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Scheduling Class and Priority

OSolaris supports multiple scheduling

classes

> Allows for the co-existence of different priority schemes
andscheduling algorithms (policies) within the kernel

» Each scheduling class provides a class-specific function to
manage thread priorities, administration, creation, termination,
etc.

O The dispatcher is the kernel subsystem

> Manages the dispatch queues (run queues),
handles thread selection, context switching,
preemption, etc



Scheduling Classes

O Traditional Timeshare (TS) class
> attempt to give every thread a fair shot at execution time

OInteractive (1A) class
> Desktop only
> Boost priority of active (current focus) window
» Same dispatch table as TS

O System (SYS)

> Only available to the kernel, for OS kernel threads
ORealtime (RT)

» Highest priority scheduling class

» Wl preempt kernel (SYS) class threads

» Intended for realtime applications



Scheduling Classes (Con’d)

OFair Share Scheduler (FSS) Class

> Same priority range as TS/IA class
» CPU resources are divided into shares
> Shares are allocated (projects/tasks) by administrator

» Scheduling decisions made based on shares
allocated and used, not dynamic priority changes

OFixed Priority (FX) Class

» The kernel will not change the thread's priority
» A “batch” scheduling class
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Scheduling Class Structures

OThe kernel maintains an array of sclass
structures for each loaded scheduling class

OThread pointer to the class functions array,
and perthread class-specific data structure

OScheduling class operations vectors and
CL_XXX macros allow a single, central
dispatcher to invoke scheduling-class
specific functions
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Scheduling Class Specific Functions

Olmplemented via macros

O #defi ne CL_ENTERCLASS(t, cid, clparnmsp, credp, bufp) \
O (sclass[cid].cl _funcs->thread.cl _enterclass) (t, cid, \

O (void *)cl parnsp, credp, bufp)

OClass management and priority manipulation
functions

» xx_admin, xx_getclinfo, xx_parmsin, xx_parmsout,
xX_getclpri, xx_enterclass, xx_exitclass, xx_preempt,
xX_sleep, xx_tick, xx_trapret, xx_fork, xx_parms[get|
set], xx_donice, xx_yield, xx_wakeup
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Dispatcher

O The kernel subsystem that mana%_es the dispatch queues (run
ueues), handles preemption, finding the next runnable thread,
the idle loop, initiating context switching, etc

O Solaris implements per-processor dispatch queues - actually a
gueue of queues

O Several dispatcher-related variables maintained in the CPU
structure as well
> cpu_runrun - preemption flag - do it soon
> cpu_kprunrun - kernel preemption flag - do it now!
> cpu_disp - dispatcher data and root of queues
> cpu_chosen_level - priority of next selected thread
> cpu_dispthread - kthread pointer

O A system-wide (or per-processor set) queue exists for realtime
threads
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Dispatch Queues

OPer-CPU run queues
» Actually, a queue of queues

OOrdered by thread priority
COQueue occupation represented via a bitmap

OFor Realtime threads, a system-wide kernel
preempt queue Is maintained

> Realtime threads are placed on this queue, not the
per-CPU queues

> |f processor sets are configured, a kernel preempt
gueue exists for each processor set

12



Per-CPU Dispatch Q
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Dispatch Tables

OPer-scheduling class parameter tables
OTime quantums and priorities
Otuneable via dispadmin(1M)
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TS Dispatch Table

OTS and |A class share the same dispatch table
» RES. Defines the granularity of ts_quantum
»ts quantum. CPU time for next ONPROC state
> ts_tgexp. New priority if time quantum expires

> ts_slpret. New priority when state change from
TS SLEEP to TS RUN

> ts_maxwait. “waited too long” ticks
> ts_lwait. New priority if “waited too long”
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RT, FX & FSS Dispatch Tables

ORT

> Time quantum only

> For each possible priority
OFX

> Time quantum only
> For each possible priority

O FSS

> Time quantum only
» Just one, not defined for each priority level
> Because FSS is share based, not priority based

O SYS
> No dispatch table
> Not needed, no rules apply

OINT

> Not really a scheduling class
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Setting A RT Thread’s Priority
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Dispatch Queue Placement

OQueue placement is based a few simple
parameters

> The thread priority
> Processor binding/Processor set
» Processor thread last ran on: Warm affinity

» Depth and priority of existing runnable threads

» Memory Placement Optimization (MPO)
enabled will keep thread in defined locality

group (Ilgroup)
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Dispatch Queue Manipulation

Osetfrontdqg(),
Osetbackdq()

DA thread will be placed on either the front
of back of the appropriate dispatch queue
depending on
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Thread Priorities & Scheduling

O Every thread has 2 priorities; a global priorit)(, derived

based on its scheduling class, and (potentially) and

Inherited priority

O Priority inherited from parent, alterable via priocntl(1)
command or system call

OTypically, threads run as either TS or |A threads

> |A threads created when thread is associated with a
windowing system

ORT threads are explicitly created

OSYS class used by kernel threads, and for TS/IA
threads when a higher priority is warranted

> A temporary boost when an important resource is being held
OlInterrupts run at interrupt priority
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Thread Selection

OThe kernel dispatcher implements a select-and-ratify
thread selection algorithm

> disp_getbest(). Go find the highest priority runnable thread,
and select it for execution

» disp_ratify(). Commit to the selection. Clear the CPU preempt
flags, and make sure another thread of higher priority did not
become runnable

> If one did, place selected thread back on a queue, and try again

OWarm affinity is implemented

> Put the thread back on the same CPU it executed on last
> Try to get a warm cache

> rechoose_interval kernel parameter
> Default is 3 clock ticks

22



Thread Preemption

OTwo classes of preemption

> User preemption
> A higher priority thread became runnable, but it's not a realtime thread
> Flagged via cpu_runrun in CPU structure
> Next clock tick, you're outta here

» Kernel preemption

> A realtime thread became runnable. Even OS kernel threads will get
preempted

> Poke the CPU (cross-call) and preempt the running thread now
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Thread Execution

CORun until

» A preemption occurs
> Transition from S_ONPROC to S_RUN
> placed back on a run queue

> A blocking system call is issued
> e.g. read(2)
> Transition from S_ONPROC to S_SLEEP
> Placed on a sleep queue

> Done and exit
> Clean up

> Interrupt to the CPU you're running on
> pinned for interrupt thread to run
> unpinned to continue
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Sleep & Wakeup

COCondition variables used to synchronize
thread sleep/wakeup

> A block condition (waiting for a resource or an
event) enters the kernel cv_xxx() functions

> The condition variable is set, and the thread Is
placed on a sleep queue

»Wakeup may be directed to a specific thread,
or all threads waiting on the same event or

resource
> One or more threads moved from sleep queue, to run queue
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Sleep/Wakeup Kernel Subsystem
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Turnstiles & Priority Inheritance

OTurnstile - A special set of sleep queues for
kernel threads blocking on mutex or R/W locks

COPriority inversion - a scenerio where a thread
holding a lock Is preventing a higher priority
thread from running, because the higher priority
thread needs the lock.

OPriority inheritance - a mechanism whereby a
kernel thread may inherit the priority of the
higher priority kernel thread

OTurnstiles provide sleep/wakeup, with priority
Inheritance, for synchronization primitives
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Turnstiles

OAIl active turnstiles reside In turnstile_table[],
Index via a hash function on the address of the
synchronization object

OEach hash chain protected by a dispatcher lock,
acquired by turnstile_lookup()

COEach kernel thread is created with a turnstile, Iin
case it needs to block on a lock

Oturnstile block() - put the thread to sleep on the
appropriate hash chain, and walk the chain,
applying Pl where needed
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Turnstiles (con’d)

Oturnstile_wakeup() - waive an inherited priority,
and wakeup the specific kernel threads

OFor mutex locks, wakeup is called to wake all
kernel threads blocking on the mutex

OFor R/W locks:

> If no waliters, just release the lock

> If a writer is releasing the lock, and there are waiting
readers and writers, waiting readers get the lock if
they are of the same or higher priority than the
walting writer

> A reader releasing the lock gives priority to waiting
writers
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Turnstiles (con’d)
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