opensoLaris

@hapter stViemoen/ANVanagement
Virtual Memory System




Outline

O Introduction to Virtual Memory System
OO Modular Implementation

O Virtual Address Spaces

O Segment Driver

O Page Fault



Why Have a Virtual Memory

System?

DA virtual memory system offers the
following benefits:

> |t presents a simple memory programming
model to applications so that application
developers need not know how the underlying
memory hardware Is arranged.

> It allows processes to see linear ranges of
oytes in their address space, regardless of the
ohysical layout or fragmentation of the real
memory.




> It gives us a programming model with a larger
memory size than available physical storage
(e.g., RAM) and enables us to use slower but
larger secondary storage (e.g., disk) as a
backing store to hold the pieces of memory
that don’t fit in physical memory.



The Major Functions of a VM
System
It manages virtual-to-physical mapping of
memory

It manages the swapping of memory
between primary and secondary storage to
optimize performance

01t handles requirements of shared images
between multiple users and processes



Solaris Virtual-to-Physical Memory
Management

] MMy L\
r—r_ v Py \
f.r'( ) x | ! \I \
1 ;7 ~ / N \
JIII.r : ] ] g s p ~ \"\
/ T — - »- T T T L
~ - — 3° I NN
Process * N L — 7 [ v
Scratch / / / A
Memory /) S 1 ) S
(Heap)  |” ki a “* /s
TN ===
; LN s ' /
rocess ! N /
Binary / N\ / \ /
0000 : \ /
" f
/‘ Virtual-to- Phi cal
, Virtual ] Physical \ ysica Physical
Process’s irtua Page size Translation emory Memory
Linear Virtual Memory ~ Tabl Pages
Pieces of abies
Address Space Segments Virtual
Memaory



Swapping and Demand Paging

OThe Solaris kernel uses a combined
demand-paged and swapping model

» Demand paging Is used under normal
circumstances

> Swapping is used only as a last resort when
the system is desperate for memory



Memory Sharing and Protection

COMultiple users’ processes can share memory

» Multiple processes can sharing program binaries and
application data

» The Solaris kernel introduced dynamically linked
libraries

COMemory Protection

> A user’s process must not be able access the
memory of another process

» A program fault in one program could cause another
program (or the entire operating system) to fall

> Using hardware facilities in the memory management
unit



Other Functions of Solaris VM
System
OOther than management of application memory,
the Solaris VM system is responsible for
managing:
> the kernel
> user applications
» shared libraries
> file systems
OOne of the major advantages of using the VM
system to manage file system buffering is that

» Providing significant performance improvements for
applications that use the file system

» Removing the need for tuning the size of the buffer
cache 5



Outline

O Introduction to Virtual Memory System
O Modular Implementation

O Virtual Address Spaces

O Segment Driver

O Page Fault

10



The Memory System Objects

OThe Solaris VM system provides an open
framework that now supports many
different memory objects

OThe most important objects of the memory
system are

> Segments
»Vnodes
> Pages

11



Solaris Virtual Memory Layers

Global Page Replacement Manager — Page Scanner

Address Space Management

segkmem segmap seqvn
Kernel Memory File Cache Memory Process Memory
Segment Segment Segment
Hardware Address Translation (HAT) Layer
sundc sundm sundd sundu x86
HAT layer HAT layer HAT layer HAT layer HAT layer
sundc sundm sundd sundu %86
sund-mmu sr-mmu sr-mrmu sf-mmu 1386 mmu
32/32-hit 32/36-hit 32/36-hit 64/64-hit 32/36-hit
4K pages 4K pages 4K pages 8K/4M pages | 4K pages
N Tk N T g N T 1x - ===-ﬁ -

12



Outline

O Introduction to Virtual Memory System
OO Modular Implementation
O Virtual Address Spaces

O Segment Driver

O Page Fault

13



Process Virtual Address Space

Top of Virtual Address Space
P P Stack I Stack Frame
Y
I |
A
|
Malloc'd Memory Heap malloc )
Variables (Data) ehinish
SIS
Executable -::i Sy ot

Virtual Address Ox(

14



SPARC 32-Bit Shared
Kernel/Process Address Space

0xFFFFFFFF

OxEFFEFCOO0
OxEFTEAOCD

Ox00010000

sundc, sundm

256-MB Kermel Context

Stack ¢

Libraries

)

|
HEAP- malloc(), shrk()

Executable — DATA

Executable — TEXT

OxFFFFFFFF

O0xDEFFFEQCD

OxDETES000

0x00010000

sunddl

o12-MB Kernel Context

Stack *

Libraries

A

|
HEAP — malloc(), sbrki)

Executable — DATA

Executable — TEXT

15



SPARC sun4u 32- and 64-Bit

Process Address Space

O0xFFEBECOOO

O0xFF30C000

000010000

22-bit sundu

Stack |

U

Libraries

A

HEAP — malloc(),
shrk()

Executable — DATA

Executable — TEXT

0xFFFFFFFF.

0xFFFFFFFF.

O0xFFFFFTFFE.

000000800

TEFERFCO00

TETRFOO0O0

FFFFFFFFE
.00000000

00000001 .000000000

Bd-bit sundu

Stack|

Y

Libraries

VA Hole

A

HEAP -— malloc(),
shrk( ]

Executable — DATA

Executable — TEXT

16



Intel x86 Process Address Space

Intel x26
DXEFFEEEEE [ on6 MB Kemel Context
0xE0000000
Libraries
I
HEAP- malloc(), sbrki()
Executable — DATA
0%804B000 Executable — TEXT
Stack |

17



The Address Space

struct proc 5_base 256-MB Kernel Context
5 Size \
P_as 5 ds \ I
/ 5 prev 1"\ Stack ¢
5 next \
o \ Libraries
\
= struct seg d \
\_, s_base ' \ ! ;
struct as | 5_Slze \ \ : + :
5 as 3 | '
a_seds T \ \ |
. _prev 3
sz |\ s_next ' .\ | HEAP-malloc), sbrk(
a_nsegs 5_ops \
a_flags = N |
a_hat Y\
a_tail L A struct seq \ Y
a_watchp s base - J Executable — DATA
=Sl ™« | Executable - TEXT
5 as
5_prev
5 next
5_Ops

18



The Functions of Address Space
Subsystem
ODuplication of address spaces, for fork()

ODestruction of address spaces, for exit()

OCreation of new segments within an address
space

ORemoval of segments from an address space

OSetting and management of page protection for
an address space

OPage fault routing for an address space
OPage locking and advice for an address space

COManagement of watchpoints for an address
space

19



fork() and vfork()

OThe fork() system call

» Duplicating the address space of current
DroCcess

» Duplicating the entire address space
configuration

OThe vfork() system call
» Borrowing the parent’s existing address space
» Calling exec() system call

20



Address Space Fault Handling

OSome of the faults are handled by the
common address space code

> If the fault does not lie in any of the address
space’s segments

OOthers are redirected to the segment
handlers

> If the fault does lie within one of the segments

21



Outline

O Introduction to Virtual Memory System
OO Modular Implementation
O Virtual Address Spaces

O Segment Driver
O Page Fault

22



Memory Segments

OMemory segments manage the mapping of
a linear range of virtual memory into an
address space

OThe objective of the memory segment is to
allow both memory and devices to be
mapped into an address space

23



Segment Interface

struct seqg

5 hase

5 size

5_As

5 prev

5 next

5 Ops

256-MB Kernel Context

Stack ‘

Libraries

s data

|
A

HEAP

| segvn_free()
segvn_fault ()
segvn_getprot ()
segvn, setprot ()
segvn_incore()

Executable — DATA

Executable - TEXT

opensoLaris

24



Segment Driver

OThe segment driver provides a similar view of
linear address space

OTo implement an address space, a segment
driver implementation is required to provide at

least the following:

» functions to create a mapping for a linear address
range

» page fault handling routines to deal with machine
exceptions within that linear address range

> a function to destroy the mapping

25



Solaris 7 Segment Driver Methods

OSolaris 7 Segment Driver Methods

»advise() . checkprot() . dump() . dup() . fa
ult() . faulta() . free() . getmemid() . getoff
set()

»getprot() . gettype() . getvp() . Incore() . Kk
luster() . lockop() . pagelock() . setprot()

»swapout() . sync() . unmap()

OA segment driver implements a subset of
the above methods

26



Outline

O Introduction to Virtual Memory System
OO Modular Implementation
O Virtual Address Spaces

O Segment Driver

O Page Fault

27



Page Faults

OWhen do Page Faults occur

» MMU-generated exceptions (trap) tell the
operating system when a memory access
cannot continue without the kernel’s
Intervention

OThree major types of memory-related
hardware exceptions can occur:

> major page faults
»minor page faults
> protection faults

28



Major Page Faults

OWhen does a major page fault occur

»when an attempt to access a virtual memory
location that is mapped by a segment does not
have a physical page of memory mapped to it
and the page does not exist in physical
memory.

COHow to arrange the new page

> Create a new page for that address, in the
case of the first access

> Get copies in the page from the swap device

29



Minor Page Faults

OWhen does a minor page fault occur

» When an attempt is made to access a virtual memory
location that resides within a segment and the page
IS In physical memory

» But no current MMU translation is established from
the physical page to the address space that caused
the fault

OA page fault occurs, but the physical page of
memory Is already present and the process
simply needs to establish a mapping to the
existing physical page

30



Protection Faults

OWhen does a page protection fault occur

» When a program attempts to access a memory
address in a manner that violates the preconfigured

access protection for a memory segment

OProtection modes can enable any of read, write,
or execute acces

OThe memory protection fault is also initiated by
the hardware MMU as a trap that is then
handled by the segment page fault handling
routine

31



Page Fault Example

The address space determines
Stack from the address of the fault .
' which segment the fault occurred The segment driver
in and calls the segment driver, Ia“r!t hi?d{ﬁr '?EGT,[”ES
o handle the fau
Libraries bringing it in from
Address Space swap.
(points to vnode segment Vnode Segment Driver
driver) : EQQvn
Seqgment Size
seg fault() = segvn fault ()
HEAP
vop_getpage ()
0 & Virtual Base Address
d'\-.
~ O — @ sundu @
DATA -~ = Page Fault | hat layer
et/ ~ o T~ _ (trap) _ swapfs
-~ e sundu—-
~ —Ef.
| | - a- [T5f-mmu @
@ F;;h'ﬁe is touched in ~ Swap
the heap space, causing Th i
an MWL page fault. Page c:np?iap:? %rilrﬁ Space
.EEEE swap to memary.

32



Reference

O Jim Mauro, Richard McDougall, Solaris Internals-Core Kernel Components,
Sun Microsystems Press, 2000

O Sun, Multithreading in the Solaris Operating Environment, A Technical White
Paper,2002

O Max Bruning, Threading Model In Solaris, Training lectures,2005
O Solaris internals and performance management, Richard McDougall, 2002

33






