same purpose within
the vehicle.

Externally, both domains share the property of being connected to other vehicles or op-
erational infrastructure. Those remote connections mainly rely on mobile communication
systems like GSM-R or soon the new standard Future Railway Mobile Communication
System (FRMCS), which is based on 5G. For internet connections of automotive vehicles,
usually Long Term Evolution (LTE) is used [50]. Finally, as Spychalski et al. claim, the
risk management processes of both domains have similarities taking their corresponding
standards TS50701 and ISO/SAE 21434 into account [50].

Based on these facts, it seems valuable to have a joint security understanding of both
sectors. This is why a project consortium around Escrypt, Fraunhofer SIT, INCYDE,
University of Passau, and Yekta IT was formed in 2021. Their goal is to realize “Intrusion

2

1 Introduction

Detection and Prevention in a Uniform Structure for Road and Railway” [45]. So far, this
project dealt mostly with the question of how to aggregate and exchange data from and
between multiple vehicles and how to define a uniform architecture.

The goal of this thesis is to start from the other side and evaluate concrete intrusion
detection approaches for in-vehicle networks. In scope are the two field buses CAN
and MVB representing the automotive respectively railway sectors. Since the mid-1990s,
almost every train of Bombardier and Siemens has been equipped with MVB [44]. That
is why this protocol is featured in this thesis. CAN is mainly inspected in this thesis
because it is still widely used today. For instance, many cars are still in use having a
CAN implementation on board. Although automotive ethernet is used as well, CAN
still finds its place in manufacturing today as can be observed by the development of
CAN XL starting in 2018 [2]. Furthermore, machine learning is leveraged for this work as
one way of conducting intrusion detection. Machine learning is a subdomain of artificial
intelligence (AI) and has broad usage in multiple fields. The general idea is that machine
learning models can learn the communication patterns of the used network protocols and
by that can separate between benign network traffic and intrusions. The central research
question of this work is which machine learning approach of intrusion detection is suitable
to realize a joint IDS for railway and automotive. Besides, the goal is to develop concrete
ideas on how to initialize, deploy, update, and maintain the system. It is also necessary to
discuss weaknesses of the chosen intrusion detection approach and find solutions how to
mitigate these respectively to discuss what to add to overcome these issues. The structure
of this thesis follows all the necessary considerations to answer the research questions.

1.1 Structure of the Thesis

After the introduction, Chapter 2 introduces all the necessary foundations for this work.
These include intrusion detection and collaborative intrusion detection, machine learning
and special types of machine learning models, and the two bus protocols CAN and
MVB. For the structured discussion of the joint IDS, use cases for such a system are
defined that are filled with concrete ideas later. Related work is presented in chapter 3. It
contains a brief overview of recent publications about intrusion detection on CAN and
other relevant in-vehicle networks. Moreover, the project FINESSE and further topics like
distributed intrusion detection systems and intrusion detection with machine learning are
presented. Chapter 4 starts with a comparison of CAN and MVB to justify joint security
monitoring. Furthermore, it explains why CAN and MVB are not protected against
attacks on confidentiality, integrity, and availability. An attacker model is described and
justified based on recent publications before concrete attacks are derived from this attacker
model. Finally, the chapter introduces the datasets that were used for the evaluation of
the approaches. Chapter 5 presents the overall method for choosing the IDS approach
based on considered challenges. After that, the evaluated intrusion detection approaches
are explained. Finally, the implementations and the experimental setup are introduced.
Chapter 6 contains the evaluation of the approaches respecting the available datasets while
chapter 7 discusses the achieved results critically regarding the introduced challenges and
the context of a joint IDS. After that, concrete ideas for the use cases of the joint IDS are

3

1 Introduction

introduced next to an overall architecture of it. The thesis is summarized in chapter 8 and
conclusions are made considering the research questions.

1.2 Contributions

This thesis delivers several contributions. First, an attacker model for attacks on in-vehicle
networks of railway and automotive vehicles is proposed. Already existing attack classes
from CAN are applied to MVB to derive a joint security understanding based on a prior
comparison of both field buses. Second, a semi-supervised intrusion detection method
by Hoang and Kim [18] and an unsupervised detection method (X-CANIDS) by Jeong
et al. [21] are evaluated using public CAN datasets and a proprietary MVB dataset.
The evaluation results are used to discuss the feasibility of the approaches for a joint
intrusion detection system. Third, this thesis provides an implementation of X-CANIDS
and an adaption to MVB (X-MVBIDS) for experiments. The implementation is available
on GitHub [14]. Finally, use cases for a joint intrusion detection system are formulated
and leveraged to propose an architecture. The evaluation analysis is used to identify the
strengths and weaknesses of the chosen approach and to name possible mitigations.

4

2 Foundations

In this chapter, some important foundations are introduced. It starts with a taxonomy of
intrusion detection and collaborative intrusion detection. Next, important basic concepts
for machine learning, the relation between machine learning and intrusion detection, and
special machine learning concepts are presented. The chapter ends with a description of
CAN respectively MVB, and use cases for a joint IDS.

2.1 Intrusion Detection and Collaborative Intrusion Detection

According to the National Institute of Standards and Technology (NIST), intrusion detec-
tion “is the process of monitoring the events occurring in a computer system or network
and analyzing them for signs of intrusions, defined as attempts to compromise confi-
dentiality, integrity, availability, or to bypass the security mechanisms of a computer or
network” [3]. Using this definition, Lazarevic et al. [25] define three core demands for
IDSs. First, the prediction method should classify intrusions as malicious and benign
behavior as not malicious. This implies an as high as possible number of true positives
and as high as possible number of true negatives. Table 2.1 shows the evaluation of
intrusions that is commonly used. Most importantly, intrusion detection can be seen as a
binary classification.

Second, the time performance is determined by the processing time and the propagation
time, each of which should be low. Processing time means the time until the IDS can
generate a security event out of incoming data and propagation time means the time until
the security event is available for further inspection and reaction [25]. Third, Lazarevic et
al. demand fault tolerance. For instance, the IDS should be able to recover quickly from
attacks on itself or a huge number of misleading alarms [25].

Figure 2.1 shows the taxonomy used by Lazarevic et al.. Five aspects are relevant to
describe an IDS. The information source is self-explaining. Here in this work, the focus
is on network-based intrusion detection. As for the analysis strategy, they define two
major methods. Anomaly detection aims to identify a pattern deviation from the normal
behavior of the system, the network in this case. Misuse detection tries to match the
behavior with certain malicious patterns that are known prior. So, those two methods

Predicted label
Normal Intrusions (Attacks)

Normal connections True Negative (TN) False Positive (FP)
Actual label Intrusions (Attacks) False Negative (FN) True Positive (TP)

Table 2.1: The table shows evaluation classifications of IDSs. Source: [25]

5

2 Foundations

Figure 2.1: The figure shows a taxonomy of IDSs. Source: Replicated diagram from [25]

are inverse to one another on an abstract level. Time aspects differ between real-time
and offline detection. Offline detection means that logs are stored first and then analyzed
at a later point in time [25]. Architectural considerations include a centralized and a
distributed respectively heterogeneous approach in the taxonomy. Finally, the response
can include active responses and passive reactions [25]. The response is not considered in
this thesis. Going more into detail about the collaborative aspects of intrusion detection,
Vasilomanolakis et al. [54] differ between a centralized, decentralized, and distributed
architecture. The centralized architecture has one central analysis unit, to which several
monitors are connected to. Following their definition, the central unit can either receive
logs from the monitors or already raised alarms. Additionally, the architecture does not
scale with more monitors. The one central analysis unit stays and eventually results in a
performance bottleneck [54]. A decentralized architecture splits up the central analysis
unit into multiple parts, which can result in a hierarchical structure. Additional analysis
units share the workload and by that mitigate the bottleneck problem [54]. A distributed
collaborative IDS (CIDS) unifies monitoring and analysis and hence, each entity is moni-
toring as well as analyzing. Intrusion detection becomes a peer-to-peer task in this case
[54].

2.2 Machine Learning

The following section gives the most important foundations for machine learning. This
thesis leverages machine learning and there are experiments in order to choose a suitable
machine learning approach for the given problem. However, to fully understand machine
learning and its concepts, a book, e.g., by Zhang et al. [59] is recommended.

2.2.1 Basic Considerations

Starting, the most important prerequisite for machine learning is data. Usually, to describe
this data, there is a certain number of features. For instance, to describe a pixel on a screen,

6

2 Foundations

Figure 2.2: The figure shows the basic circle of training a machine learning model. Source: Replicated
diagram from [59]

the red, green, and blue values of that pixel can be used. In this case, the data has three
features [59]. Furthermore, a dataset might consist of more than one instance of those data
points. These examples can be called samples. In order to train a performant machine
learning model, it is important to have an appropriate feature set and enough samples
[59]. Both requirements pose a challenge in real life.

A machine learning model can be seen as the computing part between input data and
output prediction that are related to a certain prediction task. Normally, the input gets
passed as some kind of numerical vector. The output of a model depends heavily on the
machine learning task and the type of the model. Machine learning has two modes of
application: training and prediction. During training, the model gets fed with samples.
Based on the computed output, the model is adjusted. In the next round, more samples
get fed and the model gets optimized again. This circulation represents an incremental
process, in which the model gets better and better at fulfilling the task. Figure 2.2 shows
this basic circle.

During prediction, the model is used to compute outputs from prior unknown data.
Depending on the success of the training phase, the performance is better or worse. To
serve this separation of training and prediction, the data is split accordingly. The minimum
split is a split into training and test data. Additionally, validation data can be split to
monitor the performance of the model on independent data during training.

In order to check for the correct model output respecting a certain task and updating the
model accordingly, labels are required. Label means the expected output of a model for a
certain input in this context. In real life, the presence of labeled data is rare respectively
lots of resources need to be used to obtain labeled data [59]. This is why there exist three
different relevant types of learning: supervised learning, semi-supervised learning, and
unsupervised learning.

Supervised learning assumes that there is a completely labeled dataset that can be
learned with. Zhang et al. differ between six different kinds of supervised machine
learning tasks [59]: The first type is the classical regression problem. There, a fixed set
of features is used to estimate a certain attribute of data. An example can be to estimate
the price of a car depending on the extra features added to the basic car. The second
type is the classification. In this case, a fixed number of classes are given, and the input
sample is matched with one of those classes based on the features. A very classic example
is to classify photos as cats or dogs. The third type of supervised machine learning task
is tagging which is a special case of classification that can match an input with more
than one class. Thus, the input gets labeled with potentially more than one tag. The

7

2 Foundations

Figure 2.3: The figure shows a basic multilayer perceptron. An arbitrary number of hidden layers
can be used. The sizes of the input layer, hidden layers, and output layer can differ from each
other. Source: Replicated diagram from [59]

fourth type is the search. Particularly, the task is about assigning a relevance score to
result items based on a search item. The most prominent example might be the page rank
algorithm by Google. As the fifth type, the recommendation task is like the search task,
the only difference being that based on the user personal preferences are considered for
the ranking. For instance, this task applies to movie recommendations. The last type is
sequence learning. It is a special type of learning where the input and output sequence
can be of variable length. An example could be machine translation [59].

Unsupervised and semi-supervised approaches apply for situations where there is
no or not enough labeled data available. Unsupervised training can for example be
reconstruction learning. In this case, the model tries to reconstruct the input. The challenge
here is not to copy the input into the output but to learn the patterns of the data to
reconstruct unknown data well. Another example could be word embeddings into a
vector space [59]. Semi-supervised training is not explicitly mentioned by Zhang et al.
[59]. However, van Engelen and Hoos describe semi-supervised learning as a way of
using unlabeled as well as labeled data for training [53]. Furthermore, they present a
taxonomy including the two main types of semi-supervised learning [53]. Inductive semi-
supervised methods usually use the few existing labeled samples to train a supervised
model and include the unsupervised data in some form. Often, pseudo-labels are created
for the unlabeled data by obtaining the labels from the supervised model. In contrast,
transductive learning does not deliver a model, but a label for the unlabeled data. This
could for example be done by clustering the data and looking at which other labeled data
points the unlabeled data points are close to [53].

Machine learning approaches featured in this thesis are deep learning approaches. This
means that a model is used which has one or more hidden layers. In general, such a
multilayer perceptron can be understood as in figure 2.3. Other model architectures,
inputs, and outputs exist. However, this is the easiest architecture to understand concepts
behind deep learning.

Input features of a sample get fed into the input layer. The input can be understood as a
matrix X ∈ Rn×d for n samples with d features. The hidden layers have several units that
are connected to the input layer or previous hidden layers. In the easiest case, the model

8

2 Foundations

is fully connected, i.e., each neuron is connected to each of the previous neurons in the
previous layer. The neurons have weights w and biases b. In the example from [59] there is
one hidden layer and one output layer. The matrices get multiplied with the corresponding
weights and biases get added on every layer. Finally, an output matrix is computed in
the output layer [59]. In order to add a non-linearity to the model, each neuron is or is
not activated by an activation function. The most famous activation function is probably
the rectified linear unit (ReLU) with ReLU(x) = max(x, 0). There are also many other
activation functions, and this has been a research object until today [59].

A common way to begin training is to initialize all weights and biases randomly. During
a training round, also called an epoch, a batch of training data is used as input for the
model. The output of the model would most likely be different from the expected output.
This difference can be determined by a loss function. One example of a common loss
function is the mean squared error function (MSE), which calculates the squared distance
between data points: MSE = 1

N ∗ ∑ (yi − ŷi)
2. In this case, yi is the predicted value and

ŷi the real value, while N is the number of samples.
The essence of every model is to update the weights and biases towards a lowered loss

function as the goal is to lower the loss function. In order to do so, the derivative of the
average loss is calculated. The derivative with respect to the weights and biases returns
the gradient. Thus, in order to lower the loss, the parameters must be updated in the
direction of the negative gradient [59]. This is achieved by multiplying the gradient by a
small value η, also called the learning rate, and subtracting it from the current parameters
[59]. A higher learning rate implies bigger steps and faster learning. However, learning
too aggressively can lead to the miss of the local or global minimum of the loss function
and finally to a high loss. The learning rate is a hyperparameter that needs to be tuned
[59]. The just-described optimization algorithm is called “Minibatch Stochastic Gradient
Descent” and is one of the most popular ones. Numerous other algorithms exist. However,
the general principle of training stays the same:

1. Take a batch of data and calculate the inference of the model.

2. Calculate the loss with respect to a chosen loss function.

3. Calculate the gradient using the so-called backpropagation algorithm.

4. Use an optimization algorithm and calculate a parameter update towards a smaller
loss function.

5. Update the weights and biases accordingly.

6. Take the next batch and start again.

Machine learning concepts that are under inspection in this thesis are explained later in
this chapter.

2.2.2 Special Considerations for Intrusion Detection

The previous subsection introduced some fundamental concepts of machine learning.
Sticking to this terminology, intrusion detection can be understood as a binary classifi-
cation task. Furthermore, supervised, semi-supervised, and unsupervised approaches
are possible in order to train the classifier. Throughout this work, certain metrics are

9

2 Foundations

Name Calculation Comment

Accuracy
(ACC)

TP+TN
FP+FN+TP+TN

This metric can be misleading
as usually intrusions are

underrepresented in the data.
A classifier classifying everything

as benign might therefore
have a high accuracy

despite not performing.
Error
(ERR)

FP+FN
FP+FN+TP+TN

This can suffer from the same problem
as above.

True Positive Rate (TPR)
or Recall (REC)

TP
FN+TP

A high recall is important for
intrusion detection systems.
It states how many attacks

can be detected.

False Positive Rate
(FPR)

FP
FP+TN

Too many false positives might
lead to the infeasibility

of the intrusion detection approach.
True Negative Rate

(TNR)
1 − FPR This metric is complementary to FPR.

False Negative Rate
(FNR)

1 − TPR This metric is complementary to TPR.

Precision
(PRE)

TP
TP+FP

A high precision means a relatively low
number of false positives.

F1 score
(F1)

2 ∗ PRE∗REC
PRE+REC

This is a combination of precision
and recall. In practice though,

precision respectively recall could
be more important than the other one.

Table 2.2: The table shows important performance metrics for binary classification. Source: [38]

required to measure the performance of classifiers. Earlier in this chapter, the concept of
true negatives, false negatives, true positives, and false positives was already introduced.
Every prediction that is conducted by an intrusion detection system can be put in one
of those categories. The resulting confusion matrix is the basis for the following metrics
in table 2.2. More metrics exist [38], but usually those metrics are enough to inspect the
performance.

2.2.3 Autoencoder

After the general introduction of machine learning and its application in the field of
intrusion detection, some more detailed concepts are introduced briefly. The detailed
mathematical background of every concept would exceed the scope of this thesis but
can be studied in the referenced literature. These sections are meant to explain the
functionality and the sense of each concept.

10

2 Foundations

Figure 2.4: The figure shows an abstract representation of an autoencoder.

The first important one is called an autoencoder and is generally used for reconstruction
learning. Koenigstein et al. define autoencoders as “[. . .] type of algorithm with the
primary purpose of learning an ‘informative’ representation of the data that can be used
for different applications by learning to reconstruct a set of input observations well
enough” [4]. Concretely, autoencoders get a set of input features and compress them
into a latent representation of these. The first part doing exactly that is called an encoder.
The second part called the decoder, tries to decompress the latent representation to the
original features [30].

Figure 2.4 shows an example of an autoencoder. An image, the smiley, in this case, is
the input of the autoencoder. It can be represented by its pixel values. The autoencoder
encodes the input to a latent representation and decodes it again to the original size. The
goal is to reconstruct the smiley. The autoencoder generalizes well when it learns the
general patterns of a smiley and reconstructs prior unknown smileys. In order to achieve
a meaningful representation, the dimensions of latent spaces are usually much lower than
the original dimensions [30].

Encoders and Decoders can have any structure. However, in the scope of this thesis
neural networks, specifically deep learning networks, are inspected. Autoencoders can
be trained as any other neural network. The central question is how to calculate the
reconstruction error of the autoencoder. Recall that the mean squared error was introduced
earlier in this chapter. An obvious choice is to use this loss function to measure the distance
between the input and output representation of the autoencoder and use optimization
algorithms based on that loss function. The two approaches inspected in this thesis both
leverage the mean squared error.

Regarding the training of autoencoders, there is no significant difference between them
and other neural networks. However, the size of the latent space is an interesting hy-
perparameter that can have a huge impact. The larger the latent space is, the better the
reconstruction of the original input works. On the other side, a too-large latent space can
also lead to overfitting to the training examples and thus the model would generalize
poorly.

2.2.4 Generative Adversarial Networks

Generative adversarial networks (GANs) were originally introduced in 2014 by Goodfellow
et al. [15]. They consist of two parts: the generator, which tries to synthesize data
following a certain distribution, and the discriminator, which tries to differentiate between
the synthesized data and real data. Both parts work in an adversarial way. This means that

11

2 Foundations

Figure 2.5: The figure shows an abstract representation of a GAN. The generator tries to create
synthetic data samples according to a certain distribution. The discriminator tries to differentiate
between the synthetic data samples and real data samples. Source: Replicated diagram from [10]

the discriminator (D) is supposed to get better and better at distinguishing real data from
synthetic data and the generator (G) is supposed to get better and better at generating
synthetic data that matches the distribution of the real data [10].

The concept from above is represented by figure 2.5. In practice, the networks D and
G are usually realized by fully connected or convolutional networks [10]. The training
follows the structure of having two alternating phases: First, the discriminator is trained to
put out the probability of its input to be synthetic data or real data (represented usually by
zero and one). The weights are updated via backpropagation and optimization to learn to
differentiate between these two classes. Second, the weights of the discriminator get fixed,
and the weights of the generator are connected to the discriminator. Backpropagation and
optimization against the output of one (real data) are conducted. By that, the generator
learns to output data following the distribution of the real data. The goal is to optimize
the generator, so the discriminator is not able to differ between real and synthetic data
anymore. In practice, this optimal state is usually not achieved [10]. After that, the
generator can be used to create artificial data samples that match a real distribution.

2.2.5 Sequence Learning with LSTMs

Certain machine learning tasks might pose the challenge of learning the sequential or
temporal relations between data points. Such sequence learning tasks as introduced
before require special types of neural networks. Instead of single data points, sequences
of data points are passed to the input layer. These neural networks are called recurrent
neural networks (RNNs) and are different from normal neural networks in a way that they
are connected to each other within one layer and can have an internal state that can be
understood as a memory [43]. Salehinejad et al. provide a useful overview of the different
types of RNN [43].

As can be identified in figure 2.6, the simplest form of an RNN is a sequential composi-
tion of an input layer, a hidden layer, and an output layer. For each timestep, the input
contains N features. The hidden layer has M units per timestep and the output layer has
P units per timestep. It is important to mention that these are not necessarily the same,

12

2 Foundations

Figure 2.6: The diagram shows an abstract representation of an unfolded RNN. The first hidden state
on the left indicates previous timesteps that are not included in the diagram. Each hidden state
has a forward connection to the next hidden state. Other characteristics are similar to multilayer
perceptrons. Source: Replicated diagram from[43]

Figure 2.7: The diagram shows an abstract representation of an LSTM cell. Rectangles denote layers
and round forms element-wise operations. The "x" indicates a product. The "+" indicates a sum.
The top line marks the cell state. The bottom line marks the hidden state. From left to right there
is the forget gate, the input gate, and the output gate. Source: Own diagram based on [28, 43, 34]

thus N, M, and P can be different. Similarly to other fully connected networks, weight
matrices are applied to the connections between the layers, and biases are added. The
hidden layer is connected across the timesteps in order to fulfill the memory function
[43]. This architecture implies that the hidden states are calculated with respect to the
previous hidden state and the current input. The backpropagation that is used for neural
networks is executed as backpropagation through time in this case, where error signals
get propagated backward through time [43].

As Bengio et al. state, it is a common problem for standard, simple RNNs to suffer
under vanishing gradients [5], which leads to the problem that the RNN ignores long-term
dependencies [43]. This is also caused by using standard nonlinear activation functions
like sigmoid [43]. On the other hand, exploding gradients can occur that increase the
training loss drastically [5].

Due to the above difficulties, new forms of RNNs have been developed over time. One
of the most popular ideas is using Long Short-Term Memories (LSTMs) as hidden layer
units.

13

2 Foundations

In addition to the hidden state of the unit, a cell state is added. Figure 2.7 shows these
states coming in from the previous LSTM cell and going out to the next LSTM cell. The
hidden state ht can also serve as output yt if desired. This depends on the task. From
left to right, the first part is the forget gate [43]. In the LSTM cell, the cell state can be
seen as a long-term memory. By using the sigmoid function there (σ), certain parts of the
cell state can be erased as the sigmoid function returns values between zero and one and
thus can give weight to the components [34]. The middle part of the cell is the input gate
which regulates what parts of the information are put into the cell state to update it. The
sigmoid function determines again which parts of the information will be passed to the
cell state. The tanh function calculates the new values that are put through to the cell state
[34]. The last part is the output. It regulates what is put from the cell state to the hidden
state by calculating the update values. The mechanism is the same as for the input gate,
just the other way around. [34]. All value updates happen concerning the weights and
biases of the connections which are trainable parameters.

In total, these enhancements of the hidden unit reduce the problem of exploding and
vanishing gradients and lead to the longer preservation of “memories”. On the contrary,
they have many more parameters than simple RNNs and thus take more resources for
training and inference [43].

The most important machine learning concepts are introduced now. More considera-
tions respecting the concrete intrusion detection approaches follow in chapter 5.

2.3 Protocols

The following section provides the necessary foundations for CAN and MVB. To do so,
the most important aspects of both protocols get summarized from their standards. Here,
the focus is more on the data formats and the way the protocol manages data exchange
than on the physical bus access. Notably, in the intrusion detection literature, there is a
disbalance between the amount of content for CAN and the amount of content for MVB.
There is way more content available for CAN than for MVB. This mainly results from the
fact that CAN experiments and attacks have been conducted mainly on cars so far. Cars
can be bought and maintained individually, and it is therefore easier to inspect these and
do experiments. There is also a public repository where users share reverse-engineered
CAN signal translations of their models [9]. Railway vehicles on the other hand are
usually maintained by companies for public or goods transport. Experiments cannot be
conducted easily but need to be organized together with those companies. Also, MVB
datasets are rarely publicly available as the vehicle configurations are proprietary.

2.3.1 Controller Area Network

CAN was originally introduced in 1986 by Bosch GmbH [56]. The version 2.0 specification
was released in 1991 [49]. It was originally designed to be used for networks of “automo-
tive electronics, engine control units, sensors, anti-kid-systems” [49], and more. Precisely,
the idea to develop this bus came up for the internal connection of Mercedes-Benz cars
[56]. It can reach a data transmission rate up to 1Mbit/s [49] and ensures fast, reliable
connections. Also, embedded devices can make use of CAN as it is lightweight and

14

2 Foundations

provides little overhead [56]. CAN is standardized in the international standard ISO 11898

[40].
CAN is located on the physical respectively link layer of the OSI reference model. It

has some basic properties [49]. First, it guarantees the prioritization of messages. This
is important for safety-critical applications as some bus member’s data might be more
important than the data of others. Second, it guarantees certain latency times. This serves
the reliability as well. Third, it has error detection and handling. Fourth, it has automatic
retransmissions after collisions or errors. Additionally, there are some other properties
like configuration flexibility or system-wide data consistency [49]. CAN follows the multi-
master principle. That means that any node connected to the bus can send data if the bus
is free [49]. In case there is a collision on the bus, CAN has an arbitration mechanism,
which takes the identifier of each of the colliding messages and compares them bitwise.
The one that has the lower bit first prevails. Using that mechanism, a priority hierarchy
can be established. Furthermore, the identifier is used to identify the content of the sent
message. CAN can be operated in different topologies like line topology, ring topology,
or star topology.

2.3.1.1 Message Transfer

Messages are referred to as frames. The most important frame is a data frame.

Figure 2.8: The diagram shows a simplified structure of a CAN frame. Source: [24]

Figure 2.8 shows the structure of a data frame in simplified form. Its purpose is to
ship data from a transmitter to several receivers. Data frames can be received by multiple
receivers, which aligns with the multicast characteristic of CAN [49]. The data frame starts
with a leading dominant bit, the start of frame (SOF). The transmission system of CAN
understands a logical zero bit as dominant and a logical one bit as recessive. After that,
the identifier (ID) follows. In the CAN 2.0A specification, the length is 11 bits. However,
in CAN 2.0B, an extended identifier with 29 bits is possible. This allows for more bus
participants [49]. Not shown here in figure 2.8 is the Remote Transmission Request Bit
(RTR) that must be set to ‘dominant’ for a data frame [49]. Subsequently, there is the
control field with six bits. It consists of the data length code (DLC) and two reserved bits
for future extensions. The data length code determines the byte length of the payload. The
payload or data field can contain up to eight bytes. Finally, there is the trailer of the frame
which contains a Cyclic Redundancy Code (CRC) for error detection, an acknowledgment
field, and the end of frame (EOF). The EOF is defined by seven recessive bits. There are
also delimiters between some fields. The acknowledgement field is used by a receiver to
confirm that it has received the message correctly. It does so by overwriting the recessive
ACK bit by a dominant ACK bit.

15

2 Foundations

Next, there is also the possibility of actively asking for data via a remote frame. The
remote frame has a similar structure compared to the data frame with the difference that
there is no data field. The control field contains the data length of the requested data [49].

2.3.1.2 Error Handling

Finally, there are two more types of frames which are the error frame and the overload
frame. Error frames are used to indicate the detection of one or several errors like a bit
error, stuff error, CRC error, form error, or acknowledgment error [49]. Error frames are
necessary to trigger a retransmission of faulty frames, and by that ensure the system-wide
data consistency [49]. Overload frames can be used to indicate internal conditions of a
bus member that cause a delay of the next data or remote frame [49].

In total, CAN is a reliable, lightweight, and performant bus system that can be used
in many domains. In chapter 4, examples of datasets are discussed. It also makes clear
which kind of data is sent in the case of cars.

CAN was developed at a time when automotive vehicles were closed systems. However,
as pointed out later, CAN does not serve any IT security objective like confidentiality,
integrity, or availability. Conditions of the 1990s do not hold in today’s world anymore,
especially regarding interfaces to the outside world.

2.3.2 Multifunction Vehicle Bus

MVB is a field bus for data communication that was originally developed in the 1990s by
a project consortium of Siemens and other manufacturers. It is specified in IEC 61375-
3-1 [12] as part of the Train Communication Network (TCN). TCN specifies a general
communication system network for railway vehicles with one or more parts. MVB serves
as a field bus on one vehicle, whereas Wire Train Bus (WTB) is used to connect multiple
coaches or vehicles [22].

Figure 2.9: The figure shows the basic structure of TCN. Multiple vehicle buses are connected via a
train bus. Source: [22]

Figure 2.9 shows a typical topology of TCN with multiple parts that are connected via
the train bus. One vehicle might also contain more than one vehicle bus [22]. One instance
of such a vehicle bus is MVB. According to IEC 61375-3-1, MVB can consist of multiple

16

2 Foundations

Figure 2.10: The diagram shows the transmission periods of MVB. During the periodic phase,
process data is transmitted in fixed time slots. During the sporadic phase, message data can be
sent but there are no fixed time slots for the message data. Source: [22]

Figure 2.11: The diagram shows the structure of a master frame. The F code signalizes the type of
address, e.g., a port address for process data. Source: Replicated diagram from [12]

bus segments of Electrical Short Distance media (ESD), Electrical Medium Distance media
(EMD), and Optical Glass Fibre media (OGF) [12]. Multiple segments can be combined
in star or line topologies. Additionally, double-line segments can be used to increase
availability [12]. Manchester encoding is used for bit encoding. Next to the bit values zero
and one, there are also the non-data symbols NH and NL [12].

Like CAN, MVB is in the physical respectively link layer of the OSI reference model. It
assures a throughput of 1.5 Mbit/s. In railway vehicles, it is supposed to transport real-
time data from the upper layers. This data can have two forms, either process variables
or messages [12]. Generally, process variables are safety-critical and must be delivered
within certain time periods. On the contrary, messages are not safety-critical and can be
sent sporadically [22].

The delivery of messages and process variables is orchestrated by a bus master. However,
the bus mastership can also be transferred to other nodes.

As can be seen in figure 2.10, MVB is based on the concept of basic periods, which are
split up into periodic phases and sporadic phases [22]. During the periodic phases, the
bus master asks bus nodes (slaves) for their process variables. Process variables do not
necessarily have the same period. Typical periods can be for example 128ms, 256ms, or
512ms [12]. Process variables can be consumed by multiple data sinks. After the periodic
phase, there is the sporadic phase. Here, the bus master asks for events and potentially
for the status of certain devices. Message data can be sent or not be sent in return. Again,
the message data can be consumed by multiple data sinks.

2.3.2.1 Message Transfer

The two most important frames are the master frame and the slave frame. Combined, they
form a telegram.

17

2 Foundations

Figure 2.12: The diagram shows the structure of a slave frame. The frame data length is defined
by the F code. A CRC check sequence must be included at least once or every 64 bits. Source:
Replicated diagram from [12]

The structure of the master frame can be identified in figure 2.11. It starts with a start
bit. After that, the master start delimiter follows, which consists of a specific sequence
of bit values and non-data values. The actual frame data consists of a so-called F code
and an address. The frame ends with a check sequence and the end delimiter. CRC is
also used in the case of MVB. According to the norm, an F code indicates the type of the
address that is expected after and indicates the size of the expected answer [22]. F codes
with values zero to four stand for requested process data with a size of 2(Fcode+1) bytes. F
codes with values of five to seven and ten to eleven are reserved for future use. F codes
with code eight announce mastership transfer to a different device. The rest of the F codes
are meant for event announcements or for asking a device about its status.

As can be seen in figure 2.12, the slave frame structure follows the same pattern as
the master frame, the only difference being that the frame data can be of variable length
depending on the data size. For every 64 bits, there needs to be a check sequence for the
proceeding bits. In total, up to 256 bits of data can be sent in one frame.

2.3.2.2 Telegrams

To share process data, the master frame contains an F code with a value between zero
and four as stated above. The composition of the master frame and the corresponding
slave is called a process data telegram, in this case [12], and the 12-bit address is a logical
address addressing a process data port. A collection of multiple process variables that are
provided by the same bus device and have the same period is sent in the corresponding
process data response as a “dataset”. The idea behind that is to save bus capacity by
sending the process data together. The data that is sent in the process data response is
only identified by the predecessing master frame. This is also why the time between a
master frame and the corresponding slave frame must be below 42.7us [12], which also
plays a role in later attack considerations. After the process data response is sent, each
data sink puts the response data into its memory buffer and by that overwrites the data it
received before.

18

2 Foundations

For message data, there is the so-called message data telegram. Again, it is a sequence
of a master frame, the message data request, and a slave frame, the message data response.
A message data response can be in single-cast addressing mode or broadcast addressing
mode. For a single-cast, the slave frame needs to contain the address of the destination
device.

Following the same pattern as the other two telegram types, there is also a supervisory
telegram for mastership transfer requests, event requests, or device status requests. A
corresponding response follows on each request.

2.3.2.3 Events

Events take place in the event phase, which is a sub-period of the sporadic period. General
events, group events, and single events exist. The idea of the event phase is to enable
bus devices to share the information that they have message data available. As already
mentioned before, message data does not necessarily have a fixed period. During the
event phase, the bus master asks for events. This can be done generally, for groups, or
single devices. Usually, the bus master asks generally and then decreases the size of asked
devices if there are bus collisions.

2.3.2.4 Error Handling

According to IEC 61375-3-1, a correct frame has a suitable start delimiter, correct dimen-
sions, and a correct CRC [12]. For the actual reaction to errors, especially in case of faulty
frames and incorrect timing, there is not much information in the standard. Point 5.1.10

(Receiver behavior in case of error) states that if a collision is detected “the decoder shall
ignore all frames on that line until the next Master Frame_Delimiter is received” [12].
However, it can be suspected that this behavior applies to most of the error situations
because an immediate retransmission would lead to a disturbed timing of other process
variables or messages. Particularly in the periodic phase, this would not be feasible. It
suits the protocol characteristics to wait for the next period.

2.4 Joint Intrusion Detection System

As the final part of the foundations, this section introduces the use cases of a joint IDS in
the context of a security monitoring system for automotive and railway vehicles. Following
the taxonomy of Lazarevic et al. [25], the goal is to describe a network-based IDS. In terms
of the analysis strategy, this work aims at anomaly detection. The intrusions shall be
detected in real-time or at least close to real-time. For CAN intrusion detection, this
requirement is very common. The architecture can be either distributed, centralized, or
decentralized according to Vasilomanolakis et al. [54]. Which architecture is finally chosen,
is left open for chapter 7 when all results can be considered. The response of the IDS
is out of scope. After the introduction of the use cases, the thesis proceeds with related
work.

19

2 Foundations

Use Case 1 – Training

The system shall provide the opportunity to train individual models for intrusion detection
on CAN and MVB. The training process should be well-defined and reproducible for
further iterations. Furthermore, the training parameters should be configurable to adjust
the models.

Use Case 2 – Deployment

The system shall provide a well-defined process of deployment of the machine learning
models. The models can be deployed on a central unit, on middle nodes, or the vehicles
themselves.

Use Case 3 – Detection

The machine learning model shall allow a high recall and precision for intrusion detection.
Furthermore, it should allow to determine the fragments of the communication data in
which the intrusion occurs for further analysis. These fragments need to be reported to
an analyzing unit.

Use Case 4 – Update

The system shall provide the capability to update the models respecting the analysis of
the reported fragments. Adjustments should be made for example in reaction to many
false positives or if new training data is available.

20

3 Related Work

This chapter gives an overview of relevant related work considering the fields of joint se-
curity monitoring for railway and automotive, intrusion detection on in-vehicle networks,
and collaborative intrusion detection.

3.1 Project FINESSE

A consortium around Escrypt, Fraunhofer SIT, INCYDE, University of Passau, and Yekta IT
was formed in 2021 to work on a project called FINESSE1 (German “Fahrzeug-Intrusions-
Detektion und -Prävention in einheitlicher Struktur für Straße und Schiene”, English
“Vehicle Intrusion Detection and Prevention in a Uniform Structure for Road and Railway”)
[45]. It is funded by the German Ministry for Education and Research. The consortium
wants to develop a fleet-based security monitoring system that combines railway as
well as automotive vehicles. A central component of this project is a Vehicle Security
Operation Center (VSOC). The VSOC collects data streams from system buses and internal
communication systems of the vehicles as well as system logs, aggregates and analyzes the
data to then execute appropriate reactions such as creating alerts. Intrusion detection has
two main parts in this project: classic, rule-based detection and detection based on machine
learning. The detection of attacks also results in the deployment of security parameters
back to the vehicles to make local intrusion detection possible [45]. The combined security
monitoring of railway and automotive vehicles aims towards the creation of a “mobile
threat intelligence” [50]. Attacks on railway and automotive vehicles could follow similar
patterns and a joint monitoring of attacks could increase the knowledge in both sectors.

Figure 3.1 shows an initial architecture idea from the project proposal. An innovative
approach is that alerts can also be created locally on the vehicles. This reduces the possible
number of logs that need to be sent to the central entity. Components marked with a “C”
are part of the VSOC [45]. As can be seen in the figure, logs and alerts are collected in the
“enrichment” component. Results are collected and analyzed in the Security Incident and
Event Management (SIEM). From there, three important actions are initiated [45]: First,
incoming logs get analyzed further based on AI and rules. Eventually, this leads to new
alerts. Second, new rules and AI model updates are derived and deployed on the Smart
Sensors of the vehicles. Third, the alerts are used to initiate incident response.

The FINESSE project’s objectives differ to some extent from this thesis’ objectives. The
central part of this thesis is to find a machine learning intrusion detection approach that
can be used for automotive as well as railway vehicles and that can be deployed in a
joint architecture. Throughout this work, intrusion detection usually means network-
based intrusion detection. Also, certain aspects of deployment, ideas about adding rules

1https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/finesse, accessed: Oc-
tober 26, 2023

21

https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/finesse

3 Related Work

Figure 3.1: The reference architecture of FINESSE is shown. The components with a "C" are part
of the VSOC. The VSOC collects alerts and logs ("A") in a SIEM, analyzes them, and eventually
derives more alerts based on rules and AI models. New models get trained and new rules are
formulated for deployment back to the Smart Sensors ("A") of the vehicles ("B"). Incident response
measures can be launched from the SIEM. Source: [45]

for intrusion detection based on what can be hard to detect with the chosen machine
learning approach, and updating procedures are proposed. The thesis does not include
any content about the incident response or additional SIEM functionalities. Furthermore,
the FINESSE project also has host-based intrusion detection in scope [45] but this thesis
has not. Most importantly, this thesis is independent of FINESSE content except for the
initial considerations about the similarities between automotive and railway vehicles and
the general context.

3.2 AI-based Intrusion Detection on CAN

There exist numerous publications and approaches for the research field of AI-based
intrusion detection on CAN. Not all of them can be covered by this thesis. However,
Rajapaksha et al. deliver a wide overview of works over the last years [37].

In their paper [18], Hoang and Kim present a semi-supervised approach to detect
in-vehicle intrusions on CAN. They take the raw bytes as input and convert the ID
of each message into a bit string. Then, they stack 29 of these bit strings on top of
each other and receive a 29 × 29 input window for their neural network. The neural
network is a convolutional adversarial autoencoder (CAAE) consisting of an autoencoder
reconstructing input and a generative adversarial part that forces the output in the latent
space to a categorical distribution that represents the two classifications normal and
abnormal. On top of the unsupervised learning phase, there is a supervised learning
phase with few labeled data. Using the HCRL dataset [47], the authors show that their
method achieves an F1 score of 0.9984 and an error rate of 0.1%.

22

3 Related Work

Dongxian et al. [48] developed the so-called Temporal Convolutional Network-Based
Intrusion Detection System (TCNIDS) which is an unsupervised method. It serializes the
ID of CAN messages into a word embedding. After that, the input is fed to a temporal
convolutional network that is trained to predict the next sequence of CAN messages. The
intrusion detection is done by predicting the next sequence of messages and when the
“predicted message is in the message set with the top g probability, it is detected as normal,
otherwise[,] it is detected as abnormal” [48]. Under the usage of the HCRL dataset [47],
they achieve a false positive rate of 0.001 with normal data and an accuracy of at least
0.94626 depending on the concrete attack.

Hanselmann et. al [17] present an unsupervised learning process as well. The presented
method consists of an independent LSTM model for each ID that occurs in the dataset
[17]. The outputs of those LSTM models are combined in an autoencoder that reconstructs
the signal-translated input of the CAN payload. With the resulting loss, an anomaly score
is calculated and used to differentiate between normal and abnormal traffic. Next to their
intrusion detection approach, the authors also introduce and provide a synthetic dataset
(SynCAN). It is used to evaluate their method. For synthetic data, they can achieve an
accuracy of up to 0.996, and for real data an accuracy of up to 0.999.

Seo et al. published their research about a generative adversarial network (GAN) based
Intrusion Detection System for In-Vehicle Network (GIDS) [47]. Similarly to Hoang and
Kim [18], they chose to use a generative adversarial network. Initially, they convert CAN
data to images using only the ID of the CAN messages. The conversion to images is
realized via one-hot-encoding, which creates 16× 3 matrices of zeroes and ones. Intrusion
detection is realized with a two-stage process. First, there is a model for known attacks,
which is trained on normal and abnormal CAN images and outputs a value between
zero and one classifying the CAN images. If the output is below a certain threshold,
the image will be classified as abnormal. Otherwise, the image gets passed to a second
neural network, a GAN. It is trained by creating fake CAN images by a generator. A
discriminator is trained to differentiate between those fake images and the real images.
By backpropagation, both get more accurate. Thus, the discriminator can detect abnormal
CAN images, which do not suit the normal distribution. In order to evaluate their IDS,
Seo et al. used their own dataset which is the common HCRL dataset. They achieve a
detection rate of up to 99.9% with the first-stage model (detecting the trained attack) and
a detection rate of up to 99.6% with a second-stage model that is only trained on benign
data.

Ma et al. [29] show the idea of multi-classifying intrusions using a supervised method.
Thus, they also predict the type of attack. The model is based on a detailed feature
extraction containing the payload sum of the message data, the time variance within the
selected window, the time difference to the previous message, the time difference median
absolute error, the CAN ID, the payload, and the payload length. Those features from a
sliding window of size w get fed into a Gated Recurrent Unit network (GRU) that outputs
a multi-class label. In total, their method achieves an F1-score between 0.9950 and 0.9992

depending on the attack. The HCRL dataset [47] was used. Additionally, the real-time
ability of their approach is proven and an architecture for detecting intrusions on multiple
vehicles is proposed.

A new publication from 2023 called “Signal-Aware Explainable Intrusion Detection
System for Controller Area Network-Based In-Vehicle Network” by Jeong et al. [21]

23

3 Related Work

examines the usage of time series learning using LSTMs. The method takes all signals at
a certain point in time and stacks them up until a certain window size is reached. Like
CANet [17], those matrices are fed into an LSTM autoencoder that tries to reconstruct
the time series. An intrusion threshold is calculated based on validation data. If the loss
exceeds the threshold, there will be an alarm. As the highest loss can be localized in the
reconstructed data, it can be determined which signal was probably attacked. It is an
unsupervised method, which only needs normal data. The authors test the method on
their own dataset, which was recorded by driving in everyday situations. Results prove
that fabrication and masquerade attacks can be detected with an F1-score of usually 0.99.
Suspension attacks do not get detected very well. The performance swings between an
F1-Score of 0.933607 and 0.308751 depending on the attacked signal.

3.3 AI-based Intrusion Detection on other In-Vehicle Networks

Despite CAN being the most inspected protocol for in-vehicle IDSs, there are also other
in-vehicle network technologies that are used more frequently now. Recent trends show
that communication based on Ethernet is used more often than before for railway as well
as automotive. This trend is manifested with the establishment of automotive Ethernet
and train Ethernet Consist Network (ECN).

Yue et al. [58] published a paper about intrusion detection based on AI for train ECN in
2021. An ensemble method leveraging different classifiers is used combined with a voting
system. By that, they hope to leverage the strengths of each of the classifiers and mitigate
their weaknesses. Additionally, they built a testbed for training ECN and generated a
dataset with several attacks for their evaluation. The proposed method performs well and
produces a macro-F-score of 0.972 over all attacks and classifiers that were used.

Jeong et al. [20] came up with an intrusion detection method for Automotive Ethernet
in 2021. The contributions of their work include the development of attacks on automotive
Ethernet and Audio Video Transport Protocol (AVTP), the proposal of their method and
test under real test data, and the demonstration of real-time detection ability. As the
model, a 2D Convolutional Neural Network (CNN) was used. On the real data, they
achieved F1-scores between 0.9790 and 0.9885.

3.4 Collaborative Intrusion Detection

As pointed out before, this work deals also with the fact that intrusion detection is
supposed to be conducted in a collaborative way meaning multiple vehicles of a certain
category (e.g., a fleet or the same vehicle type) are monitored together. Chapter2 delivers
concrete definitions of the different types of collaborative intrusion detection. This section
gives an overview of relevant publications.

In their publication, Li et al. [26] present a disagreement-based semi-supervised learning
approach for intrusion detection in IoT networks. Starting their publication, the central
observation is made that it can be challenging to obtain labeled training data in real
life, especially the necessary quantity. Therefore, it is described how a semi-supervised
algorithm can be leveraged, where unlabeled data can be automatically labeled without

24

3 Related Work

human interaction. A tri-training algorithm is used to train three classifiers at the same
time. For unlabeled data, a majority voting system is used to teach the third classifier
and label accordingly. Additionally, a false alarm filter is created based on the voting
system. All components are put together in a CIDS environment. Experiments leveraging
a decision tree algorithm and a real IoT environment with 65 nodes show that the approach
delivered an error rate of 7.3% and a hit rate of 94.23% and more importantly, that their
approach is supreme to comparable stand-alone classifiers like a random forest or a
support vector machine (SVM).

Nguyen et al. [32] propose another approach for IoT intrusion detection. They worked
on a federated self-learning anomaly detection system. Based on attack data generated
by malware, a realistic setting was created. Furthermore, they extract certain features
from the network packets like direction, local port type, remote port type, packet length,
and more that were concatenated to a tuple. The resulting symbols can then be used for
classifier training. GRU models are trained to predict the likelihood of a symbol under
the inspection of the k preceding symbols. If the likelihood is under a certain threshold,
an alarm will be triggered. The whole training process is conducted in a federated,
unsupervised way. The devices just learn with their normal traffic. Initially, random
weights are distributed and in each training round a consensus is calculated leading to the
update of weights on each device. The method appears to be effective with a true positive
rate of up to 95.43% and no false positives respecting different evaluation methods.

Rey et al. [39] inspect a federated learning approach as well. They split a network
dataset generated by IoT malware into multiple parts based on the source IP address of
network packets. Thus, they obtain eight parts and leave one part on the side to test the
detection of unknown attack patterns. 115 features are generated from the dataset to try
two different machine learning approaches. First, they try unsupervised training with
autoencoders. Second, they try supervised training with multi-layer perceptrons. The
evaluation contains different scenarios considering the weight aggregation of the federated
learning, the relation of benign and attack data, and the comparison with centralized
learning and naive learning, meaning every node would learn for itself. Among others,
some central learnings are that federated learning is superior to naive learning and
competes on a similar level as centralized learning. Also, regarding the comparison
of supervised and unsupervised learning, they found out that the true positive rate of
supervised and unsupervised learning is on a comparable level whereas the true negative
rate is lower for unsupervised learning.

Lastly, Agrawal et al. [1] generally talk about the usage of federated learning for
intrusion detection in distributed networks. Accordingly, they identify some challenges
coming with intrusion detection in those networks. For instance, private communication
data usually needs to be sent to a central entity for intrusion detection. Furthermore,
the central entity represents a single point of failure, and a centralized process is time-
consuming. On the contrary, federated learning approaches of intrusion detection face
some challenges. Communication overhead in the network is necessary in order to send
weights, aggregate them, and distribute them every round. Additionally, malicious clients
can poison weights and sabotage the training and finally the intrusion detection. Moreover,
data that is not equally distributed can cause the underfitting of models. Finally, edge
devices usually have low computation power to train their model locally. In order to face

25

3 Related Work

those challenges, they propose some mitigations like using lightweight machine learning
approaches, fast communication protocols (e.g., 5G), compression, and more.

26

4 Security and Attack Considerations
Starting this chapter, the two protocols CAN and MVB are compared to justify common
security considerations. After that, an attacker model is introduced based on available
literature and past experiments. The attacker model is used to derive attack classes. Less
research about the security of railway vehicles has been conducted so far compared to
automotive vehicles. However, what becomes clear from the previous chapters is that
modern trains are in theory also prone to attacks from the outside world as well as from
internal points of connection. Finally, concrete (attack) datasets are presented respecting
the introduced attacker model.

4.1 Comparison of CAN and MVB

This part is about a brief comparison of both protocols. This is necessary to motivate
common security considerations like possibly similar attack patterns.

Domains

As stated in earlier sections, MVB was originally designed for railway vehicles and CAN
for automotive vehicles. In today’s projects, CAN also plays a role in internal train
networks. MVB on the other side, is mostly limited to the use in trains. Although
automotive and railway vehicles have different requirements for their general architecture,
their internal communication mechanisms have some similarities. For example, CAN and
MVB as field buses, connect multiple ECUs, sensors, and other devices with each other.
Furthermore, both serve a certain safety criticality. Data of several nodes are safety-critical
(e.g., speed measures, motor rotations per minute (RPM), light signals) in vehicles. Both
CAN and MVB address those safety aspects. The two major concerns in this case are the
prioritization of messages, and the error detection resulting in a retransmission. CAN
ensures the prioritization of messages by the identifier of a frame and the arbitration
mechanism. A retransmission can be issued after the detection of faulty frames. To detect
bit errors, a CRC is used. MVB declares safety-critical data as process variables and
assigns a fixed timeslot to them during the periodic transmission phase. CRC is used as
well to ensure correct bit sequences. In case of an error, a retransmission is issued in the
next period. As a result, the data of the faulty telegram is not passed to the application
[12]. As can be seen, both protocols address safety requirements differently. However, the
challenges they have to face are comparable.

Topology

In terms of bus topology, the biggest difference between both field buses is that MVB was
standardized as a part of TCN with respect to a multi-modular architecture of railway

27

4 Security and Attack Considerations

vehicles. Usually, multiple traction units are put together for a combined railway vehicle.
However, the topologies are quite similar locally. MVB supports a total of 4095 physical
devices and 4095 logical ports. Bus or star topologies are supported [12]. For CAN, the
number of identifiers is logically limited to 2048 with the 11-bit identifier configuration. In
real vehicles, both field buses show a similar number of participants on the bus. Datasets
that were used in the context of this thesis have up to around 100 addresses in the case of
CAN and up to around 200 addresses in the case of MVB. Still, this is highly dependent
on the concrete vehicle.

Bus usage

The bus access is realized differently by CAN and MVB. CAN follows the multi-master
principle while MVB has only one master at a time, which can change if requested. CAN
is flexible with adding new bus nodes as the identifier of the nodes’ data frame can be
chosen based on its priority. If there is supposed to be a periodicity in sending the data,
this can be configured accordingly. MVB is less flexible with that. The periodicity of
telegrams is defined in the poll lists of the bus master [22]. Once installed, the bus cannot
be changed easily by just adding one node, at least for process variables. Furthermore,
the process data is requested by the bus master and therefore requires a master frame
and slave frame to form a telegram. This is different compared to CAN. From datasets
that are introduced later in this thesis, it can be observed that the remote frame request is
usually not used. Instead, the nodes send their data individually in fixed periods. Fixed
periods start from 10ms and can reach up to around 2s. Some nodes just send data based
on certain events. Such an event could be for instance that indicator lights are activated.
In the provided MVB datasets, the number of sporadic telegrams (message data) is small.
The periods of process data ranged from 16ms up to 1024ms. Thus, it can be concluded
that timings are also quite similar in both bus implementations.

Error handling

Error handling is mostly achieved by checking for the correct frame format and calculating
the CRC over the sent data in both cases. The fixed periods of MVB require a waiting time
until the next period to send correct data. CAN also uses acknowledgments to indicate
the correct delivery of frames.

Security measures

Neither CAN nor MVB implement security measures that would support integrity, avail-
ability, or confidentiality. The CRC used to check for bit errors cannot be seen as integrity
protection as an intruder could simply calculate a CRC sequence for spoofed data. Fur-
thermore, even if intended, the implementation of security measures for those field buses
would pose various challenges. For instance, the data format of CAN 2.0 A only has space
for 8 bytes of data. This is hardly enough to calculate modern message authentication
codes (MACs). Even if a newer CAN specification was available that encapsulates security
measures, new questions would come up, like about the key management of the keys that
are used for cryptographic operations. More details about security considerations follow

28

4 Security and Attack Considerations

in the next section. For now, without a deeper analysis, it is clearly visible that both field
buses did not consider attack possibilities in their design. They were designed for closed
systems that only face safety issues.

4.2 Attacker model

The attacker model is described based on the three important categories attacker profile,
attack vectors, and attack techniques. To prove the relevance of each assumption, concrete
examples from the literature are given. Most research regarding this has been conducted
on automotive vehicles so far. It is therefore discussed which assumptions are also valid
for railway vehicles.

Tippenhauer et al. published a paper about attacker models and profiles for cyber-
physical systems [42]. They analyzed relevant literature to come up with six types of
attackers:

1. Basic user/ script kiddie

2. Insider

3. Hacktivist

4. Terrorist

5. Cybercriminal

6. Nation-state

The attack types introduced below highly depend on the skill of an attacker. As recent
literature has shown [31, 23], the compromise of ECUs placed in internal vehicle networks
at least needs reasonable resources and proficient skills of the attacker. Considering this,
the attacker profiles that are most relevant here are the insider, the nation-state attacker,
and well-skilled cybercriminals. Hacktivists and terrorists could have vehicles as targets as
well. However, according to Tippenhauer et al., these two attacker types are not as skilled
regarding technical aspects [42]. Instead of nation-state attackers, other well-funded
groups can be considered as well. Basic users or script kiddies can be considered if they
have access to publicly available exploits.

Regarding attack vectors, there are many opportunities for an adversary to access
the targeted systems. Very important for this thesis and the inspected attacks is first
the physical access. On automotive vehicles, there is usually a so-called OBD-2 port to
access vehicle buses. OBD stands for "onboard diagnostics" and is used for diagnostic
tools but can also be used to inject malicious payload when intended. This was already
demonstrated on multiple occasions [13, 23, 7]. There are also other physical ports
that can be leveraged in theory. Checkoway et al. demonstrated how they can craft a
malicious CD that contains an audio file that exploits a buffer overflow in the media player
firmware to inject prepared CAN messages on the internal vehicle bus [7]. Trains also
have physical access points installed. For example, it is common to enable maintenance
by serial ports, or network cable ports. Second, automotive vehicles as well as railway
vehicles offer different types of wireless connectivity. Trains primarily have medium-range
and long-range interfaces, via e.g., GSM-R, FRMCS for train control, but also Wi-Fi for

29

4 Security and Attack Considerations

passenger convenience [50]. Cars can have, among other fields of usage, cellular long-
range connections for live traffic updates or local short-range networks like Bluetooth for
connecting with a mobile phone. Third, there is the danger of supply chain attacks. In
case there are security flaws in vehicle components, especially ECUs, it can have severe
consequences. In total, the most important vectors for this work are physical access and
wireless access because these vectors were already used in the past and do not require
proficient insider knowledge [23, 7, 31] to gain initial access.

Category Assumptions

Profile

• Basic user/ script kiddie with public exploit

• Insider

• Hacktivist/ terrorist

• Cybercriminal

• Nation-state/ well-funded organization

Attack Vectors

• Physical access

– Service ports (e.g., OBD-2)

– Sensors

– Devices

• Wireless access

– Short-range (e.g., Bluetooth)

– Medium-range (e.g., Wi-Fi)

– Long-range (e.g., Cellular)

• Supply chain

Attack Techniques

• Exploitation of software flaws (e.g., buffer over-
flows)

• Message injection

• Malware

Table 4.1: The table shows the attacker model used for this thesis.

Several attack techniques are relevant for the attacker model. As the literature shows,
an important technique is the exploitation of software flaws. This was shown in multiple
ways [7, 31]. For example, both the cited publications used buffer overflows for their
attacks. Checkoway et al. could also profit from security flaws in the remote cellular
implementation to avoid proper authentication [7]. These flaws can be abused for the
deployment of malware, with which the authors could establish a permanent remote
connection [7, 31]. Another important aspect is the injection of malicious messages as an
attack on the internal or external communication systems of the vehicle. Again, this was
already demonstrated by injecting malicious CAN payloads [13, 23, 7, 31] and the remote

30

4 Security and Attack Considerations

attack via short-, medium-, and long-range wireless connections [7, 31]. The OBD-2 port
can be used as well for malicious injections.

Most of the assumptions for the attacker model were made based on previous attacks
on automotive vehicles. However, the examined attack vectors and techniques could also
apply to trains. The attacker profile might be different. It can be assumed that more
insider knowledge is needed and access to certain facilities within railway infrastructure
is probably crucial as well. Table 4.1 summarizes the attacker model.

Using these basic assumptions for the attacker model, the thesis now continues with
concrete attack classes for CAN and MVB.

4.3 Attacks

The attack classes here were originally introduced for CAN. In the first step, those three
attack classes are summarized and justified considering the characteristics of CAN. In the
next step, special characteristics of MVB are analyzed to transfer the attack classes from
CAN to MVB.

4.3.1 Attacks on CAN

Cho et al. [8] defined some generic attacks on CAN in 2016. Since then, these attack
classes have become the basis for the important ROAD dataset [55]. Other datasets are
not explicitly based on these attack classes but can be described well with these too [47,
11, 17].

Figure 4.1: The figure shows a fabrication attack. The CAN frames with ID 0xB0 get spoofed by
injecting packets on the bus from a strongly compromised ECU that overwrites the payload of
0xB0. The message timing changes. Source: [8]

Figure 4.1 shows the first type of attack, the fabrication attack [8]. This attack requires
the attacker to fully compromise an ECU. Thus, the attacker can send any CAN frame
on the bus that is desired. Cho et al. define such an attacker as a “strong” attacker
[8]. The scenario can be seen as realistic as several publications already achieved such a

31

4 Security and Attack Considerations

compromise [31, 23, 7]. The figure shows a typical example of a fabrication attack. There,
the attacker’s goal is to overwrite the message payload of a CAN frame with ID 0xB0. So,
CAN frames with this ID get injected on the bus. As a result, consuming ECUs update
their local data with the malicious CAN payload. Section 4.4 is about the datasets and
explains concrete attacks using this scheme. Regarding the timing, it is enough for the
attacker to inject one malicious frame every period after the valid frame to overwrite the
valid data. In general, and this is important for intrusion detection considerations, this
injection method changes the timing of the normal message flow.

Figure 4.2: The figure shows a suspension attack on ID 0xBO. The targeted, weakly compromised
ECU gets prevented from sending the according frames. The message timing changes. Source:
[8]

The second attack is called a suspension attack [8] and can be identified in figure 4.2.
In this case, the attacked ECU is considered as “weakly” compromised [8]. Cho et al.
justify this with a publication by Foster et al. [13] that showed some scenarios in which
attackers could prevent an ECU from sending messages but not injecting messages. This
assumption is also supported by observations from Checkoway et. al who noticed that
ECUs can be cut off while driving by using a device control service via the OBD-2 port [23].
In general, a standalone suspension attack is not necessarily valuable for an attacker. On
the other hand, when being able to cut off multiple ECUs or combining with a fabrication
attack (see below), a suspension attack can be useful for an attacker. As a result, the
attacked ECU is not able to send its payload, and consuming ECUs cannot update the
required data. The suspension attack implies a timing change.

The last attack type is shown in figure 4.3. It combines a fabrication and suspension
attack to form a so-called masquerade attack [8]. The attacked ECU gets prevented from
sending messages using a suspension attack and a different ECU is used to inject messages
via a fabrication attack. By this, the attacker’s goal is to entirely replace the valid payload
with the malicious payload. The physical effect is the same in the end as for a fabrication
attack. However, this type of attack is way stealthier than a fabrication attack. Notably,
the message timing does not change.

32

4 Security and Attack Considerations

Figure 4.3: The figure shows a masquerade attack on ID 0xB0. A suspension attack is launched on the
weakly compromised ECU B while a fabrication attack is launched on the strongly compromised
ECU A. The message timing does not change. Source: [8]

4.3.2 Attacks on MVB

As mentioned before, there is no publication available about attacks on MVB. Therefore, it
seems appropriate to look at the CAN attack classes and transfer them to MVB respecting
the protocol-specific characteristics. In contrast to CAN, MVB does not follow the multi-
master principle. Instead, there is always a bus master and several bus slaves at a time.
Following this principle, it makes sense to consider attacks on the bus master and attacks
on a slave.

Assuming an attacker compromises or influences the bus master, some attacks are
realistic. Sticking with the terminology of fabrication attacks, suspension attacks, and
masquerade attacks, an attacker could most importantly mount a suspension attack on
the bus master. This would lead to a state where neither process data nor message data
is requested from the slave devices. This state can be seen as Denial-of-Service (DoS).
In the case of a strongly compromised ECU, an attacker could also possibly stop the
master frames just for certain slaves. Moreover, a fabrication attack could be mounted.
Such a fabrication attack could have different targets. Assuming an attacker could access
and manipulate the message logic of MVB as was already shown for CAN [31, 23, 7],
an attacker could inject error frames to make slave responses invalid. Furthermore, the
attacker could inject malicious payloads on the bus to overwrite payloads from slaves. In
this case, specific timing constraints need to be considered. For CAN, an attacker can
overwrite frames by sending the malicious message just after the valid message. For
MVB, the standard has an interesting section about that, which states that multiple slave
answers can arrive within the defined reply time window after a master frame (42.7 us).
In this situation, the first slave frame would be accepted, and the other ones dropped [12].
This means that an attacker could overwrite a slave frame by replying first. However, a
window of 42.7 us is small, and the success of that attack could depend on factors that
the attacker cannot necessarily control, e.g., the position of the compromised ECU on
the bus. If the attacker can cut off a bus slave from communicating, he will be also able

33

4 Security and Attack Considerations

to conduct masquerade attacks targeting the payload of the cut-off slave. Assuming an
attacker compromises or influences a bus slave, pure suspension attacks are possible. The
compromised ECU does not send any frames anymore. Next, a fabrication attack can be
mounted from the slave as described above. And lastly, also a masquerade attack would
be possible by making use of two slaves.

To put it into a nutshell, it can be said that an attacker could only achieve a physical
effect by either cutting off the bus master respectively slaves or by overwriting process data
and message data from the slaves. In the end, all this would influence the slave frames. It
becomes obvious as well that despite CAN and MVB following different communication
schemes, they are similar on an abstract level as important data gets requested periodically,
and less important data can be sent sporadically. The port addresses of MVB can be well
compared to the IDs of CAN and the payload of a data frame of CAN can be well
compared to a process respectively message data response of MVB. The sent data is
subscribed by sinks in both cases. All those similarities justify joint attack considerations
as done above.

4.4 Datasets

The presented datasets used for this work were mostly obtained from scientific publica-
tions. There are four CAN datasets and one MVB dataset. Of course, more datasets exist,
but those seem to be the most popular ones taking the literature into account. The MVB
dataset was obtained from a source that is not named here. Due to the protection of the
source, some information about the data needs to be omitted throughout the next sections.
Notable as well is that the CAN datasets also contained attacks while the MVB dataset
consists of benign captures from a stationary train.

Each dataset used for assessment during this work is mentioned in this section. For
CAN, there are some categories in which the datasets differ. CAN frames can have two
forms. Raw bytes on the bus or the deserialized form according to the model-specific
database CAN file (DBC) can be used. The difference in scope of this work is mainly that
the deserialized data has the potential of a better machine learning performance according
to Jeong et al. [21].

Figure 4.4: The figure shows a DBC file with signal extractions from the E9x series. Source: Screen-
shot of DBC file from [9]

34

4 Security and Attack Considerations

Figure 4.4 shows a DBC file from OpenDBC [9] concerning the BMW E9x series. It
was reverse-engineered by a private user. Usually, those DBC files are proprietary and
cannot be obtained publicly. As can be seen, it contains specific information like the
offset, signedness, and ranges of data as well as the specific meaning of each ID. This
information gets used to interpret the raw bus data. Furthermore, the datasets can be
different in terms of capturing conditions. For example, a stationary car has less diverse
data than a car that was driven during the capture. This was already shown by Jeong et
al. who compared the hamming distances of the payloads from two different captures,
one stationary and one moving [21]. CAN datasets can also differ in the number of IDs
respectively ECUs in the dataset.

4.4.1 HCRL

The HCRL dataset [47] is probably the most used attack dataset until today. It was used
for the evaluation of numerous intrusion detection approaches [18, 48, 47, 29]. Table 4.2
summarizes the most important characteristics.

Vehicle Hyundai Sonata
Number of signal streams 26

Data format
CSV with timestamp, CAN ID, DLC, Data0, ...,

Data7, label
Attacks DoS, fuzzing, spoofing driving gear, spoofing RPM

Driving situation
Ambient capture: Driving in town

Attack captures: Stationary, live injection of the frames
Signal extractions No

Notes

According to Bridges et al. [55], the attacks were
conducted stationary while the car was moved for the

ambient data capture. There are no masquerade or
suspension attacks.

Table 4.2: The table shows the characteristics of the HCRL dataset.

The attacks can all be seen as fabrication attacks as they get injected on the bus in a
non-stealthy way. The DoS attack leverages the priority mechanism of CAN and injects
messages with ID 0x000, which blocks the entire bus. The fuzzing attack floods the bus
with messages of random ID and payload. Both the spoofing attacks target a certain ID
respectively signal stream that is supposed to be overwritten. As Bridges et al. also note,
it can be observed that all attacks, especially the spoofing attacks, are conducted with high
frequency [55]. Thus, the timing changes in the communication patterns are immense
when the bus is under attack. They also note that there are discontinuities in the data
captures where timestamps suddenly jump [55].

4.4.2 TU Eindhoven

Dupont et al. published a CAN dataset in 2019, which used an Opel Astra, a Renault
Clio, and a self-built testbed [11]. Table 4.3 summarizes their work. As for HCRL, they do

35

4 Security and Attack Considerations

not provide signal extractions. For the two cars they used during the data capture, they
provided several attacks. Following their documentation, it can be seen in their readme
files that the attacks on the cars were not conducted in real life but manually added to
the data trace [11]. This is a potential problem because the vehicle’s behavior did not get
physically verified.

Vehicle Opel Astra Renault Clio Testbed
Number of signal streams 89 55 17

Data format
Log file with timestamp, CAN ID as hex,

and payload as hex string

Attacks
Diagnostic, DoS, fuzzing,

replay, suspension

Diagnostic, DoS,
fuzzing, spoofing,

suspension

Driving situation Driving in urban environment
No driving since

testbed
Signal extractions No

Notes The spoofing attack is the only masquerade attack.

Table 4.3: The table shows the characteristics of the TU Eindhoven dataset.

The diagnostic, DoS, fuzzing, and replay attacks are fabrication attacks. The diagnostic
attack injects ten messages in a small time window. The concrete attack comes from Woo
et al. [57]. For the DoS attack, they also send CAN frames with ID 0x000 in a high
frequency (500 kbps). Fuzzing is done in two ways: In one case, they apply fuzzing on the
CAN ID by injecting messages with unknown IDs. In the other case, they apply fuzzing
on the payload by injecting messages with previously unknown payload. The replay
attack leverages CAN frames with ID 0x1A1 and replays them from previous occurrences.
They also increase the frequency of the frame by a factor of ten. For the suspension attack,
frames with ID 0x1A1 get muted during a period of 10 seconds.

They constructed their own testbed with VW components [11]. Using this, they imple-
mented a more complex masquerade attack on the speedometer, which puts the speed
needle to 220 km/h.

4.4.3 SynCAN

The SynCAN dataset was created by Hanselmann et al. to provide a common basis for
the test of signal-aware IDSs and was used by them to evaluate their IDS CANet [17].
This dataset is unique because it only provides signal-based data, and it is completely
synthetic. Table 4.4 summarizes the characteristics of it.

The attacks provided in this dataset are more advanced, especially compared to HCRL.
In contrast to the previous dataset, the attacks have certain signals as targets and therefore
do not replace the whole payload of CAN frames. The continuous attack takes a certain
signal and overwrites it slowly over a certain period, so it drifts away slowly from the
normal values [17]. On the contrary, the plateau attack replaces a signal in one moment
and overwrites it with a fixed value during a period. The rest of the attacks in table 4.4 are
self-explaining. The flooding attack can be seen as a fabrication attack, whereas the con-

36

4 Security and Attack Considerations

Vehicle No vehicle as it is a synthetic dataset.
Number of signal streams 10

Data format
CSV with label, time, CAN ID, signal 1 of ID,

signal 2 of ID, signal 3 of ID, signal 4 of ID
Attacks Continuous, plateau, flooding, playback, suppress

Driving situation -
Signal extractions Yes, and only signal extractions.

Notes -

Table 4.4: The table shows the characteristics of the SynCAN dataset.

tinuous, plateau, and playback attacks can be seen as masquerade attacks. Logically, the
suppress attack counts as a suspension attack. Compared to real vehicles like the Renault
Clio or the Opel Astra from before, the number of signal streams is low. Considering the
complexity of the attacks, this dataset still seems to be valuable for this work.

4.4.4 ROAD

In 2022, Bridges et al. released a paper about current CAN datasets and addressed their
pros and cons [55]. They concluded that the current datasets might be not enough in
terms of attack complexity and comparability among each other. Therefore, they created
a new dataset called “Real ORNL Automotive Dynamometer” (ROAD). The dataset was
mainly created by putting an anonymized car from the 2010s on a dynamometer and
injecting attacks live via the OBD-2 port [55]. Characteristics about the dataset can be
found in table 4.5.

Vehicle Anonymized car from the 2010s
Number of signal streams 106

Data format

Signal-based: CSV with label, time, CAN ID,
signal 1 of ID to signal 22 of ID

Byte-based: log file with timestamp, CAN ID
as hex, and payload as hex string

Attacks
Accelerator, correlated signal, fuzzing,

max engine coolant temp, max speedometer,
reverse light off, reverse light on

Driving situation
On the dynamometer for attacks and ambient captures,

on the road for ambient captures
Signal extractions Yes, for certain captures.

Notes
Some of the attacks are only available in byte-based

form.

Table 4.5: The table shows the characteristics of the ROAD dataset.

ROAD is (to the best knowledge) the only publicly available dataset that provides the
signal-based and the byte-based versions of attacks. This makes the dataset valuable

37

4 Security and Attack Considerations

to compare the difference between the detection of attacks on raw bytes and attacks on
the signal translations. The following attacks were implemented: The fuzzing attack
corresponds to a fabrication attack with cycling IDs between 0x000 and 0x255 and the
maximum payload [55]. This attack is only available in byte-based form, probably because
a signal translation was not possible in this case. The next attacks are also fabrication
attacks where certain IDs or signals were targeted. One of these attacks is the correlated
signal attack where the four wheel speed values of the car are attacked and replaced with
false values. The max speedometer attack sets the speedometer to maximum while the
max engine coolant temperature attack does the same for the engine coolant temperature.
Lastly, the reverse light attacks target the reverse lights and switch them off or on. All the
fabrication attacks were conducted in the stealthiest possible way, namely by overwriting
the valid frame by sending the malicious frame just after. All those four attacks are also
available as a masquerade attack. To do so, the authors manually changed the dataset
after the capture. They entirely replaced the valid frame with the malicious frame, so no
timing change occurs in the data [55].

In addition to the planned attacks, the authors discovered more vulnerabilities that
could be exploited to conduct the so-called accelerator attack. The attack leads to a state
where the speed of the car is locked to a certain level and neither the accelerator pedal nor
the cruise control can be used to alter the speed. After the brakes were released, the car
would accelerate to this speed. To preserve the anonymity of the car and the manufacturer,
the actual injection was not provided, just the state in which the car was after the attack.

All attacks were provided in the byte-based form. However, only the masquerade
attacks were provided as signal translations. The authors justified that with the argument
that fabrication attacks do not need signal translations to be detected as they cause timing
changes. Masquerade attacks on the other side need a careful inspection of the payload.
Although the argument makes sense, it would still have been helpful to have more signal
translations to compare more attacks in their byte-based and signal-based form.

After inspection and analysis of the presented datasets, it was decided to not consider
the dataset from TU Eindhoven for experiments. The reason behind this is that the attacks
of this dataset are mostly covered by other datasets. Besides, the dataset is less realistic
than other datasets like ROAD and does not contain any live injections of data onto the
CAN buses of the used cars. It is still worth mentioning here.

4.4.5 MVB

In contrast to the CAN datasets, the MVB dataset was not publicly available. Furthermore,
the data capture was done on a stationary train and contains no attacks. Table 4.6
summarizes the characteristics.

The original data capture was available as a TXT export from Wireshark containing
network data from a tool that translates the MVB data to UDP network packets. In several
steps, the data was transferred from this format to a CSV format with a continuous
timestamp, a control sequence, the type of data (event or frame), the type of frame (master
or slave), and the payload. The goal of this transfer was to create a form that is similar to
the CAN datasets. In total, there exist four datasets from this train where, judging by the
file names, two datasets were captured on one coach and two datasets on another coach.

38

4 Security and Attack Considerations

Vehicle Anonymous
Number of telegrams Around 200, process variables and message data combined

Data format TXT export from wireshark
Attacks -

Driving situation Stationary
Data extractions No

Notes -

Table 4.6: The table shows the characteristics of the MVB dataset.

After the preprocessing of the data, it was examined which attacks could be realized
on the existing data. A central requirement was that after the injection of attack data, the
dataset should still be as realistic as possible. This is why the focus was mainly on slave
ECUs on the bus, which is not a big constraint because the physical effects result from
attacking the slave payloads. For the slaves, masquerade attacks, fabrication attacks, and
suspension attacks were implemented. The fabrication attack leverages the mechanism
described before. Thus, the attacker injects a malicious process data response before the
valid process data response. Only single data points of a data set were attacked based
on the process data response observed before. The masquerade attack replaces the valid
slave payload with a spoofed payload. The suspension attack mutes the corresponding
ECU during a chosen time period.

The only attack conducted on the master was the suspension of a certain master frame
which has about the same consequences as muting the slave directly. Other attacks
were not conducted as this would change the data stream entirely (altering master frame
timings, changing master frame contents).

In total, the MVB dataset used is not optimal compared to available CAN datasets. The
attacks conducted, especially compared to ROAD, are not as realistic. Also, the train
was stationary while capturing and the total capture time is just around eleven minutes.
However, it still assures a start towards intrusion detection on MVB and allows testing of
some intrusion detection approaches in the laboratory.

39

5 Methodology

In this chapter, the empiric methods of this work are described. Starting, some challenges
that are crucial for the goals of this thesis are named. After that, concrete consequences
for the chosen methods and experiments are derived from these challenges. Next, two
intrusion detection approaches are introduced with their concepts, and it is explained
how they are used for this work. Finally, the implementations and the experimental setup
are explained.

5.1 Challenges

This section is about some challenges that need to be solved when designing a combined
intrusion detection system for railway and automotive vehicles based on machine learning.

Challenge 1 – Labeled data (C1)

If the intrusion detection approach based on machine learning leverages supervised learn-
ing, huge amounts of labeled data will be necessary for the training process. Furthermore,
the relation between attack data and benign data needs to have a good balance to prevent
the overfitting of a model to one or the other class. With supervised and certain types of
semi-supervised learning, only the attacks can be detected that were really observed and
trained before. For unknown attacks, it would be unclear if the model would classify the
data correctly. In case new attacks occur, the model must be adjusted constantly to match
the threats.

Challenge 2 – Datasets (C2)

CAN and MVB, although they have certain similarities, are different, especially regarding
the bus access and the data format of frames. Road vehicles and railway vehicles are
different as well comparing their technical design. Even road vehicles and railway vehicles
among each other can have differences in their internal communication systems and
technical design. This makes the integration into one monitoring system challenging.
Next, existing datasets are different from vehicle to vehicle, and have different complexity.
In the case of attack datasets, also the attacks might have different complexity.

Challenge 3 – Edge devices (C3)

In the FINESSE project, it is stated that intrusion detection might also be conducted on
the vehicles themselves with so-called Smart Sensors [45]. However, it can be challenging
to deploy machine learning models on those vehicles as computation resources might be

40

5 Methodology

limited. Additionally, especially on road vehicles, edge devices might be the only option
to deploy an intrusion detection component. Moreover, the literature today mostly talks
about real-time detection abilities of intrusion detection on vehicles. In total, there is the
problematic challenge of having fast intrusion detection, which should classify well on
the one hand, and can be deployed on an edge device on the other hand.

Challenge 4 – Signal extractions of CAN (C4)

On CAN, but also MVB, data is shipped as raw bytes. However, the data sinks need to
have instructions to interpret the byte values. For CAN, this is achieved by the usage of
DBC files. They encode the concrete meaning of each ID by showing the single signals.
They also contain offsets, signedness, and ranges of the data. As is shown in chapter
4, most datasets do not have signal extractions. In practice, these DBC files are usually
proprietary and not available to third parties. This fact must be considered for this work
as it most likely has an impact on intrusion detection performance if these extractions are
not available. This depends on who would operate the IDS.

Challenge 5 – Availability of MVB data (C5)

As already mentioned, CAN datasets, and also attack datasets are publicly available. On
the other side, public MVB datasets could not be found so far during the project work for
this thesis. This poses a challenge for the evaluation of approaches because the MVB data
provided for the experiments is proprietary, results from a stationary capture, and only
contains simulated attacks that do not represent the complete attack range possible.

5.2 Consequences and General Method

To overcome those challenges, some general restrictions are made. C1 is a challenge that
is very common for practical machine learning applications. In practice, it is barely or not
feasible to conduct supervised learning due to the mentioned reasons. This is why this
work puts the focus on semi-supervised respectively unsupervised learning approaches.

C2 and C5 combined are addressed in several ways. First, this work starts with finding
a suitable machine learning approach for CAN datasets and then transfers this approach
to the available MVB data respecting the protocol-specific aspects of MVB. Second, the dif-
ferent types of vehicles and the corresponding data distributions of their communication
data are addressed by training individual models for each vehicle respectively protocol.
Within groups of vehicles, e.g., fleets of the same type of vehicle, other paradigms can be
leveraged as well, like federated learning. Third, during evaluations, the approaches get
judged by the most complex attacks. This means it is assumed that a certain approach
works better if it detects complex masquerade or fabrication attacks. If only attacks of
lower complexity (DoS, fuzzing) are detected, the approach cannot be seen as advanta-
geous anymore.

C3 implies that at least the inference of the machine learning model should be
lightweight and work on an edge device. The training process can be executed on a
central entity.

41

5 Methodology

Addressing C4, the approaches are evaluated with signal extractions and raw bytes if
possible.

Having those challenges addressed, two intrusion detection approaches are introduced
in this chapter.

5.3 Detecting In-Vehicle Intrusion via Semi-supervised
Learning-Based CAAEs

The first evaluated approach was proposed by Hoang and Kim in 2022 [18]. They leveraged
a convolutional adversarial autoencoder for semi-supervised learning and evaluated their
idea under the usage of the HCRL dataset. The following sections explain their method
and state how the approach is evaluated in this work. The results of the evaluation can be
found in chapter 6. Their code repository can be found on GitHub [19].

The approach was chosen because the detection performance is promising (error rate of
0.1%, F1-score of 0.9984 on HCRL dataset) and it needs very few labeled data according
to the evaluation results [18]. Additionally, it fulfills real-time requirements as described
by C3 [18]. The authors claim that also previously unknown attacks can be detected by
the model [18].

Hoang and Kim propose a so-called Convolutional Adversarial Autoencoder (CAAE) to
conduct intrusion detection on the CAN data. A CAAE combines the two elements that
were already introduced in chapter 2, an autoencoder, and a generative adversarial net-
work. Thus, an autoencoder is used for reconstruction learning of the input. Additionally,
the latent space of the autoencoder is forced into the categorical distribution to classify
the input as attack or benign by a categorical discriminator.

For preprocessing, they assume that the message flow of CAN can be classified by the
order of the frames. The idea behind that is that the normal sequence of messages would
change in the case of injected messages. That is why they extract the CAN ID of each
frame in the used dataset for the input. They convert the 29-bit ID (extended identifier)
into a bit string of 29 zeroes respectively ones. During preprocessing, they convert 29

subsequent CAN messages to a matrix of 29 × 29 bits, which serves as the input for the
CAAE. Notably, there is no sliding window when preprocessing the data, or in other
words, the input frames do not overlap. An input frame is labeled as malicious if it
contains at least one malicious CAN frame. Figure 5.1 shows their CAAE model. The
training follows the following scheme: For training, labeled and unlabeled input frames
exist that were extracted from a dataset. The number of labeled frames is a lot smaller
than the number of unlabeled frames. This serves the semi-supervised setting of this
approach. For each epoch of training the model, there are three phases. In the first phase,
the reconstruction phase, the autoencoder (the middle part of figure 5.1) is trained. The
latent space of the autoencoder is split up into two vectors of size two respectively size
ten. Ŷ represents the output of the model with probabilities of whether the input frame
is an attack frame or a benign frame. Ẑ represents additional latent features that are
used for the reconstruction of data. In this phase, the learning process is similar to any
other autoencoder. The next phase is the regularization phase, which corresponds to the
training of a GAN. For the categorical GAN, the real samples are drawn from a categorical
distribution with size two. The synthetic samples are represented by the output Ŷ of the

42

5 Methodology

Figure 5.1: The proposed Convolutional Adversarial Autoencoder is shown in the figure. The
autoencoder in the middle maps the input to a latent space of size two (Ŷ) respectively ten (Ẑ). Ŷ
is forced into the categorical distribution for output classification. Ẑ is forced into the Gaussian
distribution to support a better reconstruction. Source: Replicated diagram from [18]

latent space. As described in chapter 2, the discriminator is now trained to differentiate
between real and synthetic samples. The same principle is also applied to the Gaussian
discriminator. After that, the parameters of the discriminators are fixed, and the encoder is
trained towards the output values of the Gaussian distribution respectively the categorical
distribution. Finally, during the supervised phase, which is the last phase, the encoder is
trained in a supervised way via binary cross-entropy loss to classify the input frames as
attack or benign.

Regarding the concrete neural networks, the encoder and decoder were implemented
as a convolutional network. These networks are generally well-suited for images. The
29 × 29 inputs can be seen as images. Convolution works via the alternating application
of filtering and max pooling, also called downsampling. The details are not relevant to
this work but can be studied here for example [27]. CNNs have some advantages, e.g.,
they do not have fully connected neurons and by that save parameters. Also, weights can
be shared between multiple connections which saves parameters as well[27]. Hoang and
Kim use a 3 × 3 kernel for the filtering and apply four combinations of filtering and max
pooling for both the encoder and decoder. They receive a 2 × 2 × 64 output which they
flatten and fully connect to the latent space. The decoder works the other way around and
reconstructs the original 29 × 29 size in the end. The discriminators were realized as fully
connected networks. The important hyperparameters of training are listed in table 5.1.

43

5 Methodology

Hyper parameter Value
Batch size 64

Learning rates 10−4

Latent space dimension 2 + 10
Optimizer Adam

Learning rate decay 10−1

Activation function ReLU
Reconstruction loss function MSE loss
Discriminator loss function Wasserstein GAN loss

Supervised loss function Binary cross-entropy loss

Table 5.1: The table shows the hyperparameters of training the CAAE. Source: [18]

For online intrusion detection, the latent space output is used as the classification output.
The categorical distribution indicates a probability for the input frame to be malicious or
benign.

5.4 X-CANIDS

The second approach for CAN intrusion detection was published by Jeong et al. in 2023

[21]. In contrast to the semi-supervised model that was introduced before, this is an
unsupervised method. No labeled data is needed for training. A further difference is
that this approach is based on the signal extractions of the CAN payload. However, the
authors also conduct some experiments on the raw bytes as input.

The approach was mainly chosen because it has several advantages over other ap-
proaches, particularly over the method by Hoang and Kim that was introduced before.
For instance, the method by Jeong et al. was tested using attack classes by Cho et al.
[8]. The authors used a dataset with fabrication, masquerade, and suspension attacks.
Besides, unsupervised learning helps with embedding this intrusion detection method
into a bigger security monitoring architecture. Technically, there is just a certain amount of
benign traffic necessary to train a vehicle-specific respectively communication bus-specific
model. Another advantage is that, as explained later, the model outputs can be used to
find the exact signal that was attacked. This would help security analysts monitor the
intrusion detection and evaluate the results. In total, they achieve average F1 scores of
0.9313 for fabrication attacks, 0.9276 for masquerade attacks, and 0.546 for suspension
attacks (while the average precision is 0.9765 for suspension attacks) [21].

Figure 5.2 visualizes the training and inference phase of the proposed method. For
training and inference, Jeong et al. propose a pipeline with four steps.

First, data from the CAN bus is captured by the so-called message receiver. It caches
the payload of the latest signal streams as a matrix P ∈ {∅, 0, 1}|N×M| where N is the
number of signal streams (number of CAN IDs) and M the bit length of the payload. With
the CAN specification 2.0, M is 64.

Second, every time interval t the payload sampler which is a part of the feature generator
takes an instance of P as Pcopy. The time interval t is a configurable parameter. The

44

5 Methodology

Figure 5.2: The figure shows the architecture of X-CANIDS. During training, the autoencoder is
trained to reconstruct benign signal sequences S. S contains w vectors ŝ. A vector ŝ contains all
monitored signals at a certain point in time t. An intrusion threshold is determined. During
inference, the signal-wise loss is used to check if the threshold gets exceeded. An alarm is raised
eventually together with an explanation. Source: Replicated diagram from [21]

first Pcopy is taken as soon as every signal stream has been observed at least once. The
deserializer is the second part of the feature generator and uses the CAN database to
extract the signals out of the CAN payload. Thus, every row is converted into a vector of
different sizes depending on the number of signals in the signal stream. All signals are
concatenated to a vector s. This vector contains all the latest signals of the CAN bus at
a certain point in time. The vector s is scaled by the feature scaler, the third component
of the feature generator. Jeong et al. apply min-max-scaling with ŝi =

si−mini
maxi−mini

. This
normalizes each value of vector s into the dimensions [0, 1]. The minima and maxima
are taken out of the CAN database file. Lastly, the time series feature generator takes the
latest w input vectors and calculates a matrix S ∈ [0, 1]w×x. This matrix S gets returned
every t seconds. In consequence, all samples result from a sliding window overlapping
by one timestep.

Third, the samples are used as the input to an autoencoder. During the training phase,
the autoencoder is trained to reconstruct the input S by reducing the MSE via back-
propagation and optimization. Thus, the global loss function is defined as Lg(S, S′) =

1
wx ∑w

j=1 ∑x
i=1(Sji − S′

ji). After the learning phase, the special characteristics of an autoen-
coder are used for an intrusion detection method. The autoencoder should be performant
at reconstructing the benign input signals. However, malicious inputs, which do not match
the benign signal patterns, are supposed to not reconstruct well. The inference function
of the autoencoder is defined as f (S) = Ls(S, S′) = 1

w ∑w
j=1(Sj − S′

j)
2 = l = {l1, l2, ..., lx},

which corresponds to the signal-wise loss of the autoencoder. It is used to calculate a set
of loss vectors on the complete training set. Then, θi is defined as θi = li + 3δi with li as
mean and δi as standard deviation of the i-th signal. Error rates of a validation set are
calculated as ri = li/θi for i = 1...x. With the q-th percentile (q >= 0.95 <= 1) of max(r),
the threshold Θ is determined. As Jeong et al. state, q can be seen as a hyperparameter
for sensitivity [21].

45

5 Methodology

Hyper parameter Value
Batch size Not named in the publication.

Learning rate 10−4

Latent space dimension 250 with an input size of 200 × 150
Compression rate ∼ 1.17%

Optimizer Adam
Activation function Tanh

Reconstruction loss function MSE loss

Table 5.2: The table shows the hyperparameters of training the BiLSTM autoencoder. Source: [21]

For intrusion detection, the inference function is used to determine the signal-wise
losses of each input. Then, the error rates r are calculated and an intrusion is detected
when max(r) > Θ. The signal that was probably attacked can be determined by checking
which of the signals resulted in the maximum error.

The autoencoder was implemented as a BiLSTM network. These networks have LSTMs
that feed information forward in time, but also LSTMs that feed information backward
in time. This can help with learning time patterns. The input shapes are the ones of the
matrix S. Then, two BiLSTM layers follow with size depending on the input shape. The
second one of these layers outputs the latent space vector of size h. Then, this vector
is repeated w times before the decoder part reconstructs the input size again. Table 5.2
shows the hyperparameters of their network and training. The concrete model layers are
defined in section 5.6.

5.5 X-MVBIDS

A goal of this thesis is to propose an intrusion detection method that can be used for CAN
and MVB with only slight adaptions. X-CANIDS is a suitable method to convert to MVB
because it works on the timing characteristics of CAN. Working with the provided data, it
became clear that the timing characteristics of MVB are comparable. The signal streams of
CAN that are sent in a fixed period can be mapped to process data ports of MVB. These
follow a fixed period as well, and as later analysis shows (section 5.6), the timings are
similar. The message data can be compared to signal streams like the one of ID 1649

in the case of ROAD that are not sent in a fixed period. The process data and message
data consist of multiple data points that can be compared to all the single signals a signal
stream consists of. Finally, the IDs of CAN can be well mapped to the port addresses
respectively device addresses of MVB.

Based on these considerations, a training method for intrusion detection on the provided
MVB dataset can be derived. The baseline data is the one described in chapter 4. This
means there are four benign datasets as CSV files with timestamp, control, type, frame
type, and payload. In the first step, the datasets are converted to the “master slave form”.
There, the F codes of the master frames are analyzed and the frames which request process
or message data are used to extract the addresses. After that, the slave frames are joined
with this address. All event frames get excluded from the dataset as the focus is on

46

5 Methodology

slave and master frames for physical consequences. With that form, it is now possible
to conduct further analysis for whole constant data payloads and constant single data
points. The data is checked for whole constant data payloads first, which can be excluded
from further data processing. Next, the information about constant data payloads and
the bus description is used to split the payload of the slave frames into single data points.
The slave frames are now in a comparable form to a CAN frame, with an identifier (the
port address that was joined) and the signals (the single data points of each data port).
As a result, the original method of X-CANIDS can be applied by checking for constant
data points, excluding them, deriving the parameters w, t, x, and applying the proposed
feature extraction as before. Two points significantly differ from the original method
regarding MVB. On the one hand, the MVB data that was provided for this thesis contains
only the raw, byte-based form of the payloads. To overcome this, the data points were
converted to decimal numbers during the feature extraction before the scaling was applied.
Additionally, the payload contained sequences of data points that consisted of single bits.
These bit sequences were combined into one data point to reduce the model dimensions
later on. On the other hand, the feature extraction had to respect two types of frames, the
master frame, and the slave frame. This challenge was overcome by applying the feature
extraction to the slave frames to generate the feature matrix S. This decision is based
on the observation that the physical actions are only caused by the payload of the slave
frames. The master orchestrates the bus access of the slaves but does not put any message
or process data on the bus. Furthermore, manipulations of the master (e.g., suspension,
fabrication, and masquerade attacks) would have consequences on the timing of the slave
frames.

After the feature extraction and the data split, the autoencoder can be trained. Finally,
the intrusion detection threshold is determined under the usage of the validation data.
For the inference phase, the schema is analog to X-CANIDS (see figure 5.2) except for
the fact that there is no message deserialization. The message receiver collects the MVB
frames from the MVB bus and passes the payload to the feature generator every time
interval t. To do so, it joins the slave frames with the corresponding master frames and
receives the payload for each address. Each payload is cached until there is an update on
the bus. The feature generator splits the payload for each address with the help of the
bus description and constructs the vector s with length x. It normalizes the vector s by
min-max-scaling and receives the scaled vector ŝ. A feature matrix S ∈ [0, 1]w×x gets fed
to the autoencoder every time interval t starting from the moment when w vectors ŝ have
been stacked up. The inference function f (S) gets executed and the result is passed to
the intrusion detector, which checks if max(r) > Θ and raises an alarm if so. Section 5.6
introduces the concrete model parameters and discusses the generation of attack datasets
for evaluation.

5.6 Implementation and Experimental Setup

In total, there are three intrusion detection approaches to evaluate. The semi-supervised
method by Hoang and Kim already comes with a code repository as mentioned before.
The unsupervised methods X-CANIDS (signal-translated and byte-based) and X-MVBIDS
were implemented from scratch using TensorFlow [51] 2.10. Dataset operations were

47

5 Methodology

conducted with Pandas [35] while statistical calculations and matrix operations were
conducted with NumPy [33]. The whole pipeline of preprocessing, data splitting, training,
threshold detecting, and evaluating was implemented based on the description by Jeong
et al. [21]. The implementations are available on GitHub [14].

The HPI Future Service-Oriented Computing (FSOC) Lab2 was leveraged for most of
the conducted experiments. It provides eight NVIDIA Tesla V100-SXM2 GPUs with 32GB
VRAM, an Intel Xeon E5-2698 v4 processor, and about 0.5 TB of RAM. Thus, enough
computation power was available. The operating system is Ubuntu 20.04.5 LTS. All
machine learning tasks on the FSOC Lab were executed within docker containers.

Additionally, an NVIDIA Jetson AGX Xavier was used. It is an embedded device with
a 512-core NVIDIA Volta GPU, a 64-bit-8-core NVIDIA Carmel CPU, 32 GB 256-bit wide
LPDDR4X RAM, and 32GB eMMC 5.1 storage. This device is specifically designed for
machine learning tasks and was already used by other publications for the matter of
measuring the inference times of their models on an embedded device[21, 29]. The used
operating system is Ubuntu 20.04.6 LTS. As the machine learning framework, TensorFlow
2.10 was installed natively.

It is now explained which experiments were executed to give answers to the research
questions. The semi-supervised approach was tested using two datasets. First, the HCRL
dataset was used to conduct some more experiments with other parameters than originally.
A low label ratio and train ratio were in focus to check the feasibility in terms of a real IDS.
The next section explains label ratio and train ratio as they were declared ambiguously
by Hoang and Kim [18]. After that, the ROAD dataset was used to test more complex
attacks. This choice was made because ROAD has the most complex attacks of the byte-
based datasets. Especially compared to HCRL, it has more stealthy fabrication attacks and
masquerade attacks which HCRL does not have at all. Judging by the feature extraction
of the method, already an interesting observation can be made. Hoang and Kim assume
that the sequence of CAN frames, thus, CAN IDs change when attacks are conducted.
This assumption does not hold for masquerade attacks as they do not alter the sequence
of frames or the timing. Thus, there would be some changes necessary for the feature
extraction to proceed further and detect masquerade attacks as well. Still, the method can
be useful under practical conditions because of the characteristics that were introduced
above.

X-CANIDS was tested in two bigger scenarios. The first scenario is about the original,
signal-translated version of the approach. Jeong et al. [21] used their own dataset for
their evaluations. They searched a CAN database file on OpenDBC [9] and a suitable
vehicle model to capture CAN data from the OBD-2 port. A Hyundai LF Sonata from
2017 was chosen. In total, seven datasets were obtained from the vehicle. Four were taken
for training, one for validation, and one for testing. The last dataset was a stationary
capture and was used to compare the model performance on stationary and driving data.
All datasets have a length between around 22 minutes and 37 minutes. The focus of their
work was mainly the capture of the benign data and not the generation of attacks. In
their publication, it is not explicitly named how exactly they executed attacks. However,
it is assumed that they created attack datasets by manually changing the payload after,
similarly to the dataset of TU Eindhoven [11]. Interestingly, this publication came out

2https://hpi.de/forschung/infrastruktur/future-soc-lab.html, accessed: October 26, 2023

48

https://hpi.de/forschung/infrastruktur/future-soc-lab.html

5 Methodology

when the ROAD dataset was already public, which provides fabrication and masquerade
attacks. Still, Jeong et al. stated they could not consider the ROAD dataset because it
was captured on a dynamometer [21]. Instead, they implemented their own fuzzing,
fabrication, and masquerade attacks as well as suspension attacks. That is why their
method needs to be reevaluated based on public datasets. The best one for this case
is still the ROAD dataset considering the realistic attacks and the number of captures.
Furthermore, evaluations on SynCAN were also feasible and therefore used as a baseline.
Recall that SynCAN poses a good benchmark for the laboratory because of its synthetic
nature and the complexity of the attacks. The combination of evaluation on ROAD
and SynCAN gives a good impression of the total performance of the approach. By
finding out the performance for each of the three attack classes, fabrication, masquerade,
and suspension, strengths and weaknesses can be identified and addressed in a joint
architecture.

The second scenario of X-CANIDS considered the evaluation of the byte-based version
of the approach. Jeong et al. claimed a worse performance for a model that learns only
the byte-based payload of the CAN data. However, they justified their assumption with
the comparison based on a stationary capture. It could therefore be a difference to use
a non-stationary dataset for that matter. To do so, the X-CANIDS method was applied
to the byte-based road dataset. This allows a more realistic evaluation of the byte-based
version. Furthermore, challenge C4 addressed this aspect as an important question of this
thesis. The road dataset allows a direct comparison of masquerade attack detections in
the signal-translated and the byte-based settings. Additionally, fabrication attacks can be
tested that are not available in the case of the signal-translated version. For both scenarios,
signal-translated and byte-based, suspension attacks were implemented as well which the
standard ROAD dataset lacks.

Attack Target Period Attack type
Fabrication attack 1 Slave 1024ms Set data point to zero
Fabrication attack 2 Slave 128ms Set data point to maximum
Fabrication attack 3 Slave 1024ms Set data point to maximum

Masquerade attack 1 Slave 1024ms Set data point to zero
Masquerade attack 2 Slave 128ms Set data point to maximum
Masquerade attack 3 Slave 1024ms Set data point to maximum

Suspension attack 1 Slave/ Master 64ms Suppress slave/ master frame
Suspension attack 2 Slave/ Master 128ms Suppress slave/ master frame
Suspension attack 3 Slave/ Master 1024ms Suppress slave/ master frame

Table 5.3: The table summarizes the implemented attacks on MVB datasets.

Finally, X-MVBIDS was evaluated using the proprietary dataset. The four datasets
from two different coaches result from a stationary, attack-free capture. This makes the
evaluation harder than for the other datasets, and less transparent. As already mentioned
in chapter 4, fabrication attacks, masquerade attacks, and suspension attacks were im-
plemented. All three attack types were applied to bus slaves while only a special type
of suspension attack, where certain master frames are dropped to mute a bus slave, was
conducted on the master frame. The reason behind this is that only attacks can get tested,
which would not result in a completely different data flow. In this case, the datasets would

49

5 Methodology

become unrealistic. A further constraint is the amount of data. The total capture time of
all datasets combined is just around 11 minutes.

The attacks can be looked up in table 5.3. The spoofed payloads from the fabrication
and masquerade attacks were based on similar attacks from the road dataset like max
speedometer attack or max engine coolant temperature attack. Furthermore, it was made
sure that frames with different periods were attacked.

The general setup and experiments are now explained. To prepare the experiments, it
is now necessary to derive the training parameters for each model that was used. Besides,
the label and train ratios of the semi-supervised CAAE approach are clarified.

5.6.1 Clarifying Training Parameters of the CAAE

Hoang and Kim trained their model respecting the hyperparameters named in section
5.3. However, they did not name the number of epochs that were used for training [18].
Judging by their code [19], they had 100 epochs as standard value for training.

For training and evaluation, they used Tensorflow-1.15. With several Python scripts, a
pipeline was established consisting of the following steps: Preprocessing, data splitting,
training, and performance testing. The corresponding scripts were also leveraged for this
thesis and adjusted for analysis if necessary. Two more hyperparameters were introduced
by them. One is the “train ratio” and the other one is the “label ratio”. It is clear what is
meant by the label ratio in this case, namely the relation of unlabeled and labeled samples
during training. The meaning of “train ratio” is not obvious in the first place. As Hoang
and Kim say, it means “the number of training samples over the total samples in the
dataset” [18]. However, in the paragraph below they state “We used 10%, 30%, 50%, and
70% of total attack data for training” [18] referring to this train ratio. This makes the train
ratio ambiguous. Some code analysis of their scripts was necessary to finally figure out
what was done. First, in the preprocessing part, the attack CSV files DoS, Fuzzy, Gear,
and RPM were preprocessed by taking 29 subsequent CAN frames and converting their
IDs to a bit string. The resulting input images were saved as TFRecords, a data format
that serializes samples to the disk to conduct a training process in multiple stages [52].
The output scheme splits up the input frames into benign and attack (the attack datasets
produce also benign frames). Notably, the attack-free data capture of HCRL was not used.
Consequently, eight files exist:

1. DoS / Normal DoS

2. Fuzzy / Normal Fuzzy

3. Gear / Normal Gear

4. RPM / Normal RPM

So far, the data was only split up into benign and attack frames. After that, the actual
data split was conducted. To do so, the two parts, benign and attack data, were split
separately. The normal data was split into training (0.7), validation (0.15), and testing
(0.15). Judging by the code, these relations were fixed for the normal data. The train ratio
only comes into play for the attacks. The parameter can be adjusted in this case. This
means that the authors meant the amount of attack data with the train ratio. For example,
a train ratio of 1 would mean they include 100% of the attack data, and a train ratio of 0.1

50

5 Methodology

Figure 5.3: The diagram shows the data split strategy used in [18]. The HCRL normal proportions
are fixed to the shown split. The HCRL attack proportions are configurable. The standard label
ratio is fixed to 0.1. It can also be adjusted to any other value ≤ 1.

would mean they include 10% of the attack data. After the data was split into training,
validation, and testing for normal respectively attack data, the training data was split up
into the unlabeled and labeled parts. The standard label ratio is 0.1 for both normal and
attack data. They are both configured by the same parameter.

The data split is visualized in figure 5.3. Note that different configurations of the train
ratio result in a different relation of attack and benign data in the training data.

Having the label and train ratio clarified, the method can be evaluated and analyzed.

5.6.2 Deriving Training Parameters for X-CANIDS and X-MVBIDS

Before the evaluation, the concrete training parameters x, w, and t had to be derived
independently for each dataset and scenario. The compression rate of the autoencoder
is an important hyperparameter as well. This paragraph summarizes the original paper
parameters by Jeong et al. to give a general idea and the opportunity to compare the
parameters [21]. During their preparations of the datasets, Jeong et al. made some
important observations about the data. Initially, they had 688 signals from 62 signal
streams. However, it was shown that during the driving some signals would remain
constant throughout the whole capture. As a reaction, they excluded these from the
feature extraction with the justification that a simple rule could be added that checks if
these signals stay constant [21]. Furthermore, they excluded signals which are checksums,
counters, or parity bits. In the end, they reduced the signals to 107 by that strategy. The
second parameter that is necessary to determine the input size of the network is the
window size w. To figure out w, they analyzed the timings of the signal streams and
figured out that except for a few streams, all streams follow a fixed period between 10ms
and 2s. Thus, w was set to 200 and the time interval t to 10ms. This allows to capture all
changes of the most high-frequent signal streams but also includes at least one potential
change of the most low-frequent signal streams. In total, the neural network gets an input
of 200 × 107, a middle layer output of 200 × 214, and a latent space output of 250, which
corresponds to a compression rate of around 1.17%. After the repetition layer, two layers
follow which output matrices of size 200 × 214. For the output, a time-distributed dense
layer is applied which reduces the dimension to the original size 200 × 107. For the actual
training, the authors leveraged the already declared training datasets. No additional data
split was applied to these. They trained the BiLSTM autoencoder for 2000 epochs with an

51

5 Methodology

early stopping patience of 50 epochs. A loss of around 4.686 ∗ 10−4 was achieved as the
model stopped after 948 epochs. For the intrusion detection threshold, the value Θ = 40
with q = 0.9869 was used. Except for SynCAN, the strategy of training 2000 epochs
with an early stopping patience of 50 was used for all experiments with X-CANIDS and
X-MVBIDS.

After the explanation of the original parameters, it is explained how the parameters,
the data split, and the according ratios for each of the experiments with X-CANIDS
respectively X-MVBIDS were derived.

Training Parameters for X-CANIDS on SynCAN (signal-translated)

Starting with SynCAN, the parameters x, w, and t had to be determined. The dataset
consists of four training datasets that represent the whole training data after they are put
together.

Figure 5.4: The figure shows the beginning of the file train1.csv. There are 10 signal streams with 20

signals. Source: Screenshot of train1.csv from [16]

Figure 5.4 shows a part of the file train1.csv [16]. In total, there are 10 signal streams
with 20 signals. Thus, parameter x can be set to 20. After this, the timing of the dataset
was analyzed to determine the other parameters.

The timings shown in table 5.4 indicate a stable periodicity of the signal streams. Espe-
cially these with a mean ∆t of 45ms have a low standard deviation of their timing. The
lowest mean ∆t could be assumed as 15ms, and the highest one as 45ms. This implies
a value t = 15ms and w = 3. However, the window size was increased to 20 because of
the reason that a window size of 3 might be too small to represent attacks over time. By
that, the input of the neural network has a dimension of 20 × 20. Additionally, a latent
space size of 40 was chosen, which corresponds to a compression rate of 10%. This is
higher by some degree than the original paper suggested. However, the total number of
parameters is low for this model with around 37,000 parameters. This allows a bigger
latent space. With the original compression rate, a latent space of around seven would be
applied, which appears to be small in this case. In general, the size of the latent space is a

52

5 Methodology

ID Mean ∆t in ms Std. ∆t in ms
ID1 15.001743 0.042624
ID2 30.000025 0.005932
ID3 15.001668 0.041410
ID4 45.000000 0.000000
ID5 15.001756 0.042635
ID6 30.000024 0.004748
ID7 15.001712 0.042225
ID8 15.001680 0.042152
ID9 30.000039 0.008895
ID10 45.000000 0.000000

Table 5.4: The table shows the mean time difference and standard deviation between two subsequent
frames of a certain ID of the SynCAN dataset. For all IDs, a more or less fixed period can be
identified.

hyperparameter that highly depends on the concrete machine learning task and needs to
be adjusted based on experiments.

Layer Parameters Output shape

Input 0 20 × 20
BiLSTM 6, 560 20 × 40
BiLSTM 9, 760 40

Repeat input 20 times 0 20 × 40
BiLSTM 9, 760 20 × 40
BiLSTM 9, 760 20 × 40

Time-distributed dense 820 20 × 20

Table 5.5: The table shows the model parameters for X-CANIDS on SynCAN.

Table 5.5 summarizes the layers including the output shapes of the BiLSTM autoencoder
for the SynCAN dataset. The training was executed using all training samples. The data
was split using 80% for training, 15% for validation, and 5% for testing. Only 5% were
kept for testing as Hanselmann et al. [17] also provided a whole attack free dataset for
evaluation. Regarding the preprocessing, it is notable that the data was already normalized
between zero and one. Thus, the scaling of data could be omitted. In the first step, all
scaled vectors of ŝ were extracted from the ambient datasets respecting the parameter t.
The extracted vectors were saved as TFRecords. During the data split, the vectors ŝ were
read in from every TFRecord file and split into training, validation, and testing data. After
that, the sliding window was applied to generate the matrices S. By that, information
bleeding was prevented. Additionally, training, validation, and testing samples include
data from every ambient dataset. This strategy was used for every experiment with the
ROAD dataset. 4,140,051 samples were obtained in total for SynCAN.

Training Parameters for X-CANIDS on ROAD (signal-translated)

The ROAD dataset provides signal-translated as well as raw, byte-based captures. It is
comparable to the dataset used by Jeong et al. in the way that the number of signals is
relatively similar in both cases. ROAD has 664 signals out of 105 signal streams while

53

5 Methodology

the dataset from the Hyundai Sonata has 688 signals out of 62 signal streams. It must be
noted that the byte-based version of ROAD has 106 signal streams. Apparently, one signal
stream was omitted during the translation by Bridges et al. [55]. Before starting with the
determination of all necessary parameters, it is worth noting that all statistical analysis,
scaling, and derivation of parameters were only conducted on the benign datasets to serve
a fully unsupervised scenario.

A fundamental requirement is the determination of constant signals in the dataset as
these do not need to be trained. To do so, the ambient datasets of ROAD were analyzed
in that regard. Interestingly, the number of constant signals varies a lot between different
data captures. The capture “ambient dyno drive exercise all bits” has only 125 constant
signals while the capture “ambient dyno drive winter” has 465 constant signals. This
makes sense considering that the first was captured while trying to use all buttons, pedals,
and switches in the car, and driving for more than half an hour [55]. The second capture
is only around 47 seconds long and is about driving in colder conditions [55]. It can be
assumed that the ambient drives from the paper [21] were also just conducted to capture
the normal driving in town and not to experiment with all functionalities of the car. That
is probably why the number of constant signals is so high for their datasets. Because the
signal extractions of ROAD were anonymized, signals that contain checksums, parity bits,
etc. cannot be identified without a major effort. It was decided to work based on the least
complex dataset “ambient dyno drive winter” regarding the constant signals. In practice,
this would mean that a major part of the traffic would be unmonitored. However, it is
assumed that the monitored signal streams are the ones that are most critical for driving
and thus, the ones that are most likely targeted for an attack. It remains a tradeoff how
many signals are monitored. The method proposed here already monitors a lot more
signals compared to the original literature.

Next, the parameters x, t, and w needed to be determined. Again, the timing was
analyzed to derive these parameters. All ambient captures were analyzed for timing. Not
all statistics can be listed here, but the timings were analyzed using the longest dataset
“ambient highway street driving long” that was captured on the street to have the most
realistic timing statistics.

As can be seen in table 5.6, most of the signal streams follow a fixed periodicity, like
SynCAN. The standard deviation is generally higher than for SynCAN. This is probably
where real datasets differ from synthetic ones. Generally, every standard deviation is
below one except the one of ID 1649. This signal stream has a standard deviation of
almost 13. Also, the mean timing difference between two frames of this ID is over 10s.
This is why it was decided to exclude this signal stream as the time-series model would
probably reconstruct the payload of this signal poorly. The minimum mean ∆t is around
10ms, and the maximum mean ∆t is around 1500ms. Consequently, the parameter t was
set to 10ms, and the parameter w to 150. The question remains how many signals are
included finally to determine the parameter x. ID 1649 was excluded already. Furthermore,
it was explained before that the constant signals based on the dynamometer winter drive
are used. Lastly, it was ensured that no signals got excluded that are part of the test
attacks. This violates the assumption that data preparation is only conducted on benign
data but is necessary to make a proper evaluation possible. Notably, just parts of the
corresponding signal streams had to be fixed. In total, x = 202 signal streams remain.

54

5 Methodology

ID Mean ∆t in s Std. ∆t in s ID Mean ∆t in s Std. ∆t in s
6 1.023104 0.371811 727 0.102150 0.099128
14 0.010206 0.022573 737 0.020402 0.034469
37 0.910228 0.411611 738 0.102070 0.096522
51 0.010206 0.024137 778 0.508787 0.360588
58 0.510431 0.237134 813 0.051016 0.067344
60 0.101970 0.095966 837 0.102087 0.096531
61 0.102233 0.100049 852 0.010202 0.024105
65 1.022354 0.409890 870 0.020405 0.034978

117 0.510154 0.245239 881 1.020691 0.358034
167 0.010211 0.024378 930 1.527569 0.436219
186 0.040794 0.059725 953 1.018881 0.342621
192 0.020428 0.042351 961 0.025502 0.038522
204 1.021245 0.360373 996 0.102320 0.102822
208 0.010204 0.024090 1031 0.102116 0.082560
215 0.102119 0.098205 1049 0.514828 0.279417
241 0.509929 0.235652 1072 0.102101 0.097790
244 0.102172 0.098403 1076 0.020407 0.035096
248 1.020056 0.358429 1124 0.101991 0.099112
253 1.019292 0.347017 1175 0.102155 0.098412
263 0.020398 0.034423 1176 0.020404 0.042300
293 0.010201 0.023600 1225 0.101976 0.096557
300 1.020684 0.350724 1227 0.203931 0.137261
304 0.102134 0.098250 1255 0.101998 0.097923
339 0.020393 0.041882 1262 1.024063 0.430925
354 0.020418 0.034797 1277 0.051035 0.066394
403 0.020401 0.034951 1307 0.203960 0.139877
412 0.020410 0.042005 1314 0.020404 0.034971
420 1.019016 0.356791 1331 0.545104 0.266434
426 1.020604 0.359956 1372 0.153153 0.122611
452 0.255016 0.155788 1398 1.020330 0.379428
458 0.102138 0.099606 1399 0.051121 0.069431
470 0.101686 0.096638 1408 0.020406 0.035027
485 1.021239 0.358835 1413 0.101812 0.097553
519 0.101642 0.096471 1455 0.923077 0.422396
526 0.020403 0.034965 1459 0.101870 0.097151
541 1.020262 0.366774 1505 0.010203 0.024111
560 0.020405 0.042314 1512 1.020729 0.385115
569 0.102163 0.102378 1533 0.916295 0.421587
622 0.102555 0.097677 1560 1.021352 0.396564
627 1.020137 0.355682 1590 0.102125 0.099057
628 0.020424 0.042316 1621 1.019308 0.352915
631 1.526951 0.422334 1628 0.102347 0.103249
640 0.202908 0.137156 1634 0.020401 0.041949
651 0.020410 0.034936 1644 0.101993 0.095661
661 0.030596 0.051410 1649 10.056932 12.978408
663 0.462382 0.254565 1661 0.861361 0.456294
675 0.102116 0.097295 1668 0.102097 0.098726
676 0.255085 0.155844 1693 1.021560 0.396722
683 1.019854 0.336712 1694 0.020402 0.034149
692 0.093491 0.096235 1751 1.020961 0.354235
695 1.018171 0.372762 1760 0.010204 0.024580
705 0.107097 0.098992 1788 0.102111 0.102245
722 0.102069 0.097833 - - -

Table 5.6: The table shows the mean time difference and standard deviation between two subsequent
frames of a certain ID from "ambient highway street driving long" (ROAD). The periods are less
stable compared to SynCAN.

55

5 Methodology

After the determination of the parameters, possible data splits were inspected. Table
5.7 shows all available benign captures.

Capture Duration (min) Comment
Ambient dyno drive

basic long
21 Basic driving activities

Ambient dyno drive
basic short

7 Basic driving activities

Ambient dyno drive
benign anomaly

8 Benign anomalies (e.g., open door while driving)

Ambient dyno drive
extended long

11 More complex driving activities (e.g., cruise control)

Ambient dyno drive
extended short

6 More complex driving activities (e.g., cruise control)

Ambient dyno drive
radio infotainment

7 Radio/ infotainment while idling/ driving

Ambient dyno drive
exercise all bits

36 Trying to exercise the full range of signals

Ambient dyno idle
radio infotainment

11 Radio/ infotainment while idling

Ambient dyno drive
winter

1 Driving in colder conditions

Ambient dyno
reverse

1 Basic reverse activities

Ambient highway street
driving diagnostics

8 Driving in parking lots, streets, highways

Ambient highway street
driving long

63 Driving in parking lots, streets, highways

Table 5.7: The table shows all ambient captures of the signal-translated ROAD dataset. Durations
were rounded to full minutes. The dataset consists of very different captures. Source: [55]

In terms of the total amount of datasets and the duration, the dynamometer datasets
dominate. Judging by the descriptions, the dataset “ambient dyno idle radio infotainment”
is stationary. Furthermore, the datasets “ambient dyno reverse”, “ambient dyno drive
benign anomaly”, and “ambient dyno exercise all bits” might differ from the normal
driving activities. During this work, many experiments have been executed to find an
optimal data split. The problem here is that unlike in the original publication [21], ROAD
does not provide multiple, equally distributed datasets. Additionally, the attack datasets
were captured on a dynamometer. On the other hand, this makes the evaluation more
realistic because driving situations in real life do not always follow the same driving
pattern.

The data split applies the approach that was also used on the SynCAN data. It contains
every available capture and applies a split of 4

6 training, 1
6 validation, and 1

6 testing. In
total, 1,040,030 samples were available. The preprocessing was executed in the same way
as for the SynCAN data. The min-max scaling of the data posed a challenge for the
ROAD data because, unlike SynCAN, the data was not normalized yet. Besides, the CAN
database file was anonymized and does not contain the minimum and maximum for
each signal. This is why the ranges of the signals were determined a priori on all benign
datasets. In consequence, benign data from the attack datasets might be reconstructed
worse because their signal values might be outside the range of the benign datasets.

56

5 Methodology

However, a bad reconstruction might also occur if the benign test data were scaled based
on all available data. For the model, the parameters w and x were used as introduced
before. Based on multiple experiments, a compression rate of about 1.56% was chosen.
This corresponds to a latent space size of 472. Table 5.8 summarizes the model.

Layer Parameters Output shape

Input 0 150 × 202
BiLSTM 654, 480 150 × 404
BiLSTM 1, 210, 208 472

Repeat input 150 times 0 150 × 472
BiLSTM 1, 090, 800 150 × 404
BiLSTM 980, 912 150 × 404

Time-distributed dense 81, 810 150 × 202

Table 5.8: The table shows the model parameters for X-CANIDS on ROAD.

Training Parameters for X-CANIDS on ROAD (byte-based)

The X-CANIDS method was applied to the byte-based road dataset with the same param-
eters as before. This means that the same captures were used for training, the same data
split was applied, and the same compression rate of the autoencoder was used. The byte
fields of the CAN payload were interpreted as signals. Thus, each CAN ID is associated
with eight signals because the ROAD datasets only have payloads with eight bytes. The
normalization of the data was again conducted under the usage of min-max scaling based
on the benign datasets. The parameters w and t were kept as 150 respectively 10ms while
x was set to 244. x resulted from the exclusion of constant bytes using the dynamometer
winter capture as a baseline. With a compression rate of about 1.56%, a latent space size
of 570 was determined. Table 5.9 shows the parameters per layer.

Layer Parameters Output shape

Input 0 150 × 244
BiLSTM 954, 528 150 × 488
BiLSTM 1, 764, 720 570

Repeat input 150 times 0 150 × 570
BiLSTM 1, 590, 880 150 × 488
BiLSTM 1, 430, 816 150 × 488

Time-distributed dense 119, 316 150 × 244

Table 5.9: The table shows the model parameters for X-CANIDS on ROAD byte-based. Each layer
has more parameters now because of the bigger input dimensions.

Training Parameters for X-MVBIDS

The evaluation was done based on the proprietary dataset that was provided from an
anonymous source. Respecting the established method from X-CANIDS, the parameters
for model training were derived. Due to anonymity reasons and the pure number of
process data telegrams respectively message data telegrams, the full timing table of the

57

5 Methodology

data cannot be shown here. The four datasets were comparable regarding the number
of addresses even though they came from different coaches. The smallest period is 16ms
seconds while the largest period is 1024ms. This was also confirmed by the provided
bus description. Thus, the parameters t = 16ms and w = 64 were set. For x, it was
necessary to determine the constant data points and the whole constant payloads of the
datasets. Again, as done before with X-CANIDS, the dataset with the most constant
payloads and constant data points was chosen as a baseline. Each data field of a telegram
was interpreted as a “signal” and the single bits were combined into one data field. Thus,
the parameter x = 274 could be set.

For the data split, the standard strategy from before was executed. One dataset was
put to the side in the beginning to provide benign test data and to serve as a basis for the
attacks. The other three datasets were split into training, validation, and test data each
in the relations 0.8, 0.15, and 0.05. These relations were chosen to have as many training
samples as possible considering the data sparseness. The test data was kept to have a
second source of test data next to the dataset that was put aside in the beginning. In total,
37,060 samples were available for the data split.

The resulting model parameters are shown in table 5.10. The latent space size was set
to 400 respectively a compression rate of about 2.28%.

Layer Parameters Output shape

Input 0 64 × 274
BiLSTM 1, 203, 408 64 × 548
BiLSTM 1, 198, 400 400

Repeat input 64 times 0 64 × 400
BiLSTM 1, 479, 600 64 × 548
BiLSTM 1, 804, 016 20 × 548

Time-distributed dense 150, 426 64 × 274

Table 5.10: The table shows the model parameters for intrusion detection on MVB data.

58

6 Evaluation

The evaluation of approaches respected the available datasets and the characteristics of
the intrusion detection approach. The first section of this chapter describes the achieved
results. The second section of this chapter analyzes them.

6.1 Evaluation Results

The metrics for evaluation were chosen according to the original literature to allow a direct
comparison. This also applies to the rounding accuracy. The result tables of X-CANIDS
and X-MVBIDS are too detailed to be presented in the text. This is why they were put into
appendix A. The most important results are summarized directly in the text. Interested
readers can jump to the tables.

6.1.1 Detecting In-Vehicle Intrusion via Semi-supervised Learning-Based
CAAEs

Hoang and Kim originally evaluated their method using the HCRL dataset with different
label ratios and attack frame ratios. They used error rate, recall, precision, and F1 score as
metrics and achieved good results with an F1 score of up to 0.9984. They also evaluated
the detection of unknown attacks which they simulated by omitting one attack type during
training and achieved an F1 score of up to 0.9976.

The code by Hoang and Kim was used to conduct experiments. The train ratio was
mostly in focus as it seems to be more important for the performance than the label ratio.
The label ratio barely influences the results according to Hoang and Kim [18]. The test of
more complex attacks was another goal. The first table 6.1 is about the reevaluation of the
HCRL dataset with partially the same parameters that were used in the paper. The model
was trained using the same hyperparameters.

Train ratio Error rate Recall Precision F1
0.01 13.9% 0.8423 1 0.9144
0.1 5.1% 0.9430 0.9996 0.9705
0.2 3.2% 0.9635 0.9999 0.9814
0.4 2.9% 0.9667 0.9999 0.9830
0.7 1% 0.9747 0.9994 0.9869

Table 6.1: The table shows the influence of the train ratio on the intrusion detection performance
regarding HCRL attacks with other train ratios than originally. The label ratio was fixed to 0.1.
The results from [18] could be confirmed.

59

6 Evaluation

Train/ label ratio Error rate Recall Precision F1
0.05 10.39% 0.8824 0.9999 0.9375

Table 6.2: The table shows the influence of a low label and train ratio on detecting HCRL attacks.
Even with a label and train ratio of 0.05, a precision of almost one can be achieved. Furthermore,
the recall is still high with 0.8824.

The new results confirm the results from the literature. Although the metrics are not
the same, the trend regarding the error rate, recall, and precision is similar. Again, the
label ratio was fixed to 0.1. Using a train ratio of 0.01, the error rate appears not feasible
anymore for any real-world application. However, the precision remains constantly high
for any train ratio indicating a low false positive rate. A train ratio of 0.01 means that the
training data consists of 0.8% attack data and 99.2% normal data.

For a final test, the train and label ratio were both put to 0.05 to simulate 5% attack data
and 5% labeled data (table 6.2).

Again, the precision stays on a high level. Without further interpretation, it can be said
that the intrusion detection approach performs well on the HCRL dataset regarding the
attacks DoS, Fuzzy, Gear, and RPM and regarding the detection of known attacks.

Next, the ROAD dataset was used for the evaluation of known attacks. During the
evaluation, two scenarios were inspected. One included masquerade attacks and the other
one did not include masquerade attacks. This results from the observations about the
altered CAN ID sequences that were made before. Two experiments were conducted in
the first place. The first one used the same conditions for training as were used by Hoang
and Kim. All ROAD attack datasets including masquerade attacks were split with a train
ratio of 0.7 and a label ratio of 0.1. The model was trained accordingly for 100 epochs and
a batch size of 64. The relation of normal and attack data is almost even in that setting,
with 56.7% benign data and 43.3% attack data. The second experiment added some more
benign data to the split to increase the number of data samples. This was done to make
the experiments with HCRL and ROAD more comparable as HCRL has around 400,000

samples in total for the standard data split and ROAD only around 76,000. With the
addition of more benign data, ROAD could produce around 289,000 data samples with
88.6% of benign data and 11.4% of attack data. This distribution is not optimal. On the
other side, the model could handle this for HCRL data as shown before.

Experiment Error rate Recall Precision F1
No additional data, all attacks 45.08% 0.4122 0.4799 0.4435

Additional data from the
ambient highway street driving

long capture, all attacks
52.6% 0.5734 0.1209 0.1997

Table 6.3: The table shows the performance for ROAD attacks with a label ratio of 0.1 and a train
ratio of 0.7. Recall and precision are a lot lower than for HCRL attacks. The error rate is around
50% in both cases. Adding more benign data even shrinks the performance.

Table 6.3 shows the results. The model performs badly when classifying the ROAD
dataset. Additional normal data does not increase the performance. In contrast, the

60

6 Evaluation

performance gets even worse for the precision. This implies an increasing false positive
rate.

About half of the attacks of the full ROAD dataset are masquerade attacks, which
this approach almost certainly cannot detect without any adjustments. This is why the
next experiments were conducted without masquerade attacks. Thus, the attacks now
contain the fabrication attacks reverse light on/off, max engine coolant temperature, max
speedometer, fuzzing, and correlated signal attack. All of them alter the timing of the
frames and the CAN ID sequence consequently. Again, the same two experiments were
conducted.

Experiment Error rate Recall Precision F1
No additional data,

without masquerade attacks
44.22% 0.4723 0.5097 0.4903

Additional data from the
ambient highway street driving

long capture, without masquerade attacks
46.62% 0.5732 0.0841 0.1467

Table 6.4: The table shows the performance for ROAD fabrication attacks with a label ratio of 0.1
and a train ratio of 0.7. Recall and precision are low again. The experiment without additional
benign data produces slightly better results than before. Adding more benign data decreases the
performance again.

As can be seen in table 6.4, fabrication attacks are not detected well either. In fact, it
appears that attack samples from the ROAD dataset cannot be differentiated from benign
samples by the model.

More experiments were executed as a reaction, especially regarding the addition of
more benign data to have more samples for training. Also, other ambient captures were
added to the benign data split like dynamometer captures. Significant improvements
could not be achieved; thus, these experiments are not shown here. Section 6.2 contains
an analysis of why exactly the proposed method does not work for the ROAD dataset. As
the model apparently could not learn the classification, also the evaluation for unknown
attacks was omitted.

6.1.2 X-CANIDS

As already mentioned, Jeong et al. used their own datasets for the experiments. For
the fabrication attacks, they achieved an average F1 score of 0.931330 with an average
precision of 0.990913 and an average recall of 0.910068. For their masquerade attacks, they
achieved an average F1 score of 0.927607 with an average precision of 0.990395 and an
average recall of 0.912386. The suspension attacks were detected less well with an average
recall of 0.424050 and an average precision of 0.976485. The F1 score is 0.545980 in this
case. These are the results that can be referred to when evaluating the approach with the
new implementation and different models. All the parameters are derived in chapter 5

and can be studied there. The following sections contain the model training and intrusion
detection results.

61

6 Evaluation

6.1.2.1 SynCAN

For the fitting of the model, a batch size of 64 was used. The model was trained for 400

epochs with an early stopping patience of 50. 400 epochs were chosen because the model
seemed to converge fast compared to the literature model. Of course, the model can be
trained for 2000 epochs as in the literature. However, the benefit of that should be limited
considering that the model loss is already more than four times lower than the literature
model after 400 epochs.

Figure 6.1: The figure shows the loss curve of validation and training over the training epochs. The
validation and training loss are close to each other. The training stops with a minimum validation
loss of about 7.8 ∗ 10−5.

Figure 6.1 contains the development of the validation and training loss throughout the
training process. In the end, the model has a validation loss of about 7.8 ∗ 10−5. The
trained model was used to determine the θis on the validation set and training set as
described in chapter 5. In contrast to Jeong et al., the intrusion detection threshold Θ was
not determined directly and was instead used as an evaluation parameter.

Table A.2 contains all results that were obtained per masquerade attack depending
on the parameter q while table A.1 contains all results for the fabrication respectively
suspension attacks. Generally, all experiments show that a high intrusion threshold with
q = 0.999 produces a high precision of more than 0.99 and a low false positive rate. As
the threshold decreases, the recall increases. The best F1 scores are scored with q = 0.99,
or q = 0.999. The flooding and plateau attacks are detected best with a recall of 0.941927

respectively 0.892706 for q = 0.99 while the continuous attack is detected worst with a
recall of 0.715527 for the same q. Although suspension attacks were detected poorly in
the original publication [21], the suppress attack is detected relatively well with a recall of
0.745925 for q = 0.99. Furthermore, attack-free test data produces a false positive rate of
around 0.001127 with q = 0.999.

Without further analysis, the SynCAN attacks get detected well considering the com-
plexity of the attacks. Still, SynCAN cannot be seen as a fully realistic benchmark as
the number of signals and signal streams is a lot lower compared to real vehicle CAN

62

6 Evaluation

buses. Besides, the data was already normalized, and all benign data seems to be equally
distributed as the validation loss is close to the training loss (see figure 6.1).

6.1.2.2 ROAD

After having assessed the method in a synthetic setting, it was tested on more realistic
data.

Figure 6.2 shows the loss curve of the model training. In contrast to SynCAN, the
validation loss is now notably higher than the training loss. The model stopped training
after 332 epochs and achieved a minimum validation loss of about 5.243 ∗ 10−3. After
that, the standard method to calculate the intrusion thresholds was used based on the
training and validation data. For a percentile q = 0.98, an intrusion threshold of about
Θ = 50.996681 would apply, which is comparable to the intrusion threshold of Jeong et al.
[21].

Figure 6.2: The figure shows the loss curve of training and validation loss over the training epochs
for the signal-extracted ROAD dataset. The training stops after 332 epochs and a minimum
validation loss of about 5.243 ∗ 10−3.

Tables A.3 and A.4 summarize all intrusion detection performance metrics for the
attacks correlated signal attack, max engine coolant temperature attack, max speedometer
attack, reverse light on/ off attack, and suspension attacks. As pointed out in chapter 4,
the signal-extracted ROAD dataset only provides masquerade attacks as signal extractions.
The suspension attacks were created by taking the benign parts of max speedometer attack
1 and dropping the corresponding frames in the attack interval. Three suspension attacks
were implemented. One had a signal stream with a period of 10ms as a target, one had a
target with a period of 100ms, and the last one had a target with a period of 1s. As can
be identified in the tables, the results were different from attack to attack. For the max
speedometer attack and the max engine coolant temperature attack, the method worked
almost perfectly with a maximum F1 score of about 0.997522 (q = 1) respectively 0.987741

(q = 0.999) in the best case. The correlated signal attack datasets produce only positive
classifications. This is a sign of a bad reconstruction of the entire attack dataset. The

63

6 Evaluation

reverse light on/ off attacks deliver a mixed result. For q ≥ 0.99, no attacks are detected
while for q ≤ 0.98 the F1 score increases step by step. False negatives as well as false
positives are produced below this threshold. For the reverse light on attacks, the model
predicts only positive classifications below a threshold of q ≤ 0.85. For all the suspension
attacks, the results are relatively similar to the reverse light on/ off results. The crucial
threshold is again q ≥ 0.99. Above that threshold, only negative classifications exist.
Below that threshold, false positives and false negatives are produced. For q ≤ 0.9, only
positive classifications are produced. The benign test samples produce a false positive rate
of 0.078340 for q = 0.99, and 0.001711 for q = 0.999.

Figure 6.3: The figure shows the error rates of an attack sample. The bar exceeding the intrusion
detection threshold Θ is the error rate of the 5th signal of ID 208 which is the speedometer value.

Another aspect pointed out by Jeong et al. is that the intrusion detections are explainable
for an analyzing entity. Figure 6.3 shows the resulting error rates for an input sample from
the max speedometer attack after the use of the inference function f (S). The error rate
of the 5th signal of ID 208 exceeds the example threshold for q = 1. Thus, the attacked
signal could be identified after analyzing the error rates.

6.1.2.3 ROAD byte-based

An important aspect of this work is the comparison of byte-based intrusion detection and
signal-based intrusion detection. Jeong et al. claimed a worse performance for a model
that learns only the byte-based payload of the CAN data. However, they justified their
assumption with the comparison based on a stationary capture. It could therefore be a
difference to use a non-stationary dataset for that matter.

Figure 6.4 shows the loss curve. As can be identified, the model ran into the early
stopping later than for both the other, signal-based datasets. The model stopped after
705 epochs with a minimum validation loss of about 1.6004 ∗ 10−2. The final validation
loss is higher than for the signal-based datasets and the learning steps of the model were
slower than for the signal-based datasets. The thresholds were determined using the

64

6 Evaluation

Figure 6.4: The figure shows the loss curve of training and validation loss over the training epochs
for the byte-based ROAD dataset. The training stops after 705 epochs with a minimum validation
loss of about 1.6004 ∗ 10−2.

well-established method. A sensitivity parameter q = 0.98 would imply a threshold of
Θ = 51.441104.

For the evaluation, the focus was on the comparison of the intrusion detection perfor-
mance under the same conditions. The byte-based ROAD dataset contains fabrication
attacks next to the masquerade attacks. Each of the masquerade attacks from previous
sections (max speedometer, max engine coolant temperature, correlated signal, reverse
light on/ off) is also available as a fabrication attack in the byte-based dataset. Addition-
ally, Bridges et al. [55] provided fuzzing attacks. The evaluation here made use of the
masquerade attacks and the corresponding fabrication attacks. First, the performance
of masquerade attacks was compared to the signal-translated version of the intrusion
detection approach. Second, the fabrication attacks were evaluated to assess the poten-
tial of X-CANIDS on these types of attacks. Fuzzing attacks were not included in the
evaluation because the fuzzing from the ROAD dataset includes the fuzzing of IDs. This
makes feature extraction concerning the established method impossible as the model and
feature dimensions are fixed to the benign number of signal streams. Suspension attacks
were included as well. They were created the same way as the suspension attacks for
the signal-translated dataset. A first look at the results (tables A.5, A.6, A.7) shows that
the correlated signal attacks get detected better for the byte-based version of X-CANIDS
compared to the signal-based version. This applies to fabrication as well as masquerade
attacks. For a sensitivity parameter q = 1, an F1 score of 1.0 is reached. Next, the max
speedometer attacks and max engine coolant temperature attacks are also detected almost
perfectly for q ≥ 0.99. Judging by the lower false positive rates and higher precision, the
benign samples of the attack captures reconstruct better for the byte-based version than for
the signal-translated version. The performance for the reverse light off/ on masquerade
attacks of the byte-based version is better compared to the signal-translated version. This
can be identified by the lower false negative rate and a higher precision. For instance,
for q = 0.9, the signal-translated version delivers a false negative rate of 0.810569 and a

65

6 Evaluation

precision of 0.462680 regarding the reverse light off masquerade attack. The byte-based
version delivers a false negative rate of 0.033243 and a precision of 0.745672 in this case.
Regarding the reverse light on attack, the false positive rate is far lower in the case of
the byte-based version. It produces a false positive rate of 0.083941 for q = 0.9 while the
signal-translated version produces a false positive rate of 0.988336 in this case. Generally,
the byte-based model can divide the benign and attack samples better. Another inter-
esting part is the comparison of fabrication and masquerade attacks for the byte-based
model. For the correlated signal attack, max engine coolant temperature attack, and max
speedometer attack, the detection performance is the same or almost the same. However,
the reverse light off/ on attacks produce a lot more false negatives as fabrication attacks
while the false positives stay on a comparable level. The suspension attacks were detected
with a performance that was even worse than for the signal-translated version of the IDS.
For q = 0.9, the suspension attacks targeting a signal stream with a period of 0.1s respec-
tively 1s got detected with a recall of about 0.23 respectively 0.20. The other suspension
attack on the high-frequent signal stream was detected with a recall of about 0.003. The
attack-free samples produced a false positive rate of 0.279533 for q = 0.99, 0.102647 for
q = 0.999, and 0.025050 for q = 1. Interestingly, the false positive rate is higher in the case
of the benign test data than in the case of the attack captures. Indeed, the minimum loss
at the end of the training is higher in the case of the byte-based version of X-CANIDS
than in the case of the signal-translated version of X-CANIDS.

6.1.2.4 Performance on an Embedded Device

An important aspect of the IDS is whether it can be deployed on each entity in the complete
system or if data needs to be collected and sent to a central unit for intrusion detection.
This refers to the earlier introduction of distributed IDSs. A trend in the publications
about intrusion detection on in-vehicle networks is the inclusion of a test of the inference
time of the model that was used on an embedded device. By that, a real-time ability or
at least close to real-time ability is supposed to be proven. A timing requirement for this
work needs to be defined more concretely. In case of an attack on a vehicle that would
have safety consequences, real-time detection does not help the passengers of the vehicle.
Instead, the goal should be to be able to detect an intrusion within a short time after it
occurred. This would still fulfill the criteria of online detection as defined in chapter 2.

To show feasibility in that regard, an NVIDIA Jetson AGX Xavier was leveraged. Tech-
nical specifications are defined in chapter 5. The inference times were measured by
predicting a set of samples and taking the median computation time of all batches. Table
6.5 summarizes the inference time for different batch sizes per batch and per sample. The
time per sample decreases with increasing batch size. The results are comparable to the
ones of Jeong et al. [21]. However, their inference times were slightly lower than in this
case. For a batch size of 512, an inference time of about 1.4ms can be achieved. Higher
batch sizes would make even lower times per sample possible. However, this would make
the system wait too long to fill up a batch. For a batch of 512, the system would need to
wait at least 5120ms with parameter t = 10ms. This is why a small batch size would be
taken in practice as Jeong et al. already explained [21].

66

6 Evaluation

Batch size Time (ms/batch) Time (ms/sample)
4 36 9
8 44 5.5
16 62 3.875
32 69 2.15625
64 118 1.84375

128 214 1.671875
256 400 1.5625
512 708 1.382813

Table 6.5: The table shows the rounded inference times of the signal-translated version of X-CANIDS
(see table 5.8 for details) per batch and sample (rounded to millionths for the time per sample)
depending on the chosen batch size. For an increasing batch size, the inference time per sample
decreases. A batch size of 16 is advantageous to fill batches fast and have a good enough inference
time per sample [21].

6.1.3 X-MVBIDS

Finally, X-MVBIDS was evaluated. The model training was executed with the same
hyperparameters as before regarding the epochs (2000 with an early stopping patience of
50) and the learning rate (10−4). The batch size was reduced to 64 respecting the small
number of available samples. In total, 37,060 samples were available. 29,916 samples were
used for training respecting the data split relations. Figure 6.5 visualizes the loss curve.
The training stops after 60 epochs with a minimum validation loss of 2.4341 ∗ 10−2.

Figure 6.5: The figure shows training and validation loss over the training epochs for the MVB
dataset. The training runs into early stopping quickly after 60 epochs with a minimum validation
loss of 2.4341 ∗ 10−2.

After the training, the threshold determination was executed, and the intrusion detection
performance was evaluated using the sensitivity parameter q as a hyperparameter.

Table A.8 is about the intrusion detection performance for masquerade attacks. As can
be identified, the overall performance is outstanding above q = 0.99 with an F1 score

67

6 Evaluation

of one or almost one for all three attacks. The precision is one in all three cases. Below
q = 0.99, the performance shrinks step by step.

Surprisingly, fabrication attacks are not detected for q ≥ 0.85. None of the attack input
matrices get classified as positive above the sensitivity q = 0.99. Below q = 0.99, some
false positives are produced. For suspension attacks, the same results as for the fabrication
attacks are achieved. This is an indication that the model cannot separate benign samples
from attack samples. The performance results are noted in tables A.9 and A.10.

In summary, the results are split up into the masquerade attacks, which are detected
reliably, and into the suspension and fabrication attacks which are not detected at all using
a realistic intrusion threshold. Section 6.2 gives the reasoning behind this behavior and
explains why the method could still be beneficial. Additionally, it can be said that above
a certain threshold (q = 0.99) no false positives are generated by the intrusion detection
method. This is also confirmed by the attack-free test dataset and the 5% benign data
that were part of the data split. No false positives for q ≥ 0.99 respectively q ≥ 0.96 were
produced.

6.2 Result Analysis

This section analyzes the results that were achieved by the semi-supervised CAAE ap-
proach, and the unsupervised approaches X-CANIDS and X-MVBIDS.

6.2.1 Detecting In-Vehicle Intrusion via Semi-supervised Learning-Based
CAAEs

The results presented in section 6.1 clearly indicate that the approach does not work for
the ROAD dataset. This section shall give reasons. As already introduced before, the
HCRL dataset, which is used by most publications so far, has some downsides. It has
only fabrication attacks of simple complexity. Although the DoS, Fuzzing, Gear, and RPM
attacks are different in their impact, they all follow the same pattern of injecting messages
with a high frequency. This high frequency might serve the goal of causing physical
behavior but is not stealthy and easy to detect. Technically, no machine learning would be
needed to detect such intrusions. A simple component connected to the bus that checks
the timing of the messages on the bus against the expected timing (tolerating some delta
probably) could detect these attacks. Bridges et al. already mentioned this problem when
they introduced the ROAD dataset [55].

Figures 6.6a and 6.6b show a pixel mapping from an attack input frame vs. a normal
frame. Although they might look similar in the beginning, a closer look shows significant
differences. The attack frame has several identical rows, sometimes even directly after
one another whereas the normal frame does not. This visualizes the timing difference
mentioned before.

The next two figures 6.7a and 6.7b show an attack frame on the right from the correlated
signal attack out of the ROAD dataset next to a normal frame out of the ROAD dataset
on the left. Next to the observation that these look more alike, it can be said that there is
no case where the same CAN ID appears twice in a row for the attack frame.

68

6 Evaluation

(a) The figure shows a benign
frame with the dimensions
29 × 29 from the HCRL RPM
dataset after the preprocessing.

(b) The figure shows an attack
frame with the dimensions
29 × 29 from the HCRL RPM
dataset after the preprocessing.

Figure 6.6: The two figures show a comparison of HCRL benign and attack input frames after the
preprocessing as a pixel mapping. Zero bits correspond to a white pixel while one bits correspond
to a black pixel. The attack frame differs significantly from the benign frame. For instance, the
malicious CAN message gets injected multiple times in a row.

(a) The figure shows a benign
frame with the dimensions
29 × 29 from the ROAD corre-
lated signal attack dataset after
the preprocessing.

(b) The figure shows an attack
frame with the dimensions
29 × 29 from the ROAD corre-
lated signal attack dataset after
the preprocessing.

Figure 6.7: The two figures show a comparison of ROAD benign and attack frames after the prepro-
cessing as a pixel mapping. Zero bits correspond to a white pixel while one bits correspond to
a black pixel. The attack frame does not contain any ID twice in a row. It can also be identified
that the occurring IDs are mostly different in both cases.

An additional problem of the proposed feature extraction is that it does not consider
that different datasets have also a different number of signal streams. With the 106

signal streams of ROAD, the 29 × 29 dimension is not enough to capture a representative
sequence of CAN frames. The model can simply not learn the necessary patterns with the
current feature extraction.

With all these constraints considered, it becomes clear that this semi-supervised ap-
proach is not suitable for intrusion detection. To make a more performant detection possi-
ble, significant changes to the feature extraction like including the actual CAN payload

69

6 Evaluation

and increasing the input dimensions would be necessary. Consequently, the dimensions
of the whole network would grow. This is why the decision was made to not follow this
approach anymore.

Furthermore, it was shown that the HCRL dataset is not a sufficient benchmark. Bridges
et al. already suspected that in their publication [55] and it is now shown with a concrete
example. The experiments and evaluation showed as well that an inappropriate bench-
mark method can lead to wrong conclusions regarding the performance of an intrusion
detection method. In fact, Berger et al. already worked out in 2018 that the HCRL dataset
has a simple structure and could achieve an accuracy of 99% for intrusion detection on
this dataset with a neural network of just five neurons in the hidden layer [6]. Of course,
this was supervised learning in this case. Still, it shows the problem this dataset has of
being not complex enough to be a reliable benchmark.

6.2.2 X-CANIDS

Since X-CANIDS produced more promising results, more aspects of the performance and
practicality of the approach need to be analyzed.

6.2.2.1 Differences between ROAD and SynCAN

The evaluation results of X-CANIDS on the datasets SynCAN and ROAD differ from each
other. While the model learns well with the SynCAN data and produces generally good
results for precision and recall, the results are mixed for ROAD data.

Starting with SynCAN, every attack that was under test could achieve a precision of
at least 0.99 assuming q = 0.999. The recall differs between the attacks and is generally
higher for less complex attacks and lower for more complex attacks. It is a positive sign
that all attacks that were featured by the SynCAN dataset deliver an F1 score of at least
0.73 assuming a q = 0.99. This speaks for the potential of the model as it even exceeds
the performance of the CANet model regarding certain metrics, for which the SynCAN
dataset was originally developed [17]. For instance, CANet delivers a recall of 0.613 for
the suppress attack while X-CANIDS delivers a recall of about 0.666 respectively 0.746

for q = 0.999 respectively q = 0.99. In summary, the method is very feasible for the
SynCAN data considering the low false positive rate it achieves. Furthermore, some of
the presented attacks of SynCAN are very sophisticated and to the best knowledge have
not been conducted in real life so far. On the other hand, the synthetic nature of SynCAN
caused an almost perfect learning process where the training data and test data are equally
distributed. In real life, this could differ.

A good example of this are the results that were achieved for the ROAD data. The
production of only positive classifications for the correlated signal attack indicates a
different driving behavior during the attack capture compared to the benign driving. This
is something that can happen at any time during daily driving and is one reason why
unsupervised methods are prone to generate false positives in case of intrusion detection.
A takeaway message from the comparison of both datasets and the intrusion detection
on them is that good training data is necessary to achieve a low false positive rate. Good
means that the training data covers as much as possible driving situations and that the

70

6 Evaluation

volume of data is enough. This allows to have a lower intrusion threshold Θ and thus
detecting more attacks without producing too many false positives becomes possible.

Considering that ROAD is the only dataset available so far that provides real captures
of an attacked car that is driving at the same time, the outstanding benchmark of Jeong
et al. [21] cannot be seen as completely realistic. As mentioned before, it is assumed that
they created the intrusions by manually changing the captured datasets.

6.2.2.2 Masquerade Attacks

Masquerade attacks are mostly detected with a high recall. This applies for the SynCAN
attacks plateau and playback as well as for the max speedometer attack and the max engine
coolant temperature attack of ROAD. The correlated signal attack of ROAD gets detected
with high recall for the byte-based implementation. For the signal-translated version of
ROAD, all samples get classified as attacks. On the other side, some masquerade attacks
are detected less well, with a lower recall. These are the reverse light on/ off attacks from
ROAD and the continuous attack from SynCAN.

This exposes a weakness of X-CANIDS. Attacks that set their target signal/ byte field
to maximum or at least to a significantly different value (max speedometer attack, max
engine coolant temp attack, and plateau attack) get detected well because they result in a
relatively high reconstruction error. Stealthier attacks like the continuous attack overwrite
the target little by little. Thus, they cause less reconstruction error in total. The reverse
light on/ off attacks switch a byte field of 0C to 04 respectively the other way around.
This could result in a smaller reconstruction error than setting the byte field to FF like
the max speedometer attack depending on the scaled values. To detect these attacks, a
lower intrusion threshold would be necessary. This would most likely result in a high
false positive rate.

6.2.2.3 Fabrication Attacks

A true comparison of fabrication attacks and masquerade attacks was possible by imple-
menting the byte-based version of X-CANIDS. Furthermore, the SynCAN dataset provided
the flooding attack. The latter one could be detected with an F1 score of 0.920854 for
q = 0.99. This performance is expectable considering that flooding the bus with messages
of a certain ID is particularly unstealthy. The ROAD fabrication attacks were detected less
well than the corresponding masquerade attacks in the case of the reverse light on/ off
attacks. An indication of that is the increased false negative rate regarding the fabrication
attacks. The question is why exactly this happens. Intuitively, fabrication attacks should
be detected even better because they influence the timing of the CAN frames. Looking at
the feature extraction of X-CANIDS, it can be noticed that the parameter t is always set to
the lowest occurring base period of signal streams. In the case of ROAD, this is t = 10ms.
The fabrication attacks of ROAD overwrite the corresponding signal stream just after it
has been sent on the bus. A look into the captures confirms that this can happen already
after 2ms. This means that the payload sampler of x-canids would ignore this payload
and directly take the next, benign signal payload and pass it to the deserializer. This could
happen for attacks on the most high-frequent signal streams. Since the CAN frames do
not arrive perfectly on time every period, it can also happen that the malicious frames

71

6 Evaluation

get processed by the payload sampler. Consequently, some attack frames are ignored
by the IDS and are not included in the sample matrix S. The malicious samples still
create enough loss regarding the max speedometer attack, correlated signal attack, and
max engine coolant temperature attack. However, the loss for the reverse light on/ off
attacks is already low for masquerade attacks and would now become even lower for the
fabrication attacks.

6.2.2.4 Suspension Attacks

Suspension attacks do not get detected well in general. For SynCAN, the suppress attack is
detected best out of all suspension attacks with an F1 score of 0.831385 and q = 0.99. The
suspension attacks of ROAD get detected worse. In both versions, signal-translated and
byte-based, the produced loss is not high enough to separate attack and benign samples.
There is a particular reason for these performance issues. The problem is that during
the feature extraction, the payload sampler always caches the latest signal payload for all
signal streams. This means that a sample matrix S always contains the same amount of
signal streams, no matter if a suspension attack is launched or not. Following that thought,
the autoencoder would reconstruct with high losses only when the attacked signal stream
would change its values often under attack-free circumstances. Thus, it highly depends
on the concrete attacked signal stream if the intrusion can be detected or not. This is also
confirmed by the results of Jeong et al. who could detect just a few suspension attacks
well [21]. In the case of this evaluation, the attacked signal stream with a period of 10ms
was the one of ID 208. It contains the speedometer value and reverse light on/ off values
next to one other signal. The other ones were excluded as constant signals according to
the method. In the case of the speedometer, the speed stays at a constant value, and the
reverse lights stay on a constant value (probably off) too. This could be normal driving
behavior. In summary, the method is not well suited to detect suspension attacks.

6.2.3 X-MVBIDS

The adaption of X-CANIDS to MVB could be successfully conducted. However, it remains
a problem that there are no publicly available datasets (challenge C5). The proprietary
dataset of this thesis made it possible to get a general idea of the intrusion detection
performance. However, the length of the captures and the fact that the captures were
obtained from a stationary train made it hard to get a realistic benchmark. Especially,
the number of constant byte fields might change for a non-stationary capture. Still, it
was shown that the method is indeed applicable to MVB respecting the protocol-specific
aspects. The next two subsections contain some discussions about intrusion detection
results on masquerade attacks on the one hand and fabrication respectively suspension
attacks on the other hand.

6.2.3.1 Masquerade Attacks

Masquerade attacks are detected well for all three implemented attacks. It should be
noted that the implemented attacks followed the pattern of some masquerade attacks of
the ROAD dataset. This means the attacked byte fields were set to maximum respectively

72

6 Evaluation

minimum. More stealthy or continuous attacks could be potentially detected with a lower
recall. In practice, this problem can be mitigated by having more training data to make
the model fit better and by that reducing the threshold for intrusion detection.

6.2.3.2 Suspension and Fabrication Attacks

Suspension and fabrication attacks do not get detected at all for a realistic threshold
q ≥ 0.85. There are two different explanations for that. Suspension attacks suffer from
the general weakness of the method as discussed before. In this case, the detection is
even worse because the model could not fit the MVB data well enough, a result of the
data sparseness. This effect can probably be mitigated with more data. Regarding the
fabrication attacks, there is a different reason for the poor performance. The fabrication
attacks that were implemented for MVB use the short time window, in which slave
responses are allowed after the master request was sent. As already mentioned in chapter
2, this time window is 42.7us. When two slave frames are received during this time, only
the first one will get accepted. Assuming an attacker would be able to conduct such an
attack, this would have severe consequences for the feature extraction. For each extracted
vector s, the attacked slave frame would be overwritten by the benign one because the
parameter t = 16ms is too big, and thus, only the latest slave frame would be processed
further in a time window of 16ms. The effect is similar to the fabrication attacks in
the ROAD dataset. This effect can be mitigated by extremely decreasing the parameter
t. On the contrary, this could exhaust the computational resources and the feasibility
of the approach might not be given anymore. Although this makes the approach look
nonperforming, it is very unlikely that an attacker can mount this type of attack. As
MVB has strict slots for each slave response, other types of fabrication attacks cannot be
launched on slaves without causing bus errors. Masquerade attacks seem to be more
feasible for an attacker in this case. Other attacks could try to reconfigure the whole
bus and mount fabrication attacks. Based on the available datasets, this could not be
evaluated.

73

7 Discussion

This chapter discusses the results of the evaluation of the semi-supervised method and
the unsupervised method regarding the feasibility in practice in the case of joint IDS. It is
discussed whether it is possible to overcome the introduced challenges from chapter 5. The
second section of this chapter contains a proposal for an intrusion detection architecture
as part of a joint security monitoring system.

7.1 Feasibility in Practice

The semi-supervised approach by Hoang and Kim cannot be seen as applicable to any
real-life application. It performs well on the HCRL dataset but is not able to detect
any complicated attack that cannot be detected by a timing-based IDS. It can be finally
concluded that feasibility in practice is not given. This also makes the approach unsuitable
regarding the research question of how a joint IDS can be realized.

X-CANIDS can be beneficial in practice despite its weaknesses that were explained
above. Especially for a distributed system with multiple vehicles, the method is applicable.
More details can be found in the according section below. The measurement of inference
times shows that the application of the method on ROAD led to a bigger model but
still produced good enough inference times to be deployed on an edge device. Thus,
it is possible to overcome challenge C3. The model size could be further reduced by
trying to use alternative RNN cells like GRUs. Challenge C1 considers the problem of
having enough labeled data. This problem is solved by using the unsupervised method X-
CANIDS. It is still necessary to have huge amounts of data from diverse driving situations
for good model training.

The proposed method should not be used as a standalone in practice. The detection
performance of masquerade attacks and unstealthy fabrication attacks is convincing. On
the other side, stealthy fabrication attacks and suspension attacks are very hard to detect
using this method. It is therefore proposed to combine X-CANIDS with other intrusion
detection methods in practice. A good choice would be a timing-based detector like the
one proposed by Cho et al. [8]. Timing-based detectors are well suited to detect suspension
and fabrication attacks because they can detect deviations from the base period of signal
streams. This would be a suitable addition to X-CANIDS, which is more performant on
masquerade attacks. Regarding the sensitivity parameter q, it is recommended to set it to
a high value q = 1 − ϵ. By that, a low false positive rate of normally below 0.01 is assured.
The recall would become lower by that as well. However, it is not crucial to detect every
single attack sample of an intrusion. Depending on the concrete attack, multiple attack
frames are usually injected to have a permanent effect on the vehicle.

Regarding the exclusion of constant signals and signals that are checksums or depend in
another way on other signals, it should be noted that X-CANIDS is only suited to monitor

74

7 Discussion

the most important signal streams. Full inclusion of all signals would result in a big model
and would cause unnecessary monitoring of constant signals. This is one more reason
to combine X-CANIDS with other methods. In the context of FINESSE [45], AI-based
intrusion detection is supposed to be combined with rule-based intrusion detection. This
poses another useful addition to X-CANIDS. Rules could be used to check if constant
signals change or if checksums, parity bits, etc. are correct.

Challenge C4 was addressed by testing the byte-based version of X-CANIDS. It was
shown that signal translations are not necessarily needed for good intrusion detection
performance. In the case of ROAD, the byte-based model performed even better than the
signal-translated one, e.g., for the correlated signal attack. This contradicts the statements
of Jeon et al. [21]. Regarding the research question of how to realize a joint IDS, it shows
that a third-party provider could also establish such an IDS without having the proprietary
DBC files available.

X-MVBIDS serves challenge C2 as it is an adaption of X-CANIDS to MVB. It is a
suitable approach for the detection of masquerade attacks and it was shown that it has
comparable model parameters to X-CANIDS. Fabrication attacks as they were introduced
and suspension attacks cannot be detected with this approach. This is why a timing-based
detector should be added also in this case. Considering the joint monitoring of railway
and automotive vehicles, it was shown that the attack classes by Cho et al. [8] can be
applied to MVB. However, it can be assumed that more types of attacks are possible.
This remains for further research. In a distributed setting, there is a crucial difference
between railway and automotive vehicles. Automotive vehicles usually have just a few
CAN buses on board. A complete train with multiple coaches could have many more
buses. Additionally, the train configurations can change depending on the type. This
poses a challenge for a joint monitoring system of multiple vehicles.

7.2 Joint Architecture

Now that the performance of all the intrusion detection approaches is evaluated, chapter
2.4 is picked up again to fill the use cases that are introduced there. As the semi-supervised
approach [18] was classified as not suitable for the objectives of this thesis, only X-CANIDS
and X-MVBIDS are considered.

Use case 1 considered the training of the model. The idea for the proposed IDS is to
train the autoencoders of X-CANIDS and X-MVBIDS on a central entity, e.g., the VSOC.
For each bus configuration, an own model needs to be trained respecting the parameters
of the method. These parameters need to be determined after an analysis of the training
data. After the model training, the threshold determination needs to be conducted. Only
benign data is necessary for the training.

Use cases 2 and 3 considered the deployment and intrusion detection. The model
weights can be deployed on dedicated embedded devices on the vehicles respectively other
types of devices with more computation power if possible. Sticking to the terminology of
FINESSE, these are declared as Smart Sensors. They are bus participants and collect the
communication data from the bus. They apply feature extraction and intrusion detection
according to the method. Next to the model weights, the important sensitivity parameter
q is deployed as well as the tolerance values θi. q should be picked as high as possible

75

7 Discussion

to avoid false positives. Detected intrusions lead to the generation of alerts. These are
accompanied by the corresponding logs and the error rates of the sample that caused an
alert. The error rates can be used for explanation in the VSOC as explained in chapter 6.

Finally, use case 4 considered the ability to update the IDS. After the analysis in the
VSOC, it might be concluded that the false positive rate is still too high. In this case, q
can be adjusted and deployed back on the vehicles. Another example of an update is
the availability of more training data. The model could be trained for more epochs or
completely trained from scratch. In this case, the model updates can be deployed back to
the vehicles.

The described mechanisms are visualized in figure 7.1. It shows an example car fleet
of two cars next to an example train fleet of two trains. The introduced architecture can
be classified as centralized architecture according to the introduced definitions. The alerts
and logs are collected at a central unit. However, the intrusion detection itself, and thus,
the pre-filtering of communication data, is conducted on the vehicles.

The benefit of the joint architecture is that security analysts can leverage the joint
security considerations of railway and automotive vehicles for a more valuable analysis.
This is supported by the similarity of the approaches of X-CANIDS and X-MVBIDS.
By that, analysis of attacks creates knowledge for both sectors. This knowledge can be
enriched with other external sources. In total, this approach is supreme to the independent
monitoring of each single vehicle.

76

7 Discussion

Figure 7.1: This image shows a conceptual architecture of a joint IDS for rail and automotive. The
components Enrichment, VSOC, and Smart Sensor were taken from the context of FINESSE [45].
Each vehicle has one or more Smart Sensors, which the model weights get deployed on. The
intrusion scores (IS) are calculated for each incoming sample. The IS corresponds to the maximum
error rate max(r) and causes an alert if it exceeds Θ. Weights and parameters can be updated as
a reaction to further analysis in the VSOC. The Enrichment collects the data and prepares it for
analysis in the VSOC. Source: Own figure based on [45]

77

8 Conclusion

This thesis dealt with the proposal of a joint IDS based on machine learning for a combined
car and train monitoring system. After the necessary foundations including the description
of the two field buses MVB and CAN, some general use cases for such a joint IDS were
introduced. These were kept as generic as possible to allow a wide range of solutions
for the given problem. Related work was presented. After this, CAN and MVB were
compared to develop a joint security understanding of these. An attacker model was
introduced to derive concrete attacks on both in-vehicle networks. With the help of public,
widely accepted CAN datasets, and a proprietary MVB dataset, a semi-supervised and
an unsupervised machine learning approach were introduced and evaluated. The semi-
supervised approach turned out to be unsuitable for the solution of the given problem. In
consequence, the focus was put on the unsupervised approach X-CANIDS. It was possible
to implement two adaptions of it. One was implemented for the detection of byte-based
CAN frames, and the other one for the detection of MVB data.

It was shown that the approach is suitable for certain types of attacks, like masquerade
attacks and unstealthy types of fabrication attacks. Other attack types, like stealthy
fabrication attacks and suspension attacks, could not be detected well.

Finally, concrete details about the use cases of such a joint IDS were formulated. It was
also discussed that X-CANIDS and X-MVBIDS could be combined with other intrusion
detection approaches to mitigate the weaknesses and have multiple sources for intrusion
detection. Rules and timing-based approaches could be a valuable addition.

The research questions could be answered with a proposal of a concrete approach. The
challenges C1 to C5 could be considered and solutions could be found. C1 addressed the
problem of the availability of labeled data and attack data. X-CANIDS and X-MVBIDS
are unsupervised methods and avoid this problem for the training process. Challenge C2

regarded the differences between CAN and MVB and the differences between datasets.
This challenge was solved by adapting X-CANIDS to MVB and training individual models
per bus configurations. Quality differences between datasets were named and considered
for the evaluations. C3 was about the role of edge devices. An approach could be
suggested that allows training at a central entity and detecting (inference) on edge devices
such as the NVIDIA Jetson AGX Xavier. The model sizes can potentially be further
reduced in the future. C4 regarded the problem of proprietary signal extractions. It was
shown that signal translations are not necessarily needed for high precision and recall.
C5 posed the biggest challenge of not having publicly available MVB datasets. This was
compensated partially by obtaining proprietary datasets. However, the amount of data
and the characteristics of it were barely suitable for a realistic benchmark. Thus, the MVB
performance assessment of this work can only be understood as a first step.

In conclusion, X-CANIDS and X-MVBIDS have the advantage of unsupervised learning.
Only benign data is needed for training. Furthermore, their sensitivity is configurable,
and they deliver a mechanism to identify attacked signals respectively byte fields.

78

8 Conclusion

8.1 Future Work

Future work could try to realize a proof-of-concept implementation with the live detection
of injected frames and could also evaluate the performance outside of a laboratory. The
implementation of the live extraction of features differs significantly from the theoretical
work with datasets. Moreover, the architecture of a joint IDS towards a real security
monitoring system with data exchange, updates, analysis mechanisms, and incident
response is an important topic. By that, the results of this work and the current project
work of FINESSE could be connected.

It is also crucial to conduct more research on the security and exploitation of rail-
way in-vehicle networks. It is necessary to provide publicly available datasets for the
benchmarking and comparison of intrusion detection approaches.

79

Bibliography

[1] Shaashwat Agrawal, Sagnik Sarkar, Ons Aouedi, Gokul Yenduri, Kandaraj Piamrat,
Mamoun Alazab, Sweta Bhattacharya, Praveen Kumar Reddy Maddikunta, and
Thippa Reddy Gadekallu. “Federated Learning for intrusion detection system: Con-
cepts, challenges and future directions”. In: Computer Communications 195 (2022),
pages 346–361. issn: 0140-3664. doi: https://doi.org/10.1016/j.comcom.
2022.09.012. url: https://www.sciencedirect.com/science/article/pii/
S0140366422003516.

[2] CAN in Automation. History of CAN technology. url: https://www.can-cia.org/
can-knowledge/can/can-history/.

[3] Rebecca Bace and Peter Mell. “NIST special publication on intrusion detection
systems”. In: National Institute of Standards and Technology 16 (2001).

[4] Dor Bank, Noam Koenigstein, and Raja Giryes. “Autoencoders”. In: Machine Learn-
ing for Data Science Handbook: Data Mining and Knowledge Discovery Handbook. Edited
by Lior Rokach, Oded Maimon, and Erez Shmueli. Cham: Springer International
Publishing, 2023, pages 353–374. isbn: 978-3-031-24628-9. doi: 10.1007/978-3-
031-24628-9_16. url: https://doi.org/10.1007/978-3-031-24628-9_16.

[5] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies with
gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2 (1994),
pages 157–166. doi: 10.1109/72.279181.

[6] Ivo Berger, Roland Rieke, Maxim Kolomeets, Andrey Chechulin, and Igor Kotenko.
“Comparative study of machine learning methods for in-vehicle intrusion detection”.
In: International Workshop on Security and Privacy Requirements Engineering. Springer.
2018, pages 85–101.

[7] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. “Comprehensive experimental analyses of automotive attack
surfaces”. In: 20th USENIX security symposium (USENIX Security 11). 2011.

[8] Kyong-Tak Cho and Kang G. Shin. “Fingerprinting Electronic Control Units for
Vehicle Intrusion Detection”. In: 25th USENIX Security Symposium (USENIX Security
16). Austin, TX: USENIX Association, Aug. 2016, pages 911–927. isbn: 978-1-931971-
32-4. url: https://www.usenix.org/conference/usenixsecurity16/technica
l-sessions/presentation/cho.

[9] Cameron Clough and Greg Hogan. opendbc. 2023. url: https://github.com/
commaai/opendbc.

80

https://doi.org/https://doi.org/10.1016/j.comcom.2022.09.012
https://doi.org/https://doi.org/10.1016/j.comcom.2022.09.012
https://www.sciencedirect.com/science/article/pii/S0140366422003516
https://www.sciencedirect.com/science/article/pii/S0140366422003516
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.can-cia.org/can-knowledge/can/can-history/
https://doi.org/10.1007/978-3-031-24628-9_16
https://doi.org/10.1007/978-3-031-24628-9_16
https://doi.org/10.1007/978-3-031-24628-9_16
https://doi.org/10.1109/72.279181
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://github.com/commaai/opendbc
https://github.com/commaai/opendbc

Bibliography

[10] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sen-
gupta, and Anil A. Bharath. “Generative Adversarial Networks: An Overview”. In:
IEEE Signal Processing Magazine 35.1 (2018), pages 53–65. doi: 10.1109/MSP.2017.
2765202.

[11] Guillaume Dupont, Alexios Lekidis, J. (Jerry) den Hartog, and S. (Sandro) Etalle.
Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2. 2019. doi: 10.
4121/uuid:b74b4928-c377-4585-9432-2004dfa20a5d. url: https://data.
4tu.nl/articles/dataset/Automotive_Controller_Area_Network_CAN_Bus_
Intrusion_Dataset/12696950/2.

[12] Electronic railway equipment - Train communication network (TCN) - Part 3-1: Multifunc-
tion Vehicle Bus (MVB). Standard. IEC 61375-3-1:2012. Rue de Verembé 3, CH-1211

Geneva, CH: International Electrotechnical Commission, June 2012.

[13] Ian Foster, Andrew Prudhomme, Karl Koscher, and Stefan Savage. “Fast and Vulner-
able: A Story of Telematic Failures”. In: 9th USENIX Workshop on Offensive Technolo-
gies (WOOT 15). Washington, D.C.: USENIX Association, Aug. 2015. url: https:
//www.usenix.org/conference/woot15/workshop-program/presentation/
foster.

[14] Mario Freund. can-ids. 2023. url: https://github.com/freundma/can- ids
(visited on Oct. 16, 2023).

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”.
In: Advances in Neural Information Processing Systems. Edited by Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger. Volume 27. Curran
Associates, Inc., 2014. url: https://proceedings.neurips.cc/paper_files/
paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[16] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer. SynCAN. 2020. url: https:
//github.com/etas/SynCAN (visited on Sept. 25, 2023).

[17] Markus Hanselmann, Thilo Strauss, Katharina Dormann, and Holger Ulmer.
“CANet: An Unsupervised Intrusion Detection System for High Dimensional CAN
Bus Data”. In: IEEE Access 8 (2020), pages 58194–58205. doi: 10.1109/ACCESS.
2020.2982544.

[18] Thien-Nu Hoang and Daehee Kim. “Detecting in-vehicle intrusion via semi-
supervised learning-based convolutional adversarial autoencoders”. In: Vehicular
Communications 38 (2022), page 100520. issn: 2214-2096. doi: https://doi.org/
10.1016/j.vehcom.2022.100520. url: https://www.sciencedirect.com/
science/article/pii/S2214209622000675.

[19] Thien-Nu Hoang and Daehee Kim. Semi-supervised Deep Learning Based In-vehicle
Intrusion Detection System Using Convolutional Adversarial Autoencoder. 2022. url:
https://github.com/htn274/CanBus-IDS (visited on Sept. 11, 2023).

81

https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.4121/uuid:b74b4928-c377-4585-9432-2004dfa20a5d
https://doi.org/10.4121/uuid:b74b4928-c377-4585-9432-2004dfa20a5d
https://data.4tu.nl/articles/dataset/Automotive_Controller_Area_Network_CAN_Bus_Intrusion_Dataset/12696950/2
https://data.4tu.nl/articles/dataset/Automotive_Controller_Area_Network_CAN_Bus_Intrusion_Dataset/12696950/2
https://data.4tu.nl/articles/dataset/Automotive_Controller_Area_Network_CAN_Bus_Intrusion_Dataset/12696950/2
https://www.usenix.org/conference/woot15/workshop-program/presentation/foster
https://www.usenix.org/conference/woot15/workshop-program/presentation/foster
https://www.usenix.org/conference/woot15/workshop-program/presentation/foster
https://github.com/freundma/can-ids
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://github.com/etas/SynCAN
https://github.com/etas/SynCAN
https://doi.org/10.1109/ACCESS.2020.2982544
https://doi.org/10.1109/ACCESS.2020.2982544
https://doi.org/https://doi.org/10.1016/j.vehcom.2022.100520
https://doi.org/https://doi.org/10.1016/j.vehcom.2022.100520
https://www.sciencedirect.com/science/article/pii/S2214209622000675
https://www.sciencedirect.com/science/article/pii/S2214209622000675
https://github.com/htn274/CanBus-IDS

Bibliography

[20] Seonghoon Jeong, Boosun Jeon, Boheung Chung, and Huy Kang Kim. “Convolu-
tional neural network-based intrusion detection system for AVTP streams in automo-
tive Ethernet-based networks”. In: Vehicular Communications 29 (2021), page 100338.
issn: 2214-2096. doi: https://doi.org/10.1016/j.vehcom.2021.100338. url:
https://www.sciencedirect.com/science/article/pii/S2214209621000073.

[21] Seonghoon Jeong, Sangho Lee, Hwejae Lee, and Huy Kang Kim. X-CANIDS: Signal-
Aware Explainable Intrusion Detection System for Controller Area Network-Based In-
Vehicle Network. 2023. arXiv: 2303.12278 [cs.CR].

[22] Hubert Kirrmann and P.A. Zuber. “The IEC/EEE train communication network”.
In: Micro, IEEE 21 (Apr. 2001), pages 81 –92. doi: 10.1109/40.918005.

[23] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, and Stefan Savage. “Experimental Security Analysis of a Modern Au-
tomobile”. In: 2010 IEEE Symposium on Security and Privacy. 2010, pages 447–462.
doi: 10.1109/SP.2010.34.

[24] Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha. “INDRA:
Intrusion Detection Using Recurrent Autoencoders in Automotive Embedded Sys-
tems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 39.11 (2020), pages 3698–3710. doi: 10.1109/TCAD.2020.3012749.

[25] Aleksandar Lazarevic, Vipin Kumar, and Jaideep Srivastava. “Intrusion Detection:
A Survey”. In: Managing Cyber Threats: Issues, Approaches, and Challenges. Edited by
Vipin Kumar, Jaideep Srivastava, and Aleksandar Lazarevic. Boston, MA: Springer
US, 2005, pages 19–78. isbn: 978-0-387-24230-9. doi: 10.1007/0-387-24230-9_2.
url: https://doi.org/10.1007/0-387-24230-9_2.

[26] Wenjuan Li, Weizhi Meng, and Man Ho Au. “Enhancing collaborative intrusion
detection via disagreement-based semi-supervised learning in IoT environments”.
In: Journal of Network and Computer Applications 161 (2020), page 102631. issn: 1084-
8045. doi: https://doi.org/10.1016/j.jnca.2020.102631. url: https:
//www.sciencedirect.com/science/article/pii/S1084804520301053.

[27] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. “A survey of
convolutional neural networks: analysis, applications, and prospects”. In: IEEE
transactions on neural networks and learning systems (2021).

[28] Long short-term memory. 2023. url: https://en.wikipedia.org/wiki/Long_
short-term_memory (visited on Sept. 11, 2023).

[29] Haoyu Ma, Jianqiu Cao, Bo Mi, Darong Huang, Yang Liu, and Shaoqian Li. “A GRU-
based lightweight system for CAN intrusion detection in real time”. In: Security and
Communication Networks 2022 (2022).

[30] Umberto Michelucci. “An Introduction to Autoencoders”. In: CoRR abs/2201.03898

(2022). arXiv: 2201.03898. url: https://arxiv.org/abs/2201.03898.

[31] Charlie Miller and Chris Valasek. “Remote Exploitation of an Unaltered Passenger
Vehicle”. In: (Aug. 2015). url: https://illmatics.com/Remote%20Car%20Hacki
ng.pdf.

82

https://doi.org/https://doi.org/10.1016/j.vehcom.2021.100338
https://www.sciencedirect.com/science/article/pii/S2214209621000073
https://arxiv.org/abs/2303.12278
https://doi.org/10.1109/40.918005
https://doi.org/10.1109/SP.2010.34
https://doi.org/10.1109/TCAD.2020.3012749
https://doi.org/10.1007/0-387-24230-9_2
https://doi.org/10.1007/0-387-24230-9_2
https://doi.org/https://doi.org/10.1016/j.jnca.2020.102631
https://www.sciencedirect.com/science/article/pii/S1084804520301053
https://www.sciencedirect.com/science/article/pii/S1084804520301053
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://arxiv.org/abs/2201.03898
https://arxiv.org/abs/2201.03898
https://illmatics.com/Remote%20Car%20Hacking.pdf
https://illmatics.com/Remote%20Car%20Hacking.pdf

Bibliography

[32] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fereidooni, N.
Asokan, and Ahmad-Reza Sadeghi. “DÏoT: A Federated Self-learning Anomaly
Detection System for IoT”. In: 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). 2019, pages 756–767. doi: 10.1109/ICDCS.2019.
00080.

[33] NumPy. 2023. url: https://numpy.org/ (visited on Oct. 30, 2023).

[34] Christopher Olah. “Understanding lstm networks”. In: (2015). url: https://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

[35] pandas. 2023. url: https://pandas.pydata.org/ (visited on Oct. 30, 2023).

[36] Railway applications - Cybersecurity. Standard. CLC/TS 50701:2022 XX. Rue de la
Science 23 B-1040 Brussels, BE: European Committee for Electrotechnical Standard-
ization, 2022.

[37] Sampath Rajapaksha, Harsha Kalutarage, M. Omar Al-Kadri, Andrei Petrovski,
Garikayi Madzudzo, and Madeline Cheah. “AI-Based Intrusion Detection Systems
for In-Vehicle Networks: A Survey”. In: ACM Comput. Surv. 55.11 (2023). issn:
0360-0300. doi: 10.1145/3570954. url: https://doi.org/10.1145/3570954.

[38] Sebastian Raschka. “An overview of general performance metrics of binary classifier
systems”. In: arXiv preprint arXiv:1410.5330 (2014).

[39] Valerian Rey, Pedro Miguel Sánchez Sánchez, Alberto Huertas Celdrán, and Gérôme
Bovet. “Federated learning for malware detection in IoT devices”. In: Computer
Networks 204 (2022), page 108693. issn: 1389-1286. doi: https://doi.org/10.
1016/j.comnet.2021.108693. url: https://www.sciencedirect.com/science
/article/pii/S1389128621005582.

[40] Road vehicles - Controller area network (CAN) - Part 1: Data link layer and physical
signalling. Standard. ISO 11898-1:2015. Ch. de Blandonnet 8, CH-1214 Geneva, CH:
International Organization for Standardization, Dec. 2015.

[41] Road vehicles - Cybersecurity engineering. Standard. ISO/SAE 21434:2021(E). Ch. de
Blandonnet 8, CH-1214 Geneva, CH: International Organization for Standardiza-
tion/ Society of Automotive Engineers, Aug. 2021.

[42] Marco Rocchetto and Nils Ole Tippenhauer. “On attacker models and profiles
for cyber-physical systems”. In: Computer Security–ESORICS 2016: 21st European
Symposium on Research in Computer Security, Heraklion, Greece, September 26-30, 2016,
Proceedings, Part II 21. Springer. 2016, pages 427–449.

[43] Hojjat Salehinejad, Julianne Baarbe, Sharan Sankar, Joseph Barfett, Errol Colak,
and Shahrokh Valaee. “Recent Advances in Recurrent Neural Networks”. In: CoRR
abs/1801.01078 (2018). arXiv: 1801.01078. url: http://arxiv.org/abs/1801.
01078.

[44] Barabara Schmitz and Thomas Seger. “Informations-und Steuerungstechnik auf
Schienenfahrzeugen”. In: Micro, IEEE 21 (2008), pages 20 –22. doi: 10.1109/40.
918005.

83

https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1109/ICDCS.2019.00080
https://numpy.org/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://pandas.pydata.org/
https://doi.org/10.1145/3570954
https://doi.org/10.1145/3570954
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108693
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108693
https://www.sciencedirect.com/science/article/pii/S1389128621005582
https://www.sciencedirect.com/science/article/pii/S1389128621005582
https://arxiv.org/abs/1801.01078
http://arxiv.org/abs/1801.01078
http://arxiv.org/abs/1801.01078
https://doi.org/10.1109/40.918005
https://doi.org/10.1109/40.918005

Bibliography

[45] Max Schubert, Jens Gramm, Christoph Krauß, Ali Yekta, Stefan Katzenbeisser,
and Jan Eichhorn. “Fahrzeug Intrusion Detektion und Prävention in einheitlicher
Struktur für Straße und Schiene”. In: (Nov. 2020). Project Proposal.

[46] Security for Industrial Automation and Control Systems. Standard. ISA-62443. 67 Alexan-
der Drive, US-27709 North Carolina, US: International Society of Automaton, Apr.
2018.

[47] Eunbi Seo, Hyun Min Song, and Huy Kang Kim. “GIDS: GAN based Intrusion
Detection System for In-Vehicle Network”. In: 2018 16th Annual Conference on Privacy,
Security and Trust (PST). 2018, pages 1–6. doi: 10.1109/PST.2018.8514157.

[48] Dongxian Shi, Ming Xu, Ting Wu, and Liang Kou. “Intrusion detecting system
based on temporal convolutional network for in-vehicle CAN networks”. In: Mobile
Information Systems 2021 (2021), pages 1–13.

[49] CAN Specification. “Bosch”. In: Robert Bosch GmbH, Postfach 50 (1991), page 15.

[50] Dominik Spychalski, Markus Heinrich, and Christoph Krauß. “Rail meets Automo-
tive: Commonalities in vehicle-side IT/OT security considerations”. In: volume 114.
Signaling + Datacommunication, Nov. 2022, pages 51–57.

[51] TensorFlow. 2023. url: https://www.tensorflow.org/ (visited on Oct. 30, 2023).

[52] TFRecord and tf.train.Example. 2023. url: https://www.tensorflow.org/tutoria
ls/load_data/tfrecord (visited on Sept. 22, 2023).

[53] Jesper E Van Engelen and Holger H Hoos. “A survey on semi-supervised learning”.
In: Machine learning 109.2 (2020), pages 373–440.

[54] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Mathias
Fischer. “Taxonomy and Survey of Collaborative Intrusion Detection”. In: ACM
Comput. Surv. 47.4 (2015). issn: 0360-0300. doi: 10.1145/2716260. url: https:
//doi.org/10.1145/2716260.

[55] Miki E. Verma, Michael D. Iannacone, Robert A. Bridges, Samuel C. Hollifield, Bill
Kay, and Frank L. Combs. “ROAD: The Real ORNL Automotive Dynamometer
Controller Area Network Intrusion Detection Dataset (with a comprehensive CAN
IDS dataset survey & guide)”. In: CoRR abs/2012.14600 (2020). arXiv: 2012.14600.
url: https://arxiv.org/abs/2012.14600.

[56] Wilfried Voss. A comprehensible guide to controller area network. Copperhill Media,
2008.

[57] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. “A practical wireless attack on the
connected car and security protocol for in-vehicle CAN”. In: IEEE Transactions on
intelligent transportation systems 16.2 (2014), pages 993–1006.

[58] Chuan Yue, Lide Wang, Dengrui Wang, Ruifeng Duo, and Xiaobo Nie. “An Ensem-
ble Intrusion Detection Method for Train Ethernet Consist Network Based on CNN
and RNN”. In: IEEE Access 9 (2021), pages 59527–59539. doi: 10.1109/ACCESS.
2021.3073413.

[59] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. “Dive into Deep
Learning”. In: arXiv preprint arXiv:2106.11342 (2021).

84

https://doi.org/10.1109/PST.2018.8514157
https://www.tensorflow.org/
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://doi.org/10.1145/2716260
https://doi.org/10.1145/2716260
https://doi.org/10.1145/2716260
https://arxiv.org/abs/2012.14600
https://arxiv.org/abs/2012.14600
https://doi.org/10.1109/ACCESS.2021.3073413
https://doi.org/10.1109/ACCESS.2021.3073413

A Appendix– Evaluation Result Tables

Test Suppress
q FNR FPR Precision Recall F1
1 0.812009 0.0 1.0 0.187991 0.316485

0.999 0.334214 0.001158 0.992419 0.665786 0.796932
0.99 0.254075 0.011041 0.938962 0.745925 0.831385
0.98 0.226883 0.021390 0.891655 0.773117 0.828166
0.97 0.206862 0.029738 0.858613 0.793138 0.824578
0.96 0.191262 0.037214 0.831882 0.808738 0.820147
0.95 0.179616 0.045059 0.805659 0.820384 0.812955
0.9 0.158912 0.084520 0.693802 0.841088 0.760378

0.85 0.145630 0.129890 0.599629 0.854370 0.704684

Test Flooding
q FNR FPR Precision Recall F1
1 0.718661 0.0 1.0 0.281339 0.439133

0.999 0.178194 0.001044 0.993955 0.821806 0.899720
0.99 0.107294 0.009638 0.950834 0.892706 0.920854
0.98 0.092339 0.018699 0.910190 0.907661 0.908924
0.97 0.082709 0.028256 0.871432 0.917291 0.893773
0.96 0.076496 0.038132 0.834892 0.923504 0.876965
0.95 0.071864 0.047870 0.801907 0.928136 0.860417
0.9 0.063122 0.106220 0.648080 0.936878 0.766168

0.85 0.057256 0.164248 0.545125 0.942744 0.690804

Table A.1: The table shows the intrusion detection performance of X-CANIDS on SynCAN fabrication
(flooding) and suspension (suppress) attacks respecting the sensitivity parameter q with 0.85 ≤
q ≤ 1. The table shows discrete choices of q with the aim of presenting high F1 scores. The
achievable precision is high in both cases. The achievable recall is higher for the flooding attack.
With a suitable q ≥ 0.999, a low false positive rate of below 0.01 can be achieved. False positive
rate and false negative rate are counterparts as one rises when the other shrinks.

85

A Appendix– Evaluation Result Tables

Test Plateau
q FNR FPR Precision Recall F1
1 0.525436 0.000008 0.999918 0.474564 0.643650

0.999 0.104566 0.001066 0.994273 0.895434 0.942269
0.99 0.058073 0.012501 0.939660 0.941927 0.940792
0.98 0.039682 0.025528 0.886034 0.960318 0.921682
0.97 0.033279 0.036267 0.846365 0.966721 0.902548
0.96 0.028452 0.048349 0.805934 0.971548 0.881026
0.95 0.025864 0.060001 0.770397 0.974136 0.860369
0.9 0.020882 0.125271 0.617639 0.979118 0.757462

0.85 0.018235 0.186524 0.521028 0.981765 0.680769

Test Continuous
q FNR FPR Precision Recall F1
1 0.797070 0.000016 0.999532 0.202930 0.337367

0.999 0.411631 0.000791 0.991834 0.588369 0.738595
0.99 0.284473 0.008340 0.933373 0.715527 0.810060
0.98 0.249044 0.018930 0.866272 0.750956 0.804503
0.97 0.223494 0.029806 0.809671 0.776506 0.792742
0.96 0.206112 0.041039 0.759547 0.793888 0.776338
0.95 0.193551 0.052466 0.715095 0.806449 0.758030
0.9 0.171349 0.114820 0.540963 0.828651 0.654593

0.85 0.155700 0.174332 0.441602 0.844300 0.579895

Test Playback
q FNR FPR Precision Recall F1
1 0.768089 0.0 1.0 0.231911 0.376506

0.999 0.232201 0.000928 0.992522 0.767799 0.865817
0.99 0.129284 0.008595 0.942057 0.870716 0.904983
0.98 0.108267 0.018068 0.887902 0.891733 0.889813
0.97 0.092697 0.026199 0.847513 0.907303 0.876390
0.96 0.080622 0.034380 0.811026 0.919378 0.861810
0.95 0.074476 0.043969 0.771596 0.925524 0.841579
0.9 0.063003 0.090259 0.624916 0.936997 0.749778

0.85 0.056303 0.142893 0.514541 0.943697 0.665969

Table A.2: The table shows the intrusion detection performance of X-CANIDS on SynCAN mas-
querade attacks (not changing timing) respecting the sensitivity parameter q with 0.85 ≤ q ≤ 1.
The table shows discrete choices of q with the aim of presenting high F1 scores. The achievable
precision is high in all three cases. The achievable recall depends on the attack. It is relatively
low for the continuous attack compared to the other attacks. With a suitable q ≥ 0.999, a low
false positive rate of below 0.01 can be achieved. False positive rate and false negative rate are
counterparts as one rises when the other shrinks.

86

A Appendix– Evaluation Result Tables

Correlated Signal Attack Masquerade
q FNR FPR Precision Recall F1

≤ 1 0.0 1.0 0.799093 1.0 0.888329

Max Engine Coolant Temperature Attack Masquerade
q FNR FPR Precision Recall F1
1 0.027682 0.0 1.0 0.972318 0.985965

0.999 0.024221 0.0 1.0 0.975779 0.987741
≤ 0.99 0.0 1.0 0.247009 1.0 0.396162

Max Speedometer Attack Masquerade
q FNR FPR Precision Recall F1
1 0.004944 0.0 1.0 0.995056 0.997522

0.999 0.003543 0.009009 0.992205 0.996457 0.994326
0.99 0.000577 0.529635 0.684695 0.999423 0.812651
0.98 0.0 0.938739 0.550740 1.0 0.710293
0.97 0.0 0.958369 0.545614 1.0 0.706016
0.96 0.0 0.974680 0.541427 1.0 0.702501
0.95 0.0 0.981982 0.539573 1.0 0.700939
≤ 0.9 0.0 1.0 0.535053 1.0 0.697113

Reverse Light Off Attack Masquerade
q FNR FPR Precision Recall F1

≥ 0.99 1.0 0.0 - 0.0 -
0.98 0.863076 0.105544 0.562024 0.136924 0.220201
0.97 0.857842 0.119071 0.541479 0.142158 0.225194
0.96 0.852271 0.128758 0.531592 0.147729 0.231206
0.95 0.848050 0.142118 0.513992 0.151950 0.234558
0.9 0.810569 0.217602 0.462680 0.189431 0.268807

0.85 0.567955 0.428858 0.499122 0.432045 0.463167
0.8 0.281108 0.588009 0.547371 0.718892 0.621515
0.7 0.123080 0.634937 0.577368 0.876920 0.696293
0.6 0.063650 0.716266 0.563904 0.936350 0.703896
0.5 0.036299 0.788911 0.547163 0.963701 0.698013

Reverse Light On Attack Masquerade
q FNR FPR Precision Recall F1

≥ 0.99 1.0 0.0 − 0.0 −
0.98 0.264654 0.795618 0.442858 0.735346 0.552797
0.97 0.246255 0.854448 0.431387 0.753745 0.548725
0.96 0.221488 0.884775 0.430762 0.778512 0.554636
0.95 0.194127 0.903844 0.434007 0.805873 0.564175
0.9 0.070291 0.988336 0.447212 0.929709 0.603922

≤ 0.85 0.0 1.0 0.462373 1.0 0.632360

Table A.3: The table shows the intrusion detection performance of X-CANIDS on ROAD masquerade
attacks (not changing timing) respecting the sensitivity parameter q with 0.5 ≤ q ≤ 1. The table
shows discrete choices of q with the aim of presenting high F1 scores. For the correlated signal
attack, the performance metrics do not change for q ≤ 1 as it produces only positive classifications.
The max engine coolant temperature attack and the max speedometer attack are detected well in
contrast to the reverse light attacks.

87

A Appendix– Evaluation Result Tables

Suspension Attack 0.01s
q FNR FPR Precision Recall F1

≥ 0.99 1.0 0.0 - 0.0 -
0.98 0.216015 0.822418 0.563211 0.783985 0.655508
0.97 0.141527 0.877834 0.569487 0.858473 0.684738
0.96 0.097300 0.931990 0.567125 0.902700 0.696605
0.95 0.068436 0.953401 0.569275 0.931564 0.706693
≤ 0.9 0.0 1.0 0.574946 1.0 0.730116

Suspension Attack 0.1s
q FNR FPR Precision Recall F1

≥ 0.99 1.0 0.0 - 0.0 -
0.98 0.177501 0.832802 0.577533 0.822499 0.678585
0.97 0.117105 0.880664 0.581184 0.882895 0.700952
0.96 0.074689 0.931078 0.579054 0.925311 0.712334
0.95 0.054403 0.952776 0.578725 0.945597 0.718012
≤ 0.9 0.0 1.0 0.580567 1.0 0.734632

Suspension Attack 1s
q FNR FPR Precision Recall F1

≥ 0.99 1.0 0.0 - 0.0 -
0.98 0.200923 0.830252 0.512660 0.799077 0.624599
0.97 0.146079 0.891317 0.511514 0.853921 0.639785
0.96 0.101999 0.939496 0.510936 0.898001 0.651301
0.95 0.074833 0.958543 0.513367 0.925167 0.660326
≤ 0.9 0.0 1.0 0.522216 1.0 0.686126

Table A.4: The table shows the intrusion detection performance of X-CANIDS on ROAD suspension
attacks respecting the sensitivity parameter q ≤ 1. The table shows discrete choices of q with the
aim of presenting high F1 scores. For each suspension attack, a signal stream with a different base
period was attacked (0.01s, 0.1s, 1s). The performance is worse compared to the max speedometer
attack and max engine coolant temperature attack. The separation of benign and attack samples
is harder for the model in the case of suspension attacks than for masquerade attacks.

88

A Appendix– Evaluation Result Tables

Correlated Signal Attack Masquerade
q FNR FPR Precision Recall F1
1 0.0 0.0 1.0 1.0 1.0

0.999 0.0 0.759351 0.839809 1.0 0.912931
0.99 0.0 0.932251 0.810256 1.0 0.895184
0.98 0.0 0.955540 0.806433 1.0 0.892846
0.97 0.0 0.966126 0.804708 1.0 0.891787
0.96 0.0 0.977417 0.802875 1.0 0.890661
0.95 0.0 0.985180 0.801620 1.0 0.889888
≤ 0.9 0.0 1.0 0.799235 1.0 0.888416

Max Engine Coolant Temperature Attack Masquerade
q FNR FPR Precision Recall F1
1 0.538062 0.0 1.0 0.461938 0.631953

0.999 0.025952 0.0 1.0 0.974048 0.986854
0.99 0.006920 0.308740 0.513417 0.993080 0.676887
0.98 0.005190 0.382520 0.460368 0.994810 0.629447
0.97 0.0 0.534620 0.380263 1.0 0.551001
0.96 0.0 0.602724 0.352439 1.0 0.521190
0.95 0.0 0.636776 0.34 1.0 0.507463
0.9 0.0 0.874574 0.272770 1.0 0.428624

0.85 0.0 0.967650 0.253176 1.0 0.404055

Max Speedometer Attack Masquerade
q FNR FPR Precision Recall F1

≥ 0.999 0.0 0.0 1.0 1.0 1.0
0.99 0.0 0.024196 0.979429 1.0 0.989608
0.98 0.0 0.025904 0.978009 1.0 0.988882
0.97 0.0 0.026948 0.977143 1.0 0.988439
0.96 0.0 0.028750 0.975651 1.0 0.987675
0.95 0.0 0.029415 0.975102 1.0 0.987394
0.9 0.0 0.241484 0.826706 1.0 0.905133

0.85 0.0 0.547965 0.677662 1.0 0.807865

Reverse Light Off Attack Masquerade
q FNR FPR Precision Recall F1

≥ 0.999 1.0 0.0 - 0.0 -
0.99 0.485825 0.012698 0.975664 0.514175 0.673445
0.98 0.419001 0.030409 0.949793 0.580999 0.720972
0.97 0.336652 0.056307 0.921040 0.663348 0.771238
0.96 0.270840 0.074185 0.906821 0.729160 0.808343
0.95 0.233041 0.084879 0.899466 0.766959 0.827944
0.9 0.033243 0.326483 0.745672 0.966757 0.841943

0.85 0.021768 0.427402 0.693836 0.978232 0.811848

Reverse Light On Attack Masquerade
q FNR FPR Precision Recall F1

≥ 0.999 1.0 - - 0.0 -
0.99 0.133475 0.012629 0.987371 0.866525 0.923009
0.98 0.116614 0.016411 0.983589 0.883386 0.930799
0.97 0.103408 0.017952 0.982048 0.896592 0.937377
0.96 0.096097 0.019191 0.980809 0.903903 0.940787
0.95 0.092442 0.019990 0.980010 0.907558 0.942394
0.9 0.051645 0.083941 0.916059 0.948355 0.931927

0.85 0.035019 0.198668 0.801332 0.964981 0.875575

Table A.5: The table shows the intrusion detection performance of X-CANIDS on ROAD byte-
based masquerade attacks (not changing timing) respecting the sensitivity parameter q with
0.85 ≤ q ≤ 1. The table shows discrete choices of q with the aim of presenting high F1 scores.
The general reconstruction works better in the case of byte-based intrusion detection compared
to signal-translated intrusion detection. The correlated signal attack produces perfect results for
q = 1. The reverse light attacks also produce better results than before with a higher recall and
precision.

89

A Appendix– Evaluation Result Tables

Correlated Signal Attack Fabrication
q FNR FPR Precision Recall F1
1 0.0 0.0 1.0 1.0 1.0

0.999 0.0 0.759520 0.839661 1.0 0.912843
0.99 0.0 0.932299 0.810112 1.0 0.895096
0.98 0.0 0.955571 0.806290 1.0 0.892758
0.97 0.0 0.966150 0.804565 1.0 0.891700
0.96 0.0 0.977433 0.802733 1.0 0.890573
0.95 0.0 0.985190 0.801478 1.0 0.889800
≤ 0.9 0.0 1.0 0.799093 1.0 0.888329

Max Engine Coolant Temperature Attack Fabrication
q FNR FPR Precision Recall F1
1 0.051903 0.0 1.0 0.948097 0.973357

0.999 0.025952 0.0 1.0 0.974048 0.986854
0.99 0.006920 0.308740 0.513417 0.993080 0.676887
0.98 0.005190 0.382520 0.460368 0.994810 0.629447
0.97 0.0 0.534620 0.380263 1.0 0.551001
0.96 0.0 0.602724 0.352439 1.0 0.521190
0.95 0.0 0.636776 0.34 1.0 0.507463
0.9 0.0 0.874574 0.272770 1.0 0.428624

0.85 0.0 0.967650 0.253176 1.0 0.404055

Max Speedometer Attack Fabrication
q FNR FPR Precision Recall F1

≥ 0.999 0.0 0.0 1.0 1.0 1.0
0.99 0.0 0.024196 0.979429 1.0 0.989608
0.98 0.0 0.025904 0.978009 1.0 0.988882
0.97 0.0 0.026948 0.977143 1.0 0.988439
0.96 0.0 0.028750 0.975651 1.0 0.987675
0.95 0.0 0.029415 0.975102 1.0 0.987394
0.9 0.0 0.241484 0.826706 1.0 0.905133

0.85 0.0 0.547965 0.677662 1.0 0.807865

Reverse Light Off Attack Fabrication
q FNR FPR Precision Recall F1

≥ 0.999 1.0 0.0 - 0.0 -
0.99 0.817813 0.012679 0.934142 0.182187 0.304907
0.98 0.767112 0.030364 0.883333 0.232888 0.368597
0.97 0.695454 0.056223 0.842450 0.304546 0.447368
0.96 0.637147 0.074074 0.828638 0.362853 0.504701
0.95 0.598107 0.084751 0.823978 0.401893 0.540270
0.9 0.062025 0.325993 0.739606 0.937975 0.827062

0.85 0.035660 0.428262 0.689714 0.964340 0.804228

Reverse Light On Attack Fabrication
q FNR FPR Precision Recall F1

≥ 0.999 1.0 0.0 - 0.0 -
0.99 0.400472 0.009536 0.981846 0.599528 0.744472
0.98 0.387500 0.012681 0.976499 0.612500 0.752808
0.97 0.378302 0.014102 0.974312 0.621698 0.759053
0.96 0.372170 0.015218 0.972598 0.627830 0.763079
0.95 0.367571 0.015928 0.971558 0.632429 0.766143
0.9 0.292807 0.074769 0.890555 0.707193 0.788353

0.85 0.260259 0.205844 0.755510 0.739741 0.747542

Table A.6: The table shows the intrusion detection performance of X-CANIDS on ROAD byte-based
fabrication attacks (changing timing) respecting the sensitivity parameter q with 0.85 ≤ q ≤ 1.
The table shows discrete choices of q with the aim of presenting high F1 scores. The fabrication
attacks produce comparable results to the masquerade attacks in the case of the correlated signal
attack, max engine coolant temperature attack, and max speedometer attack. The performance
regarding the reverse light attacks is worse in terms of precision and recall.

90

A Appendix– Evaluation Result Tables

Suspension Attack 0.01s
q FNR FPR Precision Recall F1

≥ 0.95 1.0 0.0 - 0.0 -
0.9 0.997208 0.114779 0.037736 0.002792 0.005199

0.85 0.860400 0.733683 0.234742 0.139600 0.175080
0.8 0.302932 0.979745 0.534237 0.697068 0.604886

≤ 0.7 0.0 1.0 0.617174 1.0 0.763275

Suspension Attack 0.1s
q FNR FPR Precision Recall F1

≥ 0.95 1.0 0.0 - 0.0 -
0.9 0.769195 0.114779 0.764253 0.230805 0.354539

0.85 0.508609 0.733683 0.519174 0.491391 0.504901
0.8 0.276408 0.979745 0.543516 0.723592 0.620758
0.7 0.010237 1.0 0.614740 0.989763 0.758424

≤ 0.6 0.0 1.0 0.617174 1.0 0.763275

Suspension Attack 1s
q FNR FPR Precision Recall F1

≥ 0.95 1.0 0.0 - 0.0 -
0.9 0.796184 0.156039 0.678019 0.203816 0.313417

0.85 0.527687 0.772693 0.496333 0.472313 0.484025
0.8 0.266636 0.997749 0.542326 0.733364 0.623541
0.7 0.008376 1.0 0.615185 0.991624 0.759309

≤ 0.6 0.0 1.0 0.617174 1.0 0.763275

Table A.7: The table shows the intrusion detection performance of X-CANIDS on ROAD byte-based
suspension respecting the sensitivity parameter q ≤ 1. The table shows discrete choices of q with
the aim of presenting high F1 scores. The overall performance of detecting suspension attacks is
worse than for the signal-translated version of X-CANIDS.

91

A Appendix– Evaluation Result Tables

Masquerade attack 1

q FNR FPR Precision Recall F1
≥ 0.999 0.008112 0.0 1.0 0.991888 0.995927

0.99 0.007375 0.0 1.0 0.992625 0.996299
0.98 0.005900 0.006459 0.986823 0.994100 0.990448
0.97 0.004425 0.174740 0.734894 0.995575 0.845600
0.96 0.004425 0.244708 0.664370 0.995575 0.796930
0.95 0.004425 0.282741 0.631431 0.995575 0.772753
0.9 0.004425 0.391819 0.552826 0.995575 0.710900

0.85 0.002950 0.486186 0.499446 0.997050 0.665518
0.8 0.0 0.995335 0.328329 1.0 0.494349

≤ 0.7 0.0 1.0 0.327299 1.0 0.493181

Masquerade attack 2

q FNR FPR Precision Recall F1
≥ 0.99 0.0 0.0 1.0 1.0 1.0

0.98 0.0 0.006365 0.986497 1.0 0.993202
0.97 0.0 0.172207 0.729745 1.0 0.843760
0.96 0.0 0.241160 0.658488 1.0 0.794082
0.95 0.0 0.278642 0.625297 1.0 0.769456
0.9 0.0 0.386139 0.546323 1.0 0.706609

0.85 0.0 0.479137 0.492509 1.0 0.659975
0.8 0.0 0.995403 0.318402 1.0 0.483012

≤ 0.7 0.0 1.0 0.317403 1.0 0.481861

Masquerade attack 3

q FNR FPR Precision Recall F1
≥ 0.99 0.0 0.0 1.0 1.0 1.0

0.98 0.0 0.006459 0.986900 1.0 0.993407
0.97 0.0 0.174740 0.735757 1.0 0.847765
0.96 0.0 0.244708 0.665358 1.0 0.799057
0.95 0.0 0.282741 0.632463 1.0 0.774857
0.9 0.0 0.391819 0.553922 1.0 0.712934

0.85 0.0 0.486186 0.500184 1.0 0.666831
0.8 0.0 0.995335 0.328329 1.0 0.494349

≤ 0.7 0.0 1.0 0.327299 1.0 0.493181

Table A.8: The table shows the intrusion detection performance of X-MVBIDS on MVB masquerade
attacks respecting the sensitivity parameter q ≤ 1. The table shows discrete choices of q with
the aim of presenting high F1 scores. All masquerade attacks were detected with high recall and
precision for a suitable q.

92

A Appendix– Evaluation Result Tables

Fabrication attack 1

q FNR FPR Precision Recall F1
≥ 0.99 1.0 0.0 - 0.0 -

0.98 1.0 0.006311 0.0 0.0 -
0.97 1.0 0.170757 0.0 0.0 -
0.96 1.0 0.239130 0.0 0.0 -
0.95 1.0 0.276297 0.0 0.0 -
0.9 1.0 0.382889 0.0 0.0 -

0.85 1.0 0.475105 0.0 0.0 -
0.8 0.021689 0.995442 0.307899 0.978311 0.468385

≤ 0.7 0.0 1.0 0.311610 1.0 0.475156

Fabrication attack 2

q FNR FPR Precision Recall F1
≥ 0.99 1.0 0.0 - 0.0 -

0.98 1.0 0.006347 0.0 0.0 -
0.97 1.0 0.171721 0.0 0.0 -
0.96 1.0 0.240480 0.0 0.0 -
0.95 1.0 0.277856 0.0 0.0 -
0.9 1.0 0.385049 0.0 0.0 -

0.85 1.0 0.477786 0.0 0.0 -
0.8 0.021423 0.995416 0.311799 0.978577 0.472916

≤ 0.7 0.0 1.0 0.315472 1.0 0.479633

Fabrication attack 3

q FNR FPR Precision Recall F1
≥ 0.99 1.0 0.0 - 0.0 -

0.98 1.0 0.006311 0.0 0.0 -
0.97 1.0 0.170757 0.0 0.0 -
0.96 1.0 0.239130 0.0 0.0 -
0.95 1.0 0.276297 0.0 0.0 -
0.9 1.0 0.382889 0.0 0.0 -

0.85 1.0 0.475105 0.0 0.0 -
0.8 0.021689 0.995442 0.307899 0.978311 0.468385

≤ 0.7 0.0 1.0 0.311610 1.0 0.475156

Table A.9: The table shows the intrusion detection performance of X-MVBIDS on MVB fabrication
attacks respecting the sensitivity parameter q ≤ 1. The table shows discrete choices of q with the
aim of presenting high F1 scores. For q ≥ 0.85, no intrusions are detected. For 0.85 ≤ q ≤ 0.98,
only false positives are produced. For q ≥ 0.99, only negative classifications are produced.

93

A Appendix– Evaluation Result Tables

Suspension attack 1

q FNR FPR Precision Recall F1
≥ 0.99 1.0 0.0 - 0.0 -

0.98 1.0 0.006365 0.0 0.0 -
0.97 1.0 0.172207 0.0 0.0 -
0.96 1.0 0.241160 0.0 0.0 -
0.95 1.0 0.278642 0.0 0.0 -
0.9 1.0 0.386139 0.0 0.0 -

0.85 1.0 0.479137 0.0 0.0 -
0.8 0.022053 0.995403 0.313582 0.977947 0.474889

≤ 0.7 0.0 1.0 0.317403 1.0 0.481861

Suspension attack 2

q FNR FPR Precision Recall F1
≥ 0.99 1.0 0.0 - 0.0 -

0.98 1.0 0.006365 0.0 0.0 -
0.97 1.0 0.172207 0.0 0.0 -
0.96 1.0 0.241160 0.0 0.0 -
0.95 1.0 0.278642 0.0 0.0 -
0.9 1.0 0.386139 0.0 0.0 -

0.85 1.0 0.479137 0.0 0.0 -
0.8 0.013688 0.995403 0.315418 0.986312 0.477980

≤ 0.7 0.0 1.0 0.317403 1.0 0.481861

Suspension attack 3

q FNR FPR Precision Recall F1
≥ 0.99 1.0 0.0 - 0.0 -

0.98 1.0 0.006459 0.0 0.0 -
0.97 1.0 0.174740 0.0 0.0 -
0.96 1.0 0.244708 0.0 0.0 -
0.95 1.0 0.282741 0.0 0.0 -
0.9 1.0 0.391819 0.0 0.0 -

0.85 1.0 0.486186 0.0 0.0 -
0.8 0.020649 0.995335 0.323745 0.979351 0.486625

≤ 0.7 0.0 1.0 0.327299 1.0 0.493181

Table A.10: The table shows the intrusion detection performance of X-MVBIDS on MVB suspension
attacks respecting the sensitivity parameter q ≤ 1. The table shows discrete choices of q with the
aim of presenting high F1 scores. For q ≥ 0.85, no intrusions are detected. For 0.85 ≤ q ≤ 0.98,
only false positives are produced. For q ≥ 0.99, only negative classifications are produced.

94

	1 Introduction
	1.1 Structure of the Thesis
	1.2 Contributions

	2 Foundations
	2.1 Intrusion Detection and Collaborative Intrusion Detection
	2.2 Machine Learning
	2.2.1 Basic Considerations
	2.2.2 Special Considerations for Intrusion Detection
	2.2.3 Autoencoder
	2.2.4 Generative Adversarial Networks
	2.2.5 Sequence Learning with LSTMs

	2.3 Protocols
	2.3.1 Controller Area Network
	2.3.1.1 Message Transfer
	2.3.1.2 Error Handling

	2.3.2 Multifunction Vehicle Bus
	2.3.2.1 Message Transfer
	2.3.2.2 Telegrams
	2.3.2.3 Events
	2.3.2.4 Error Handling

	2.4 Joint Intrusion Detection System

	3 Related Work
	3.1 Project FINESSE
	3.2 AI-based Intrusion Detection on CAN
	3.3 AI-based Intrusion Detection on other In-Vehicle Networks
	3.4 Collaborative Intrusion Detection

	4 Security and Attack Considerations
	4.1 Comparison of CAN and MVB
	4.2 Attacker model
	4.3 Attacks
	4.3.1 Attacks on CAN
	4.3.2 Attacks on MVB

	4.4 Datasets
	4.4.1 HCRL
	4.4.2 TU Eindhoven
	4.4.3 SynCAN
	4.4.4 ROAD
	4.4.5 MVB

	5 Methodology
	5.1 Challenges
	5.2 Consequences and General Method
	5.3 Detecting In-Vehicle Intrusion via Semi-supervised Learning-Based CAAEs
	5.4 X-CANIDS
	5.5 X-MVBIDS
	5.6 Implementation and Experimental Setup
	5.6.1 Clarifying Training Parameters of the CAAE
	5.6.2 Deriving Training Parameters for X-CANIDS and X-MVBIDS

	6 Evaluation
	6.1 Evaluation Results
	6.1.1 Detecting In-Vehicle Intrusion via Semi-supervised Learning-Based CAAEs
	6.1.2 X-CANIDS
	6.1.2.1 SynCAN
	6.1.2.2 ROAD
	6.1.2.3 ROAD byte-based
	6.1.2.4 Performance on an Embedded Device

	6.1.3 X-MVBIDS

	6.2 Result Analysis
	6.2.1 Detecting In-Vehicle Intrusion via Semi-supervised Learning-Based CAAEs
	6.2.2 X-CANIDS
	6.2.2.1 Differences between ROAD and SynCAN
	6.2.2.2 Masquerade Attacks
	6.2.2.3 Fabrication Attacks
	6.2.2.4 Suspension Attacks

	6.2.3 X-MVBIDS
	6.2.3.1 Masquerade Attacks
	6.2.3.2 Suspension and Fabrication Attacks

	7 Discussion
	7.1 Feasibility in Practice
	7.2 Joint Architecture

	8 Conclusion
	8.1 Future Work

	References
	A Appendix– Evaluation Result Tables

