opensoLaris

13" EICE SYSTEM ERAMEWORK

virtual file system framework

Outline

O Solaris File System Framework
O The vnode
O The vfs Object

13.1 Solaris FILE SYSTEM FRAMEWORK

OSolaris virtual file system framework

»the wvirtual file system framework implementes
multiple file system types.

» It allows Sun’s distributed computing file system
(NFS) to coexist with the UFS file system in SunOS
2.0

O Solaris file systems can be categorized into the
following types:

» Storage based — Regular file systems . The Solaris
UFS and PC/DOS file systems are examples.

> Network file systems — for example, NFS

» Pseudo file systems —The /proc pseudo file system
IS example.

13.1.1 Unified File System Interface

OThe framework provides a single set of
well-defined interfaces .

OTwo key objects represent these
interfaces:

»the virtual file, or vnode: The vnode interfaces
implement file-related functions.

»the virtual file system, or vfs objects: the vfs
Interfaces implement file system management

functions.

opensoLaris

the file system layers is shown below

A
System Call Interface T
VNODE OPERATIONS VFS OPERATIONS O
P
SR EEEEIEEIED S E 8IS e
SIERISEIEEIEIR (R3] AEE N
HEGU%HHHﬂm“—I-HU Egﬁm D
VES: File-System-Independent Layer (VFS and VNODE INTERFACES)
B
o
T
UFS PCFS HSFS VXFS QFS NFS PROCFS (T)
M
E
N
r D

h OO 0|

Figure 13.1 shows the file system layers.

13.1.2 File System Framework Facilities

OThe vnode/vfs interfaces

>The “top end” of the file system module implement
vnode and vfs objects.

>The “bottom end” of the file system uses other kernel
interfaces to access, store, and cache the data they
represent.

>Disk-based file systems interface to device drivers to
provide persistent storage of their data.

>they interface to network file systems access the
networking subsystem to transmit and receive data to
remote systems.

> Pseudo file systems typically access local kernel
functlonstand structurés to gather the information they
represent.

13.1.2 File System Framework Facilities
The VFS Interface

VIS SW]] =l | Sl ——— OOV

— L5
— e
—
¥ le) —e i Mot
VFSOP xox UL TR H&_mmﬁm
rootl —r 105 K]
el — U SFNE]
Mount Point VFS - 5] —tm- L0l SHITC]
vgeti] —— Y=
MoTool] g 05 mowmtoo il
l AV g 1 E VY]
vriod'e
s
nfs
P
blocksize VFS Type sic...
Tags Index into vissw]]

P
syriaist
hashiist

13.1.2 File System Framework Facilities

OLoadable file system modules are dynamically
Ioade? 3t the time each file system type is first
mounted.

OThe vnode/vfs framework implementes file functions
and file system management functions.

OFile system caching implements caching interface
with the HAT layer of the virtual memory system to
map, unmap, and manage the memory used for
caching.

0O Path-name management converts paths into vnode
pointers.

O Directory name caching provides a mechanism to
cache pathname-to-vhode mappings.

13.2 The vnode

OA vnode is a representation of a file in the
Solaris kernel.

OThe vnode Is said to be objectlike .

O it Is an encapsulation of a file’s state and the
methods that can be used to perform
operations on that file.

OThe vnode hides the implementation of the file
system and exposes file system-independent
kata a;nd methods for that file to the rest of the

ernel.

opensoLaris

A vnhode object

« VREG — Regu-

lar File
« WVWDIR — Directory
« YWBLK — Block
Device
» YWCHRE — Charac-
ter Device
struct vnode
v_flags
v type
v_op
v_data

(UFS inodes shown

in this example) struct
vnodeops
- o opern)
struct inode vop read()
f flag WOl write ()
f_".fnn:-:le vop aloge ()
f offset vop ioctl ()
— vop areate ()
vop 1ink()

Figure 13.2 A vnhode object

10

A vnode object contains three important items

OFile-system-independent data

> the t{pe of vnhode :file, directory, character device,
Block device, Hard link, Named pipe, etc.

> flags of vnhode : state, pointers to the file system that
contains the vnode, a reference count to the vnode.

OFunctions to implement file methods

» A structure of pointers to file-system-dependent
functions, to implement file’s open(),close(), read(),
and write().

OFile-system-specific data

» Data that is used internally by each file system
implementation; tzglcally the m-memoQ/ Inode . UFS
uses an inode, NFS uses an rnode,and tmpfs uses a
tmpnode.

11

A vnode object

O For example, to read from a file without
knowing that it resides on a UFS file
system, the kernel would simply call the
file-system-independent macro for read(),
VOP READ(), which would call the
vop read() method of the vnode, which In
turn calls the UFS function, ufs read().

12

The data structure of a vnode

B typedef struct vhode {

X kmutex_t v_lock; [* protects vnode fields */
ushort_t v _flag; /* vnode flags (see below) */
uint_t v_count; [* reference count */
struct vfs *v vfsmountedhere /* ptr to vfs mounted here */
struct vnodeops *v_op; [* vnode operations */
struct vfs *v_vfsp; /* ptr to containing VFS */
struct stdata *v_stream; [* associated stream */
struct page *v_pages; /* vhode pages list */
enum vtype Vv_type; [* vnode type *
dev t v _rdev; /* device (VCHR, VBLK) */
caddr t v _data; [* private data for fs */
struct filock *v_filocks; /* ptr to filock list */
struct shrlocklist *v_shrlocks; /* ptr to shrlock list */
kcondvar_t v_cv; /* synchronize locking */

} vnode t;

13

13.2.2 Vnode Methods

O The vnode interface provides the set of
file system object methods

OThe Vnode Methods perform all file-
system-specific file operations.

OThe figure is shown below.

14

13.2.2 Vnode Methods

Memory Pages

The vhnode interface

— -

closef)] —-
mead, {j' —

VNODE Ops
op uis closel)

s ready)

|

- — -

VNODE

L waitef)

s toctl)

uls createl)
& k)

it = ——
el v/Jf B—

createl]l .

. —

Filesystem
Pointer

E__

L (/R

Regular File
Directory

Biock Device
VNODE Type character Device
Link

FIFO

Frocess

Socket

15

13.2.3 vnode Reference Count

OA vnode is created by the file system at the time a file is
first opened or created and stays active until the file
system decides the vnode is no longer needed.

OThe vnode framework provides an infrastructure that
Keeps track of the number of references to a vnhode.

Ot is important to distinquish a vnode reference from a
ock:
> A lock ensures exclusive access to the data,

> the reference count ensures persistence of the
object.

16

13.2.4 Interfaces for Paging vnode

Catgafaris unifies file and memory management by
using a vnode to represent the backing store for
virtual memory.

OA page of memory represents a particular vnode
and offset.

OThe file system uses the memory relationship to
Implement caching for vnodes within a file
system.

OThe virtual memory system provides a set of
functions for cache management and 1/O for
vhodes.

17

13.2.5 Block I/O on vnode Pages

LThe block I/O subsystem provides Three functions
for initiating I/O to and from vnode pages.

LThe table shows to initiate I/O between a physical
page and a device:

Function Description

Pd ev_strategy(| Initiates an I/O, using the block I/O device.
pagei o_done() Waits for the block device 1/0 to complete.

pagei o_setup() |Sets up a block buffer for /O on a page of
memoryso that it bypasses the block buffer
cache by setting the B PACEI O {flag and
putting the page list on the b _pages field.

18

13.3 The vfs Object

O The vfs layer provides an
administrative interface int¢ ™"
the file system to support i -
commands like mount and [he - |

umount in a file-system- | e

Independent mannetr. i vEs_oot)

vis statvis()

O The interface achieves o aync)
iIndependence by means o o vl
a virtual file system (vfs) Fil Syt -

Dependent

object. Da

O The vfs object represents
an encapsulation of a file
system’s state and a set of
methods for each of the file
System admlnlstratlve F|gure 13 3 |”UStrateS the st ObJECt

Interfaces.

19

Structure per mounted file system

typedef struct vfs {

struct vfs *vfs_next; /* next VFS in VFS list */

struct vfsops *vfs_op; /* operations on VFS */

struct vnode *vfs_vnodecovered; /* vnode mounted on */
uint_t vfs_flag; /* flags */

uint_t vfs_bsize; /* native block size */

int vfs_fstype; /* file system type index */

fsid_t vfs_fsid; /* file system id */

caddr_t vfs_data; /* private data */

dev _t vfs_dev; /* device of mounted VFS */

ulong_t vfs_bcount; /* I/O count (accounting) */

ushort_t vfs_nsubmounts; /* immediate sub-mount count */
struct vfs *vfs_list; /* sync list pointer */

struct vfs *vfs_hash; /* hash list pointer */

ksema_t vfs_reflock; } /* mount/unmount/sync lock */

20

Operations supported on virtual file

system

O typedef struct vfsops {

O int (*vfs_mount)(struct vfs *, struct vnode *, struct mounta *,
O struct cred *);

O int (*vfs_unmount)(struct vfs *, struct cred *);

O int (*vfs_root)(struct vfs *, struct vnode **);

O int (*vfs_statvfs)(struct vfs *, struct statvfs64 *);

O int (*vfs_sync)(struct vfs *, short, struct cred *);

O int (*vfs_vget)(struct vfs *, struct vnode **, struct fid *);

O int (*vfs_mountroot)(struct vfs *, enum whymountroot);

O int (*vfs_swapvp)(struct vfs *, struct vnode **, char *);
0}

21

13.3.1 The File System Switch Table

OThe file system switch table is a systemwide
table of file system types.

COEach file system type that is loaded on the
system can be found in the virtual file system
switch table.

OThe file system switch table provides an ASCI|
list of file system names e.fg., ufs, nfs), the
initialization routines, and vis object methods
for that file system.

OThe vf.s_fsthe.field of the vfs object is an
iIndex into the file system switch table.

22

13.3.1 The File System Switch Table

LFile system type switch table is shown
below:

typedef struct vissw {

char *vsw_name; /* type name string */

Int (*vsw_init)(struct vfssw *, int);

/* Init routine */

struct vfsops *vsw_vfsops; /* file system operations vector */
int vsw_flag; /* flags */

} vissw_t;

23

Figure 13.4.

rootvfs

|

struct vfs

vis next

struct vfs

vis fstype

wis nesxt

struct vfs

vis_op

vis fstype

vfs op

v_data

v_data

struct
wifsops * ufs_vfsops

ufs mount ()

ufs umount ()

ufs root ()

ufs statwEtas ()

ustayncf?

ufs wget ()

ufs mountroot ()

Figure 13.4 The Mounted vfs List

wis next

wis fstype

vifs op

v _data

struct

wfsops * nfs_vfsops

nfs_mouant ()

nfs umount ()

nfs root ()

nfs statwits ()

nfs:s_ync ()

nfs wgst ()

nfs mountroot ()

13.3.2 The Mounted vfs List

0 You can obtain a list of mounted file systems by starting at
rootvis and following the vis -> vis next chain, as shown in

24

Reference

O0Jim Mauro, Richard McDougall, Solaris
Internals-Core Kernel Components, Sun
Microsystems Press, 2000

OSolaris internals and performance
management, Richard McDougall, 2002

25

