
XIANG Yong
xyong@tsinghua.edu.cn

Chapter 2 Chapter 2 Process, Thread and Process, Thread and
SchedulingScheduling

—— Scheduler Class and Priority

2

Outline

 Scheduling Class and PriorityScheduling Class and Priority

 Dispatch Queues & Dispatch Tables

 Thread Priorities & Scheduling

 Turnstiles & Priority Inheritance

3

Scheduling Class and Priority

Solaris supports multiple scheduling
classes
 Allows for the co-existence of different priority schemes

andscheduling algorithms (policies) within the kernel
 Each scheduling class provides a class-specific function to

manage thread priorities, administration, creation, termination,
etc.

 The dispatcher is the kernel subsystem
Manages the dispatch queues (run queues),

handles thread selection, context switching,
preemption, etc

4

Scheduling Classes

Traditional Timeshare (TS) class
 attempt to give every thread a fair shot at execution time

 Interactive (IA) class
 Desktop only
 Boost priority of active (current focus) window
 Same dispatch table as TS

System (SYS)
 Only available to the kernel, for OS kernel threads

Realtime (RT)
 Highest priority scheduling class
 Will preempt kernel (SYS) class threads
 Intended for realtime applications

5

Scheduling Classes (Con’d)

Fair Share Scheduler (FSS) Class
 Same priority range as TS/IA class
CPU resources are divided into shares
 Shares are allocated (projects/tasks) by administrator
 Scheduling decisions made based on shares

allocated and used, not dynamic priority changes

Fixed Priority (FX) Class
 The kernel will not change the thread's priority
 A “batch” scheduling class

6

Priorities

7

Scheduling Class Structures

The kernel maintains an array of sclass
structures for each loaded scheduling class

Thread pointer to the class functions array,
and perthread class-specific data structure

Scheduling class operations vectors and
CL_XXX macros allow a single, central
dispatcher to invoke scheduling-class
specific functions

8

9

Scheduling Class Specific Functions

Implemented via macros
 #define CL_ENTERCLASS(t, cid, clparmsp, credp, bufp) \

 (sclass[cid].cl_funcs->thread.cl_enterclass) (t, cid, \

 (void *)clparmsp, credp, bufp)

Class management and priority manipulation
functions
 xx_admin, xx_getclinfo, xx_parmsin, xx_parmsout,

xx_getclpri, xx_enterclass, xx_exitclass, xx_preempt,
xx_sleep, xx_tick, xx_trapret, xx_fork, xx_parms[get|
set], xx_donice, xx_yield, xx_wakeup

10

Outline

 Scheduling Class and Priority

 Dispatch Queues & Dispatch TablesDispatch Queues & Dispatch Tables

 Thread Priorities & Scheduling

 Turnstiles & Priority Inheritance

11

Dispatcher

 The kernel subsystem that manages the dispatch queues (run
queues), handles preemption, finding the next runnable thread,
the idle loop, initiating context switching, etc

 Solaris implements per-processor dispatch queues - actually a
queue of queues

 Several dispatcher-related variables maintained in the CPU
structure as well
 cpu_runrun - preemption flag - do it soon
 cpu_kprunrun - kernel preemption flag - do it now!
 cpu_disp - dispatcher data and root of queues
 cpu_chosen_level - priority of next selected thread
 cpu_dispthread - kthread pointer

 A system-wide (or per-processor set) queue exists for realtime
threads

12

Dispatch Queues

Per-CPU run queues
 Actually, a queue of queues

Ordered by thread priority
Queue occupation represented via a bitmap
For Realtime threads, a system-wide kernel

preempt queue is maintained
Realtime threads are placed on this queue, not the

per-CPU queues
 If processor sets are configured, a kernel preempt

queue exists for each processor set

13

Per-CPU Dispatch Queues

14

Dispatch Tables

Per-scheduling class parameter tables

Time quantums and priorities

tuneable via dispadmin(1M)

15

TS Dispatch Table

TS and IA class share the same dispatch table
RES. Defines the granularity of ts_quantum
 ts_quantum. CPU time for next ONPROC state
 ts_tqexp. New priority if time quantum expires
 ts_slpret. New priority when state change from

TS_SLEEP to TS_RUN
 ts_maxwait. “waited too long” ticks
 ts_lwait. New priority if “waited too long”

16

RT, FX & FSS Dispatch Tables
 RT
 Time quantum only
 For each possible priority

 FX
 Time quantum only
 For each possible priority

 FSS
 Time quantum only
 Just one, not defined for each priority level
 Because FSS is share based, not priority based

 SYS
 No dispatch table
 Not needed, no rules apply

 INT
 Not really a scheduling class

17

Setting A RT Thread’s Priority

18

Dispatch Queue Placement

Queue placement is based a few simple
parameters
The thread priority

Processor binding/Processor set

Processor thread last ran on: Warm affinity

Depth and priority of existing runnable threads

Memory Placement Optimization (MPO)
enabled will keep thread in defined locality
group (lgroup)

19

Dispatch Queue Manipulation

setfrontdq(),

setbackdq()

A thread will be placed on either the front
of back of the appropriate dispatch queue
depending on

20

Outline

 Scheduling Class and Priority

 Dispatch Queues & Dispatch Tables

 Thread Priorities & SchedulingThread Priorities & Scheduling

 Turnstiles & Priority Inheritance

21

Thread Priorities & Scheduling

Every thread has 2 priorities; a global priority, derived
based on its scheduling class, and (potentially) and
inherited priority

Priority inherited from parent, alterable via priocntl(1)
command or system call

Typically, threads run as either TS or IA threads
 IA threads created when thread is associated with a

windowing system
RT threads are explicitly created
SYS class used by kernel threads, and for TS/IA

threads when a higher priority is warranted
 A temporary boost when an important resource is being held

 Interrupts run at interrupt priority

22

Thread Selection

The kernel dispatcher implements a select-and-ratify
thread selection algorithm
 disp_getbest(). Go find the highest priority runnable thread,

and select it for execution
 disp_ratify(). Commit to the selection. Clear the CPU preempt

flags, and make sure another thread of higher priority did not
become runnable
> If one did, place selected thread back on a queue, and try again

Warm affinity is implemented
 Put the thread back on the same CPU it executed on last

> Try to get a warm cache

 rechoose_interval kernel parameter
> Default is 3 clock ticks

23

Thread Preemption

Two classes of preemption
User preemption

> A higher priority thread became runnable, but it's not a realtime thread
> Flagged via cpu_runrun in CPU structure
> Next clock tick, you're outta here

Kernel preemption
> A realtime thread became runnable. Even OS kernel threads will get

preempted
> Poke the CPU (cross-call) and preempt the running thread now

24

Thread Execution

Run until
 A preemption occurs

> Transition from S_ONPROC to S_RUN
> placed back on a run queue

 A blocking system call is issued
> e.g. read(2)
> Transition from S_ONPROC to S_SLEEP
> Placed on a sleep queue

Done and exit
> Clean up

 Interrupt to the CPU you're running on
> pinned for interrupt thread to run
> unpinned to continue

25

Sleep & Wakeup

Condition variables used to synchronize
thread sleep/wakeup
A block condition (waiting for a resource or an

event) enters the kernel cv_xxx() functions
The condition variable is set, and the thread is

placed on a sleep queue
Wakeup may be directed to a specific thread,

or all threads waiting on the same event or
resource
> One or more threads moved from sleep queue, to run queue

26

Sleep/Wakeup Kernel Subsystem

27

Outline

 Scheduling Class and Priority

 Dispatch Queues & Dispatch Tables

 Thread Priorities & Scheduling

 Turnstiles & Priority InheritanceTurnstiles & Priority Inheritance

28

Turnstiles & Priority Inheritance

Turnstile - A special set of sleep queues for
kernel threads blocking on mutex or R/W locks
Priority inversion - a scenerio where a thread

holding a lock is preventing a higher priority
thread from running, because the higher priority
thread needs the lock.
Priority inheritance - a mechanism whereby a

kernel thread may inherit the priority of the
higher priority kernel thread
Turnstiles provide sleep/wakeup, with priority

inheritance, for synchronization primitives

29

Priority Inversion

30

Turnstiles

All active turnstiles reside in turnstile_table[],
index via a hash function on the address of the
synchronization object
Each hash chain protected by a dispatcher lock,

acquired by turnstile_lookup()
Each kernel thread is created with a turnstile, in

case it needs to block on a lock
turnstile_block() - put the thread to sleep on the

appropriate hash chain, and walk the chain,
applying PI where needed

31

Turnstiles (con’d)

turnstile_wakeup() - waive an inherited priority,
and wakeup the specific kernel threads
For mutex locks, wakeup is called to wake all

kernel threads blocking on the mutex
For R/W locks;
 If no waiters, just release the lock
 If a writer is releasing the lock, and there are waiting

readers and writers, waiting readers get the lock if
they are of the same or higher priority than the
waiting writer

 A reader releasing the lock gives priority to waiting
writers

32

Turnstiles (con’d)

33

Reference

Richard McDougall, James Mauro,
"SOLARIS Kernel Performance,
Observability & Debugging", USENIX'05,
2005, t2-solaris-slides.pdf

Solaris internals and performance
management, Richard McDougall, 2002,
class0802.pdf

34

End

• 2006-02-19

