opensolLaris

EHEPLIERZ ProcESS; Miiieadiand
Seheduling

Scheduler Class and Priority




Outline

O Scheduling Class and Priority
O Dispatch Queues & Dispatch Tables

O Thread Priorities & Scheduling

O Turnstiles & Priority Inheritance



Scheduling Class and Priority

OSolaris supports multiple scheduling

classes

> Allows for the co-existence of different priority schemes
andscheduling algorithms (policies) within the kernel

» Each scheduling class provides a class-specific function to
manage thread priorities, administration, creation, termination,
etc.

O The dispatcher is the kernel subsystem

> Manages the dispatch queues (run queues),
handles thread selection, context switching,
preemption, etc



Scheduling Classes

O Traditional Timeshare (TS) class
> attempt to give every thread a fair shot at execution time

OInteractive (1A) class
> Desktop only
> Boost priority of active (current focus) window
» Same dispatch table as TS

O System (SYS)

> Only available to the kernel, for OS kernel threads
ORealtime (RT)

» Highest priority scheduling class

» Wl preempt kernel (SYS) class threads

» Intended for realtime applications



Scheduling Classes (Con’d)

OFair Share Scheduler (FSS) Class

> Same priority range as TS/IA class
» CPU resources are divided into shares
> Shares are allocated (projects/tasks) by administrator

» Scheduling decisions made based on shares
allocated and used, not dynamic priority changes

OFixed Priority (FX) Class

» The kernel will not change the thread's priority
» A “batch” scheduling class



Priorities

User priofrity
range

xﬂgm-wide} priority range

-t

1=

global (s

System
(SYS)

global
priorities

Timeshare (TS)
Interactive (IA)
Fair Share (FSS)
Fixed (FX)




Scheduling Class Structures

OThe kernel maintains an array of sclass
structures for each loaded scheduling class

OThread pointer to the class functions array,
and perthread class-specific data structure

OScheduling class operations vectors and
CL_XXX macros allow a single, central
dispatcher to invoke scheduling-class
specific functions



System Class Array
+4‘5’1‘5’!

L‘]._!:IEIIIE

sve_clasgincs

= ovs inat()

cl_imit

-

el funes
el_lock
¢l coumt
el size

e TS

cl__name
el imit

o £3_imit()

tz_classfures

-

¢l _funes
el lock
¢l coumnt
el _size
Tl mame
el init
el funcs
el lock
el count
cl_zize )
Cl_mame ——p"RT"
el init
el funcs
ol lock
el _count
el _zize

—_ s o ia_imit)

-
ri_classfuncs

= ri_init()
-

ia_classfuncs

System-wide Linke of Kernel Threads
t_clfuncs < t clfumes” t_clfuncs t clfunes t_clfanes
t_cldata - t_cldata - t_cldata t_cldata - t_cldata

' e S— ‘
rt JI_!IIJII‘EIJI:I rt JllqluntlJl:l ts_ti_meleff ts_timeleft ts_timeleft
rt_h._:relnﬂ rt_tl]_lel:ﬂ ts_dlspwz_uﬂ ts_dispwait ts_dispwait]
re_pri re_pri ts_cpupri ts_cpupri ts_cpupri
rt_flags rt_flags ts_uprilim ts_uprilim ts_uprilim
re_ re_ ts_nice ts_nice t5_nice
rt_pstatp rt_pstatp ts_hoaost ts_boost ts_boost
rt_pprip rt_pprip ts_flags ts_flags ts_flags
rt_pflagp rt_pflagp ts_tp ts_tp ts_tp
rt_next —e= | Tt_next ts_next —=( ¢tz next —| | ts next
l'tJI'I'ET g ﬂj'l'ﬂ tE_'I_]l"E‘-" g tE_]_]TE'-?' o — 'IIE_'F]"E".?'

STFUCT riproc STFUCT riproc sfruct isproc struct tsproc struct tsproc



Scheduling Class Specific Functions

Olmplemented via macros

O #defi ne CL_ENTERCLASS(t, cid, clparnmsp, credp, bufp) \
O (sclass[cid].cl _funcs->thread.cl _enterclass) (t, cid, \

O (void *)cl parnsp, credp, bufp)

OClass management and priority manipulation
functions

» xx_admin, xx_getclinfo, xx_parmsin, xx_parmsout,
xX_getclpri, xx_enterclass, xx_exitclass, xx_preempt,
xX_sleep, xx_tick, xx_trapret, xx_fork, xx_parms[get|
set], xx_donice, xx_yield, xx_wakeup



Outline

O Scheduling Class and Priority

O Dispatch Queues & Dispatch Tables
O Thread Priorities & Scheduling

O Turnstiles & Priority Inheritance

10



Dispatcher

O The kernel subsystem that mana%_es the dispatch queues (run
ueues), handles preemption, finding the next runnable thread,
the idle loop, initiating context switching, etc

O Solaris implements per-processor dispatch queues - actually a
gueue of queues

O Several dispatcher-related variables maintained in the CPU
structure as well
> cpu_runrun - preemption flag - do it soon
> cpu_kprunrun - kernel preemption flag - do it now!
> cpu_disp - dispatcher data and root of queues
> cpu_chosen_level - priority of next selected thread
> cpu_dispthread - kthread pointer

O A system-wide (or per-processor set) queue exists for realtime
threads

11



Dispatch Queues

OPer-CPU run queues
» Actually, a queue of queues

OOrdered by thread priority
COQueue occupation represented via a bitmap

OFor Realtime threads, a system-wide kernel
preempt queue Is maintained

> Realtime threads are placed on this queue, not the
per-CPU queues

> |f processor sets are configured, a kernel preempt
gueue exists for each processor set

12



Per-CPU Dispatch Q

Cpu structures

cpu i

T
E[lll_l‘ll[l[‘ll'll“

cpu_Kprunruii-|

cpu_dispthread

EEE

_____
P
_____

r

cpu_disp
Cpu_runrun
cpu_kprunrun
cpu_dispthread

e

r ]

cpu_disp
Cpu_runrun
cpu_kprunrun
cpu_dispthread

EEE

v

disp t

—am——
——r———

disp_lock
disp_npn

Ueues

disp_q

disp_gactmap
e disp_maxrunpri
., disp_nrunnable

dispg t kthread t
— ™ qa first I kernel = kernel
dtlast thread |= thread
fdg_runcnt
dg first —| gl kernel —
dg_last thread [+—
= fdg_runcnt
= . ) kernel * kernel kernel
:E- dla_first — thread [« thread thread
— | dg_last N
E" dg_runcnt
=
=
=
=i
-,
e
-
“
-
=
e
=
=
=
=
-
do_first — | gl kernel —
dg_last thread [«—
fdg_runcnt

13



Dispatch Tables

OPer-scheduling class parameter tables
OTime quantums and priorities
Otuneable via dispadmin(1M)

14



TS Dispatch Table

OTS and |A class share the same dispatch table
» RES. Defines the granularity of ts_quantum
»ts quantum. CPU time for next ONPROC state
> ts_tgexp. New priority if time quantum expires

> ts_slpret. New priority when state change from
TS SLEEP to TS RUN

> ts_maxwait. “waited too long” ticks
> ts_lwait. New priority if “waited too long”

15



RT, FX & FSS Dispatch Tables

ORT

> Time quantum only

> For each possible priority
OFX

> Time quantum only
> For each possible priority

O FSS

> Time quantum only
» Just one, not defined for each priority level
> Because FSS is share based, not priority based

O SYS
> No dispatch table
> Not needed, no rules apply

OINT

> Not really a scheduling class

16



Setting A RT Thread’s Priority

#priocntl -e -c¢ RT -p 59 program rt_dptbl
\ proc
o[ _
5 tpri |
=
m - — —
=
E . rtproc
w It pri —

100

101

102

103

104

time quantums

105

1589

17



Dispatch Queue Placement

OQueue placement is based a few simple
parameters

> The thread priority
> Processor binding/Processor set
» Processor thread last ran on: Warm affinity

» Depth and priority of existing runnable threads

» Memory Placement Optimization (MPO)
enabled will keep thread in defined locality

group (Ilgroup)

18



Dispatch Queue Manipulation

Osetfrontdqg(),
Osetbackdq()

DA thread will be placed on either the front
of back of the appropriate dispatch queue
depending on

19



Outline

O Scheduling Class and Priority
O Dispatch Queues & Dispatch Tables
O Thread Priorities & Scheduling

O Turnstiles & Priority Inheritance

20



Thread Priorities & Scheduling

O Every thread has 2 priorities; a global priorit)(, derived

based on its scheduling class, and (potentially) and

Inherited priority

O Priority inherited from parent, alterable via priocntl(1)
command or system call

OTypically, threads run as either TS or |A threads

> |A threads created when thread is associated with a
windowing system

ORT threads are explicitly created

OSYS class used by kernel threads, and for TS/IA
threads when a higher priority is warranted

> A temporary boost when an important resource is being held
OlInterrupts run at interrupt priority

21



Thread Selection

OThe kernel dispatcher implements a select-and-ratify
thread selection algorithm

> disp_getbest(). Go find the highest priority runnable thread,
and select it for execution

» disp_ratify(). Commit to the selection. Clear the CPU preempt
flags, and make sure another thread of higher priority did not
become runnable

> If one did, place selected thread back on a queue, and try again

OWarm affinity is implemented

> Put the thread back on the same CPU it executed on last
> Try to get a warm cache

> rechoose_interval kernel parameter
> Default is 3 clock ticks

22



Thread Preemption

OTwo classes of preemption

> User preemption
> A higher priority thread became runnable, but it's not a realtime thread
> Flagged via cpu_runrun in CPU structure
> Next clock tick, you're outta here

» Kernel preemption

> A realtime thread became runnable. Even OS kernel threads will get
preempted

> Poke the CPU (cross-call) and preempt the running thread now

23



Thread Execution

CORun until

» A preemption occurs
> Transition from S_ONPROC to S_RUN
> placed back on a run queue

> A blocking system call is issued
> e.g. read(2)
> Transition from S_ONPROC to S_SLEEP
> Placed on a sleep queue

> Done and exit
> Clean up

> Interrupt to the CPU you're running on
> pinned for interrupt thread to run
> unpinned to continue

24



Sleep & Wakeup

COCondition variables used to synchronize
thread sleep/wakeup

> A block condition (waiting for a resource or an
event) enters the kernel cv_xxx() functions

> The condition variable is set, and the thread Is
placed on a sleep queue

»Wakeup may be directed to a specific thread,
or all threads waiting on the same event or

resource
> One or more threads moved from sleep queue, to run queue

25



Sleep/Wakeup Kernel Subsystem

sleep [: Device Drivers Kernel Modules }
———————— wakeup '

condition | CV_wail(), cv_wait_sig(), s cv_signal(), cv_broadcast()
'I_.rariﬂl::le cv_timedwait(), cv_timedwaitl_sig() w:unsleep{} —
interfaces cv_block()
J |
¥
sleep slespq_wakeone_chan(),
queue sleepg_insert() sleepg_wakeall_chan(}
interfaces sleepg_unslesp()
|
l G
|
w W — &
g = g | ———= E =
2 e 1
= = R =
=2 o wakeup~ ~ T =
2 g -
P B B
o Ty E

26



Outline

O Scheduling Class and Priority
O Dispatch Queues & Dispatch Tables
O Thread Priorities & Scheduling

O Turnstiles & Priority Inheritance

27



Turnstiles & Priority Inheritance

OTurnstile - A special set of sleep queues for
kernel threads blocking on mutex or R/W locks

COPriority inversion - a scenerio where a thread
holding a lock Is preventing a higher priority
thread from running, because the higher priority
thread needs the lock.

OPriority inheritance - a mechanism whereby a
kernel thread may inherit the priority of the
higher priority kernel thread

OTurnstiles provide sleep/wakeup, with priority
Inheritance, for synchronization primitives

28



opensoLaris

Priority Inversion

T1
pri 40

T1 runs | T3 comes
and acquires! T2 runs, along, with
lock L1 | attempts a befter

| L1 to get L1, priority than

| butitis T1, and

| held by T1 préuentg

| T1 from

: running

|

\

' T3, with the best priority, is prevented from
running due to lower priority threads

29




Turnstiles

OAIl active turnstiles reside In turnstile_table[],
Index via a hash function on the address of the
synchronization object

OEach hash chain protected by a dispatcher lock,
acquired by turnstile_lookup()

COEach kernel thread is created with a turnstile, Iin
case it needs to block on a lock

Oturnstile block() - put the thread to sleep on the
appropriate hash chain, and walk the chain,
applying Pl where needed

30



Turnstiles (con’d)

Oturnstile_wakeup() - waive an inherited priority,
and wakeup the specific kernel threads

OFor mutex locks, wakeup is called to wake all
kernel threads blocking on the mutex

OFor R/W locks:

> If no waliters, just release the lock

> If a writer is releasing the lock, and there are waiting
readers and writers, waiting readers get the lock if
they are of the same or higher priority than the
walting writer

> A reader releasing the lock gives priority to waiting
writers

31



Turnstiles (con’d)

urnstile_table

fc_first
fc_lock

fc_first
ic_lock

tc_first
tc_lock

tc_first
tc_lock

LOCK

urnstile
ts_next | | fS_Next
ts freg-------1 - ts free
s sobj | ts sobj
s _wailers . Is waiters
s _epri . ts_epri
ts_inheritor ! ts_inheritor
ts_prioinv | ts _pricinv
s sleepq - | ts sleepq
s first] s first
sq first] | sq first
T free st~ ™
s next -
s _free
ts_sobj ®= kthread
ts_waiters
ts_epri Y %
ts_inheritor - - - - - - —*™ kthread | o
is_prioinv o
ts_sleepq _ Y 8
- 50 first T
5q first kthread

32



Reference

ORichard McDougall, James Mauro,
"SOLARIS Kernel Performance,
Observability & Debugging", USENIX'05,
2005, t2-solaris-slides.pdf

OSolaris internals and performance
management, Richard McDougall, 2002,
class0802.pdf

33






