
XIANG Yong
xyong@tsinghua.edu.cn

Chapter 2 Chapter 2 Process, Thread and Process, Thread and
SchedulingScheduling

—— Scheduler Class and Priority

2

Outline

 Scheduling Class and PriorityScheduling Class and Priority

 Dispatch Queues & Dispatch Tables

 Thread Priorities & Scheduling

 Turnstiles & Priority Inheritance

3

Scheduling Class and Priority

Solaris supports multiple scheduling
classes
 Allows for the co-existence of different priority schemes

andscheduling algorithms (policies) within the kernel
 Each scheduling class provides a class-specific function to

manage thread priorities, administration, creation, termination,
etc.

 The dispatcher is the kernel subsystem
Manages the dispatch queues (run queues),

handles thread selection, context switching,
preemption, etc

4

Scheduling Classes

Traditional Timeshare (TS) class
 attempt to give every thread a fair shot at execution time

 Interactive (IA) class
 Desktop only
 Boost priority of active (current focus) window
 Same dispatch table as TS

System (SYS)
 Only available to the kernel, for OS kernel threads

Realtime (RT)
 Highest priority scheduling class
 Will preempt kernel (SYS) class threads
 Intended for realtime applications

5

Scheduling Classes (Con’d)

Fair Share Scheduler (FSS) Class
 Same priority range as TS/IA class
CPU resources are divided into shares
 Shares are allocated (projects/tasks) by administrator
 Scheduling decisions made based on shares

allocated and used, not dynamic priority changes

Fixed Priority (FX) Class
 The kernel will not change the thread's priority
 A “batch” scheduling class

6

Priorities

7

Scheduling Class Structures

The kernel maintains an array of sclass
structures for each loaded scheduling class

Thread pointer to the class functions array,
and perthread class-specific data structure

Scheduling class operations vectors and
CL_XXX macros allow a single, central
dispatcher to invoke scheduling-class
specific functions

8

9

Scheduling Class Specific Functions

Implemented via macros
 #define CL_ENTERCLASS(t, cid, clparmsp, credp, bufp) \

 (sclass[cid].cl_funcs->thread.cl_enterclass) (t, cid, \

 (void *)clparmsp, credp, bufp)

Class management and priority manipulation
functions
 xx_admin, xx_getclinfo, xx_parmsin, xx_parmsout,

xx_getclpri, xx_enterclass, xx_exitclass, xx_preempt,
xx_sleep, xx_tick, xx_trapret, xx_fork, xx_parms[get|
set], xx_donice, xx_yield, xx_wakeup

10

Outline

 Scheduling Class and Priority

 Dispatch Queues & Dispatch TablesDispatch Queues & Dispatch Tables

 Thread Priorities & Scheduling

 Turnstiles & Priority Inheritance

11

Dispatcher

 The kernel subsystem that manages the dispatch queues (run
queues), handles preemption, finding the next runnable thread,
the idle loop, initiating context switching, etc

 Solaris implements per-processor dispatch queues - actually a
queue of queues

 Several dispatcher-related variables maintained in the CPU
structure as well
 cpu_runrun - preemption flag - do it soon
 cpu_kprunrun - kernel preemption flag - do it now!
 cpu_disp - dispatcher data and root of queues
 cpu_chosen_level - priority of next selected thread
 cpu_dispthread - kthread pointer

 A system-wide (or per-processor set) queue exists for realtime
threads

12

Dispatch Queues

Per-CPU run queues
 Actually, a queue of queues

Ordered by thread priority
Queue occupation represented via a bitmap
For Realtime threads, a system-wide kernel

preempt queue is maintained
Realtime threads are placed on this queue, not the

per-CPU queues
 If processor sets are configured, a kernel preempt

queue exists for each processor set

13

Per-CPU Dispatch Queues

14

Dispatch Tables

Per-scheduling class parameter tables

Time quantums and priorities

tuneable via dispadmin(1M)

15

TS Dispatch Table

TS and IA class share the same dispatch table
RES. Defines the granularity of ts_quantum
 ts_quantum. CPU time for next ONPROC state
 ts_tqexp. New priority if time quantum expires
 ts_slpret. New priority when state change from

TS_SLEEP to TS_RUN
 ts_maxwait. “waited too long” ticks
 ts_lwait. New priority if “waited too long”

16

RT, FX & FSS Dispatch Tables
 RT
 Time quantum only
 For each possible priority

 FX
 Time quantum only
 For each possible priority

 FSS
 Time quantum only
 Just one, not defined for each priority level
 Because FSS is share based, not priority based

 SYS
 No dispatch table
 Not needed, no rules apply

 INT
 Not really a scheduling class

17

Setting A RT Thread’s Priority

18

Dispatch Queue Placement

Queue placement is based a few simple
parameters
The thread priority

Processor binding/Processor set

Processor thread last ran on: Warm affinity

Depth and priority of existing runnable threads

Memory Placement Optimization (MPO)
enabled will keep thread in defined locality
group (lgroup)

19

Dispatch Queue Manipulation

setfrontdq(),

setbackdq()

A thread will be placed on either the front
of back of the appropriate dispatch queue
depending on

20

Outline

 Scheduling Class and Priority

 Dispatch Queues & Dispatch Tables

 Thread Priorities & SchedulingThread Priorities & Scheduling

 Turnstiles & Priority Inheritance

21

Thread Priorities & Scheduling

Every thread has 2 priorities; a global priority, derived
based on its scheduling class, and (potentially) and
inherited priority

Priority inherited from parent, alterable via priocntl(1)
command or system call

Typically, threads run as either TS or IA threads
 IA threads created when thread is associated with a

windowing system
RT threads are explicitly created
SYS class used by kernel threads, and for TS/IA

threads when a higher priority is warranted
 A temporary boost when an important resource is being held

 Interrupts run at interrupt priority

22

Thread Selection

The kernel dispatcher implements a select-and-ratify
thread selection algorithm
 disp_getbest(). Go find the highest priority runnable thread,

and select it for execution
 disp_ratify(). Commit to the selection. Clear the CPU preempt

flags, and make sure another thread of higher priority did not
become runnable
> If one did, place selected thread back on a queue, and try again

Warm affinity is implemented
 Put the thread back on the same CPU it executed on last

> Try to get a warm cache

 rechoose_interval kernel parameter
> Default is 3 clock ticks

23

Thread Preemption

Two classes of preemption
User preemption

> A higher priority thread became runnable, but it's not a realtime thread
> Flagged via cpu_runrun in CPU structure
> Next clock tick, you're outta here

Kernel preemption
> A realtime thread became runnable. Even OS kernel threads will get

preempted
> Poke the CPU (cross-call) and preempt the running thread now

24

Thread Execution

Run until
 A preemption occurs

> Transition from S_ONPROC to S_RUN
> placed back on a run queue

 A blocking system call is issued
> e.g. read(2)
> Transition from S_ONPROC to S_SLEEP
> Placed on a sleep queue

Done and exit
> Clean up

 Interrupt to the CPU you're running on
> pinned for interrupt thread to run
> unpinned to continue

25

Sleep & Wakeup

Condition variables used to synchronize
thread sleep/wakeup
A block condition (waiting for a resource or an

event) enters the kernel cv_xxx() functions
The condition variable is set, and the thread is

placed on a sleep queue
Wakeup may be directed to a specific thread,

or all threads waiting on the same event or
resource
> One or more threads moved from sleep queue, to run queue

26

Sleep/Wakeup Kernel Subsystem

27

Outline

 Scheduling Class and Priority

 Dispatch Queues & Dispatch Tables

 Thread Priorities & Scheduling

 Turnstiles & Priority InheritanceTurnstiles & Priority Inheritance

28

Turnstiles & Priority Inheritance

Turnstile - A special set of sleep queues for
kernel threads blocking on mutex or R/W locks
Priority inversion - a scenerio where a thread

holding a lock is preventing a higher priority
thread from running, because the higher priority
thread needs the lock.
Priority inheritance - a mechanism whereby a

kernel thread may inherit the priority of the
higher priority kernel thread
Turnstiles provide sleep/wakeup, with priority

inheritance, for synchronization primitives

29

Priority Inversion

30

Turnstiles

All active turnstiles reside in turnstile_table[],
index via a hash function on the address of the
synchronization object
Each hash chain protected by a dispatcher lock,

acquired by turnstile_lookup()
Each kernel thread is created with a turnstile, in

case it needs to block on a lock
turnstile_block() - put the thread to sleep on the

appropriate hash chain, and walk the chain,
applying PI where needed

31

Turnstiles (con’d)

turnstile_wakeup() - waive an inherited priority,
and wakeup the specific kernel threads
For mutex locks, wakeup is called to wake all

kernel threads blocking on the mutex
For R/W locks;
 If no waiters, just release the lock
 If a writer is releasing the lock, and there are waiting

readers and writers, waiting readers get the lock if
they are of the same or higher priority than the
waiting writer

 A reader releasing the lock gives priority to waiting
writers

32

Turnstiles (con’d)

33

Reference

Richard McDougall, James Mauro,
"SOLARIS Kernel Performance,
Observability & Debugging", USENIX'05,
2005, t2-solaris-slides.pdf

Solaris internals and performance
management, Richard McDougall, 2002,
class0802.pdf

34

End

• 2006-02-19

