
zhanglifen
mszhanglifen@163.com

13 FILE SYSTEM FRAMEWORK13 FILE SYSTEM FRAMEWORK

—— virtual file system framework

2

Outline

 Solaris File System FrameworkSolaris File System Framework

 The vnode

 The vfs Object

3

13.1 Solaris FILE SYSTEM FRAMEWORK

Solaris virtual file system framework
 the virtual file system framework implementes

multiple file system types.
 It allows Sun’s distributed computing file system

(NFS) to coexist with the UFS file system in SunOS
2.0

 Solaris file systems can be categorized into the
following types:
 Storage based — Regular file systems . The Solaris

UFS and PC/DOS file systems are examples.
Network file systems — for example, NFS
 Pseudo file systems —The /proc pseudo file system

is example.

4

13.1.1 Unified File System Interface
The framework provides a single set of

well-defined interfaces .

Two key objects represent these
interfaces:
 the virtual file, or vnode: The vnode interfaces

implement file-related functions.

 the virtual file system, or vfs objects: the vfs
interfaces implement file system management
functions.

5

the file system layers is shown below

Figure 13.1 shows the file system layers.

T

O

P

E

N

D

B
O
T
T
O
M

E
N
D

6

13.1.2 File System Framework Facilities
The vnode/vfs interfaces

>The “top end” of the file system module implement
vnode and vfs objects.

>The “bottom end” of the file system uses other kernel
interfaces to access, store, and cache the data they
represent.

>Disk-based file systems interface to device drivers to
provide persistent storage of their data.

>they interface to network file systems access the
networking subsystem to transmit and receive data to
remote systems.

> Pseudo file systems typically access local kernel
functions and structures to gather the information they
represent.

7

13.1.2 File System Framework Facilities

8

13.1.2 File System Framework Facilities
Loadable file system modules are dynamically

loaded at the time each file system type is first
mounted.

The vnode/vfs framework implementes file functions
and file system management functions.

File system caching implements caching interface
with the HAT layer of the virtual memory system to
map, unmap, and manage the memory used for
caching.

Path-name management converts paths into vnode
pointers.

Directory name caching provides a mechanism to
cache pathname-to-vnode mappings.

9

13.2 The vnode

A vnode is a representation of a file in the
Solaris kernel.
The vnode is said to be objectlike .
 it is an encapsulation of a file’s state and the

methods that can be used to perform
operations on that file.
The vnode hides the implementation of the file

system and exposes file system-independent
data and methods for that file to the rest of the
kernel.

10

A vnode object

 Figure 13.2 A vnode object

11

A vnode object contains three important items

File-system-independent data
 the type of vnode :file, directory, character device,

Block device, Hard link, Named pipe, etc.
 flags of vnode : state, pointers to the file system that

contains the vnode, a reference count to the vnode.
Functions to implement file methods
 A structure of pointers to file-system-dependent

functions, to implement file’s open(),close(), read(),
and write().

File-system-specific data
Data that is used internally by each file system

implementation; typically the in-memory inode . UFS
uses an inode, NFS uses an rnode,and tmpfs uses a
tmpnode.

12

A vnode object

 For example, to read from a file without
knowing that it resides on a UFS file
system, the kernel would simply call the
file-system-independent macro for read(),
VOP_READ(), which would call the
vop_read() method of the vnode, which in
turn calls the UFS function, ufs_read().

13

The data structure of a vnode
 typedef struct vnode {
 kmutex_t v_lock; /* protects vnode fields */

ushort_t v_flag; /* vnode flags (see below) */
uint_t v_count; /* reference count */
struct vfs *v_vfsmountedhere; /* ptr to vfs mounted here */
struct vnodeops *v_op; /* vnode operations */
struct vfs *v_vfsp; /* ptr to containing VFS */
struct stdata *v_stream; /* associated stream */
struct page *v_pages; /* vnode pages list */
enum vtype v_type; /* vnode type */
dev_t v_rdev; /* device (VCHR, VBLK) */
caddr_t v_data; /* private data for fs */
struct filock *v_filocks; /* ptr to filock list */
struct shrlocklist *v_shrlocks; /* ptr to shrlock list */
kcondvar_t v_cv; /* synchronize locking */
} vnode_t;

14

13.2.2 Vnode Methods

 The vnode interface provides the set of
file system object methods

The Vnode Methods perform all file-
system-specific file operations.

The figure is shown below.

15

13.2.2 Vnode Methods

16

13.2.3 vnode Reference Count

A vnode is created by the file system at the time a file is
first opened or created and stays active until the file
system decides the vnode is no longer needed.

The vnode framework provides an infrastructure that
keeps track of the number of references to a vnode.

 It is important to distinquish a vnode reference from a
lock:
 A lock ensures exclusive access to the data,
 the reference count ensures persistence of the

object.

17

13.2.4 Interfaces for Paging vnode
CacheSolaris unifies file and memory management by

using a vnode to represent the backing store for
virtual memory.

A page of memory represents a particular vnode
and offset.

The file system uses the memory relationship to
implement caching for vnodes within a file
system.

The virtual memory system provides a set of
functions for cache management and I/O for
vnodes.

18

13.2.5 Block I/O on vnode Pages
The block I/O subsystem provides Three functions

for initiating I/O to and from vnode pages.
The table shows to initiate I/O between a physical

page and a device:

Sets up a block buffer for I/O on a page of
memoryso that it bypasses the block buffer
cache by setting the B_PAGEIO flag and
putting the page list on the b_pages field.

pageio_setup()

Waits for the block device I/O to complete.pageio_done()

 Initiates an I/O, using the block I/O device. bdev_strategy(
)

DescriptionFunction

19

13.3 The vfs Object
 The vfs layer provides an

administrative interface into
the file system to support
commands like mount and
umount in a file-system-
independent manner.

 The interface achieves
independence by means of
a virtual file system (vfs)
object.

 The vfs object represents
an encapsulation of a file
system’s state and a set of
methods for each of the file
system administrative
interfaces.

Figure 13.3 illustrates the vfs object.

20

Structure per mounted file system
typedef struct vfs {
struct vfs *vfs_next; /* next VFS in VFS list */
struct vfsops *vfs_op; /* operations on VFS */
struct vnode *vfs_vnodecovered; /* vnode mounted on */
uint_t vfs_flag; /* flags */
uint_t vfs_bsize; /* native block size */
int vfs_fstype; /* file system type index */
fsid_t vfs_fsid; /* file system id */
caddr_t vfs_data; /* private data */
dev_t vfs_dev; /* device of mounted VFS */
ulong_t vfs_bcount; /* I/O count (accounting) */
ushort_t vfs_nsubmounts; /* immediate sub-mount count */
struct vfs *vfs_list; /* sync list pointer */
struct vfs *vfs_hash; /* hash list pointer */
ksema_t vfs_reflock; } /* mount/unmount/sync lock */

21

Operations supported on virtual file
system
 typedef struct vfsops {
 int (*vfs_mount)(struct vfs *, struct vnode *, struct mounta *,
 struct cred *);
 int (*vfs_unmount)(struct vfs *, struct cred *);
 int (*vfs_root)(struct vfs *, struct vnode **);
 int (*vfs_statvfs)(struct vfs *, struct statvfs64 *);
 int (*vfs_sync)(struct vfs *, short, struct cred *);
 int (*vfs_vget)(struct vfs *, struct vnode **, struct fid *);
 int (*vfs_mountroot)(struct vfs *, enum whymountroot);
 int (*vfs_swapvp)(struct vfs *, struct vnode **, char *);
 }

22

13.3.1 The File System Switch Table

The file system switch table is a systemwide
table of file system types.
Each file system type that is loaded on the

system can be found in the virtual file system
switch table.
The file system switch table provides an ASCII

list of file system names (e.g., ufs, nfs), the
initialization routines, and vfs object methods
for that file system.
The vfs_fstype field of the vfs object is an

index into the file system switch table.

23

13.3.1 The File System Switch Table

File system type switch table is shown
below:

typedef struct vfssw {
char *vsw_name; /* type name string */
int (*vsw_init)(struct vfssw *, int);
/* init routine */
struct vfsops *vsw_vfsops; /* file system operations vector */
int vsw_flag; /* flags */
} vfssw_t;

24

13.3.2 The Mounted vfs List
 You can obtain a list of mounted file systems by starting at

rootvfs and following the vfs -> vfs_next chain, as shown in
Figure 13.4.

Figure 13.4 The Mounted vfs List

25

Reference

Jim Mauro, Richard McDougall, Solaris
Internals-Core Kernel Components, Sun
Microsystems Press, 2000

Solaris internals and performance
management, Richard McDougall, 2002

