
zhanglifen
mszhanglifen@163.com

13 FILE SYSTEM FRAMEWORK13 FILE SYSTEM FRAMEWORK

—— virtual file system framework

2

Outline

 Solaris File System FrameworkSolaris File System Framework

 The vnode

 The vfs Object

3

13.1 Solaris FILE SYSTEM FRAMEWORK

Solaris virtual file system framework
 the virtual file system framework implementes

multiple file system types.
 It allows Sun’s distributed computing file system

(NFS) to coexist with the UFS file system in SunOS
2.0

 Solaris file systems can be categorized into the
following types:
 Storage based — Regular file systems . The Solaris

UFS and PC/DOS file systems are examples.
Network file systems — for example, NFS
 Pseudo file systems —The /proc pseudo file system

is example.

4

13.1.1 Unified File System Interface
The framework provides a single set of

well-defined interfaces .

Two key objects represent these
interfaces:
 the virtual file, or vnode: The vnode interfaces

implement file-related functions.

 the virtual file system, or vfs objects: the vfs
interfaces implement file system management
functions.

5

the file system layers is shown below

Figure 13.1 shows the file system layers.

T

O

P

E

N

D

B
O
T
T
O
M

E
N
D

6

13.1.2 File System Framework Facilities
The vnode/vfs interfaces

>The “top end” of the file system module implement
vnode and vfs objects.

>The “bottom end” of the file system uses other kernel
interfaces to access, store, and cache the data they
represent.

>Disk-based file systems interface to device drivers to
provide persistent storage of their data.

>they interface to network file systems access the
networking subsystem to transmit and receive data to
remote systems.

> Pseudo file systems typically access local kernel
functions and structures to gather the information they
represent.

7

13.1.2 File System Framework Facilities

8

13.1.2 File System Framework Facilities
Loadable file system modules are dynamically

loaded at the time each file system type is first
mounted.

The vnode/vfs framework implementes file functions
and file system management functions.

File system caching implements caching interface
with the HAT layer of the virtual memory system to
map, unmap, and manage the memory used for
caching.

Path-name management converts paths into vnode
pointers.

Directory name caching provides a mechanism to
cache pathname-to-vnode mappings.

9

13.2 The vnode

A vnode is a representation of a file in the
Solaris kernel.
The vnode is said to be objectlike .
 it is an encapsulation of a file’s state and the

methods that can be used to perform
operations on that file.
The vnode hides the implementation of the file

system and exposes file system-independent
data and methods for that file to the rest of the
kernel.

10

A vnode object

 Figure 13.2 A vnode object

11

A vnode object contains three important items

File-system-independent data
 the type of vnode :file, directory, character device,

Block device, Hard link, Named pipe, etc.
 flags of vnode : state, pointers to the file system that

contains the vnode, a reference count to the vnode.
Functions to implement file methods
 A structure of pointers to file-system-dependent

functions, to implement file’s open(),close(), read(),
and write().

File-system-specific data
Data that is used internally by each file system

implementation; typically the in-memory inode . UFS
uses an inode, NFS uses an rnode,and tmpfs uses a
tmpnode.

12

A vnode object

 For example, to read from a file without
knowing that it resides on a UFS file
system, the kernel would simply call the
file-system-independent macro for read(),
VOP_READ(), which would call the
vop_read() method of the vnode, which in
turn calls the UFS function, ufs_read().

13

The data structure of a vnode
 typedef struct vnode {
 kmutex_t v_lock; /* protects vnode fields */

ushort_t v_flag; /* vnode flags (see below) */
uint_t v_count; /* reference count */
struct vfs *v_vfsmountedhere; /* ptr to vfs mounted here */
struct vnodeops *v_op; /* vnode operations */
struct vfs *v_vfsp; /* ptr to containing VFS */
struct stdata *v_stream; /* associated stream */
struct page *v_pages; /* vnode pages list */
enum vtype v_type; /* vnode type */
dev_t v_rdev; /* device (VCHR, VBLK) */
caddr_t v_data; /* private data for fs */
struct filock *v_filocks; /* ptr to filock list */
struct shrlocklist *v_shrlocks; /* ptr to shrlock list */
kcondvar_t v_cv; /* synchronize locking */
} vnode_t;

14

13.2.2 Vnode Methods

 The vnode interface provides the set of
file system object methods

The Vnode Methods perform all file-
system-specific file operations.

The figure is shown below.

15

13.2.2 Vnode Methods

16

13.2.3 vnode Reference Count

A vnode is created by the file system at the time a file is
first opened or created and stays active until the file
system decides the vnode is no longer needed.

The vnode framework provides an infrastructure that
keeps track of the number of references to a vnode.

 It is important to distinquish a vnode reference from a
lock:
 A lock ensures exclusive access to the data,
 the reference count ensures persistence of the

object.

17

13.2.4 Interfaces for Paging vnode
CacheSolaris unifies file and memory management by

using a vnode to represent the backing store for
virtual memory.

A page of memory represents a particular vnode
and offset.

The file system uses the memory relationship to
implement caching for vnodes within a file
system.

The virtual memory system provides a set of
functions for cache management and I/O for
vnodes.

18

13.2.5 Block I/O on vnode Pages
The block I/O subsystem provides Three functions

for initiating I/O to and from vnode pages.
The table shows to initiate I/O between a physical

page and a device:

Sets up a block buffer for I/O on a page of
memoryso that it bypasses the block buffer
cache by setting the B_PAGEIO flag and
putting the page list on the b_pages field.

pageio_setup()

Waits for the block device I/O to complete.pageio_done()

 Initiates an I/O, using the block I/O device. bdev_strategy(
)

DescriptionFunction

19

13.3 The vfs Object
 The vfs layer provides an

administrative interface into
the file system to support
commands like mount and
umount in a file-system-
independent manner.

 The interface achieves
independence by means of
a virtual file system (vfs)
object.

 The vfs object represents
an encapsulation of a file
system’s state and a set of
methods for each of the file
system administrative
interfaces.

Figure 13.3 illustrates the vfs object.

20

Structure per mounted file system
typedef struct vfs {
struct vfs *vfs_next; /* next VFS in VFS list */
struct vfsops *vfs_op; /* operations on VFS */
struct vnode *vfs_vnodecovered; /* vnode mounted on */
uint_t vfs_flag; /* flags */
uint_t vfs_bsize; /* native block size */
int vfs_fstype; /* file system type index */
fsid_t vfs_fsid; /* file system id */
caddr_t vfs_data; /* private data */
dev_t vfs_dev; /* device of mounted VFS */
ulong_t vfs_bcount; /* I/O count (accounting) */
ushort_t vfs_nsubmounts; /* immediate sub-mount count */
struct vfs *vfs_list; /* sync list pointer */
struct vfs *vfs_hash; /* hash list pointer */
ksema_t vfs_reflock; } /* mount/unmount/sync lock */

21

Operations supported on virtual file
system
 typedef struct vfsops {
 int (*vfs_mount)(struct vfs *, struct vnode *, struct mounta *,
 struct cred *);
 int (*vfs_unmount)(struct vfs *, struct cred *);
 int (*vfs_root)(struct vfs *, struct vnode **);
 int (*vfs_statvfs)(struct vfs *, struct statvfs64 *);
 int (*vfs_sync)(struct vfs *, short, struct cred *);
 int (*vfs_vget)(struct vfs *, struct vnode **, struct fid *);
 int (*vfs_mountroot)(struct vfs *, enum whymountroot);
 int (*vfs_swapvp)(struct vfs *, struct vnode **, char *);
 }

22

13.3.1 The File System Switch Table

The file system switch table is a systemwide
table of file system types.
Each file system type that is loaded on the

system can be found in the virtual file system
switch table.
The file system switch table provides an ASCII

list of file system names (e.g., ufs, nfs), the
initialization routines, and vfs object methods
for that file system.
The vfs_fstype field of the vfs object is an

index into the file system switch table.

23

13.3.1 The File System Switch Table

File system type switch table is shown
below:

typedef struct vfssw {
char *vsw_name; /* type name string */
int (*vsw_init)(struct vfssw *, int);
/* init routine */
struct vfsops *vsw_vfsops; /* file system operations vector */
int vsw_flag; /* flags */
} vfssw_t;

24

13.3.2 The Mounted vfs List
 You can obtain a list of mounted file systems by starting at

rootvfs and following the vfs -> vfs_next chain, as shown in
Figure 13.4.

Figure 13.4 The Mounted vfs List

25

Reference

Jim Mauro, Richard McDougall, Solaris
Internals-Core Kernel Components, Sun
Microsystems Press, 2000

Solaris internals and performance
management, Richard McDougall, 2002

