
Yuan Cangzhou
yuancangzhou@buaa.edu.cn

Chapter 3 Memory ManagementChapter 3 Memory Management
—— Virtual Memory System

2

Outline

 Introduction to Virtual Memory SystemIntroduction to Virtual Memory System

 Modular Implementation

 Virtual Address Spaces

 Segment Driver

 Page Fault

3

Why Have a Virtual Memory
System?
A virtual memory system offers the

following benefits:
 It presents a simple memory programming

model to applications so that application
developers need not know how the underlying
memory hardware is arranged.

 It allows processes to see linear ranges of
bytes in their address space, regardless of the
physical layout or fragmentation of the real
memory.

4

 It gives us a programming model with a larger
memory size than available physical storage
(e.g., RAM) and enables us to use slower but
larger secondary storage (e.g., disk) as a
backing store to hold the pieces of memory
that don’t fit in physical memory.

5

The Major Functions of a VM
System
It manages virtual-to-physical mapping of

memory

It manages the swapping of memory
between primary and secondary storage to
optimize performance

It handles requirements of shared images
between multiple users and processes

6

Solaris Virtual-to-Physical Memory
Management

7

Swapping and Demand Paging

The Solaris kernel uses a combined
demand-paged and swapping model
Demand paging is used under normal

circumstances

Swapping is used only as a last resort when
the system is desperate for memory

8

Memory Sharing and Protection

Multiple users’ processes can share memory
Multiple processes can sharing program binaries and

application data
 The Solaris kernel introduced dynamically linked

libraries

Memory Protection
 A user’s process must not be able access the

memory of another process
 A program fault in one program could cause another

program (or the entire operating system) to fail
Using hardware facilities in the memory management

unit

9

Other Functions of Solaris VM
System
Other than management of application memory,

the Solaris VM system is responsible for
managing:
 the kernel
 user applications
 shared libraries
 file systems

One of the major advantages of using the VM
system to manage file system buffering is that
 Providing significant performance improvements for

applications that use the file system
Removing the need for tuning the size of the buffer

cache

10

Outline

 Introduction to Virtual Memory System

 Modular ImplementationModular Implementation

 Virtual Address Spaces

 Segment Driver

 Page Fault

11

The Memory System Objects

The Solaris VM system provides an open
framework that now supports many
different memory objects

The most important objects of the memory
system are
Segments

Vnodes

Pages

12

Solaris Virtual Memory Layers

13

Outline

 Introduction to Virtual Memory System

 Modular Implementation

 Virtual Address SpacesVirtual Address Spaces

 Segment Driver

 Page Fault

14

Process Virtual Address Space

15

SPARC 32-Bit Shared
Kernel/Process Address Space

16

SPARC sun4u 32- and 64-Bit
Process Address Space

17

Intel x86 Process Address Space

18

The Address Space

19

The Functions of Address Space
Subsystem
Duplication of address spaces, for fork()
Destruction of address spaces, for exit()
Creation of new segments within an address

space
Removal of segments from an address space
Setting and management of page protection for

an address space
Page fault routing for an address space
Page locking and advice for an address space
Management of watchpoints for an address

space

20

fork() and vfork()

The fork() system call
Duplicating the address space of current

process

Duplicating the entire address space
configuration

The vfork() system call
Borrowing the parent’s existing address space

Calling exec() system call

21

Address Space Fault Handling

Some of the faults are handled by the
common address space code
 If the fault does not lie in any of the address

space’s segments

Others are redirected to the segment
handlers
 If the fault does lie within one of the segments

22

Outline

 Introduction to Virtual Memory System

 Modular Implementation

 Virtual Address Spaces

 Segment DriverSegment Driver

 Page Fault

23

Memory Segments

Memory segments manage the mapping of
a linear range of virtual memory into an
address space

The objective of the memory segment is to
allow both memory and devices to be
mapped into an address space

24

Segment Interface

25

Segment Driver

The segment driver provides a similar view of
linear address space

To implement an address space, a segment
driver implementation is required to provide at
least the following:
 functions to create a mapping for a linear address

range
 page fault handling routines to deal with machine

exceptions within that linear address range
 a function to destroy the mapping

26

Solaris 7 Segment Driver Methods

Solaris 7 Segment Driver Methods
advise()、 checkprot()、 dump()、 dup()、 fa

ult()、 faulta()、 free()、 getmemid()、 getoff
set()

getprot()、 gettype()、 getvp()、 incore()、 k
luster()、 lockop()、 pagelock()、 setprot()

swapout()、 sync()、 unmap()

A segment driver implements a subset of
the above methods

27

Outline

 Introduction to Virtual Memory System

 Modular Implementation

 Virtual Address Spaces

 Segment Driver

 Page FaultPage Fault

28

Page Faults

When do Page Faults occur
MMU-generated exceptions (trap) tell the

operating system when a memory access
cannot continue without the kernel’s
intervention

Three major types of memory-related
hardware exceptions can occur:
major page faults
minor page faults
protection faults

29

Major Page Faults

When does a major page fault occur
when an attempt to access a virtual memory

location that is mapped by a segment does not
have a physical page of memory mapped to it
and the page does not exist in physical
memory.

How to arrange the new page
Create a new page for that address, in the

case of the first access

Get copies in the page from the swap device

30

Minor Page Faults

When does a minor page fault occur
When an attempt is made to access a virtual memory

location that resides within a segment and the page
is in physical memory

 But no current MMU translation is established from
the physical page to the address space that caused
the fault

A page fault occurs, but the physical page of
memory is already present and the process
simply needs to establish a mapping to the
existing physical page

31

Protection Faults

When does a page protection fault occur
When a program attempts to access a memory

address in a manner that violates the preconfigured
access protection for a memory segment

Protection modes can enable any of read, write,
or execute acces

The memory protection fault is also initiated by
the hardware MMU as a trap that is then
handled by the segment page fault handling
routine

32

Page Fault Example

33

Reference

 Jim Mauro, Richard McDougall, Solaris Internals-Core Kernel Components,
Sun Microsystems Press, 2000

 Sun, Multithreading in the Solaris Operating Environment, A Technical White
Paper,2002

 Max Bruning, Threading Model In Solaris, Training lectures,2005

 Solaris internals and performance management, Richard McDougall, 2002

34

End

• Last.first@Sun.COM

