opensolLaris

Ghapter: 2
Precess) ., thread; and
scheduling

—— kernel services

Outline

O Kernel Services
O System call

O Trap

O Interrupt

O kernel callout

O system clock

Access to Kernel Services

0 User mode

0 kernel mode

> Access Kernel data structures and hardware
devices

0O When a user process needs to access
kernel system services

»thread within the process transitions from
user mode to kernel mode through a set of
Interfaces known as system calls

Enter the kernel mode

O system call
> user process requests a kernel service

L processor trap

»>vectored transfer of control into the kernel,
Initiated by the processor

O interrupt

> vectored transfer of control into the kernel,
typically initiated by a hardware device

Context of thread

0 describes the environment for a thread of
execution

0 Execution Context

» thread stacks, open file lists, resource accounting,
etc.

O virtual memory context
> set of virtual-to-physical address translations
> Each process has its own virtual memory context

» each process context has kernel’s virtual memory
mapped within it

Execution Context

O Process Context
> acts on behalf of the user process

> access to the process’s user area (uarea), and process
structures for resource accounting

O Interrupt Context
> Interrupt threads execute in an interrupt context

> have their own stack and can access only kernel data
structures

O Kernel Context
» Kernel management threads run in the kernel context
» share the kernel’s environment with each other
> typically cannot access process-related data
» E.g. Page scanner

Threads Iin Kernel and Interrupt Context

O Interrupt Handlers
> Kernel threads handle all but high-priority interrupts.

O Kernel Management Threads

> kernel has own threads to carry out system
management tasks

> kernel management threads execute in the kernel’s
execution context

» scheduled in the system (SYS) scheduling class at
a higher priority than most other threads on the
system.

opensoLaris

Process, Interrupt, and Kernel Threads

User
Process
User Mode
System Call Interface
Kernel Mode

Call

Interrupts are light-
weight and do most
of their work by

scheduling an inter-
rupt thread. Interrupt

Virtual
Memory
Manager

Interrupt
Thread

Kernel
Threads

— Hardware —

Outline

O Kernel Services
O systern call

O Trap

O Interrupt

O kernel callout

O system clock

opensoLaris

Enter the kernel mode by System Calls

O User processes/applications access kernel services
through the system call facility

O Modes of execution (kernel & user) provide protection

O invocation of a system call causes the processor to
change from user mode to kernel mode

User
read () Process
User Mode

I System Call Interface I

Kernel Mode
File System

i e

Hardware

10

Regular System Calls

O kernel sysent table

»contains an entry for every system call
supported on the system

»>an array populated with sysent structures

sysent - — —

Sy_narg
~ sy_flags
™ (sy_call())
sy_lock
| (sy_calle())

11

Execution of System Calls

O results in the software issuing a trap instruction
O is executed on behalf of the calling thread

maimn()

int fd: i 4 kernel ™y
it bytes: = trap into k | rap tabl
wpe o ap into kernel trap table
EE;P_EEE 1?::‘ SLLAB)L LT systemn call *| enter syscall trap handler-=
==- . o

F‘EET"J"'[-'”'FE“'L = save the cpu struct address

exitl-1): - save the return address in %10
} else { L= increment cpu_sysinfo.syvscall stat

bytes=read (fd. buf, ..): 3 set up the arguments in the LWF re
1 E checfﬂa.g for sy=call prepmcess:lng%?_pre_sj.@]

1 if ves - do preprocessing (svscall_pre)
v otherwise. get syscall number from t_sysnum

index into sysent table for syscall
call it! g OpEn)

Y

Open return

any signals posted?
any post syscall handling?

(t_post_svs) A
restore nPC

==t return value from systern call

back to user land

k. A

12

Fast Trap System Calls

0 Solaris kernel’s feature

L user Processes can
> jump Into protected kernel mode
> do minimal processing and thenreturn

» without the overhead of saving all the state that a
regular system call does

O only be used when the processing required in
the kernel does not significantly interfere with
registers and stacks.

13

Outline

O Kernel Services
O system call

O Trap

O Interrupt

O kernel callout

O system clock

14

UltraSPARC | & Il Traps

O SPARC processor architecture uses traps as a
unified mechanism to handle

> system calls
> processor exceptions
> interrupts
O A SPARC trap is a procedure call as a result of
> synchronous processor exception,
> an asynchronous processor exception
> a software-initiated trap instruction
> a device interrupt

15

Processing of Traps

O hardware do
> Save certain processor state
» enters privileged mode

> executing code in the corresponding trap
table slot

00 And go on
» Execute trap handler for the type of trap

»Once interrupt handler has finished, control
IS returned to the interrupted thread

16

UltraSPARC | & Il Trap Types(1)

] Processor resets

» Power-on reset, machine resets, software-initiated
resets

0 Memory management exceptions

» MMU page faults, page protection violations,
memory errors, misaligned accesses, etc.

O Instruction exceptions

> Attempts to execute privileged instructions from
nonprivileged mode, illegal instructions, etc.

17

UltraSPARC | & Il Trap Types(2)

O Floating-point exceptions

> Floating-point exceptions, floating-point mode
Instruction attempted when floating point unit
disabled, etc.

0 SPARC register management

» Traps for SPARC register window spilling, filling, or
cleaning.

O Software-initiated traps

> Traps Initiated by the SPARC trap instruction (Tcc);
primarily used for system call entry in Solaris.

18

UltraSPARC | & Il Trap Priority Levels

O Each UltraSPARC | & Il trap has an
associated priority level

O Highest-priority trap is taken first
>0 is the highest priority

O Interrupt traps are subject to trap priority
precedence

»compared against the processor interrupt
level (PIL)

19

UltraSPARC | & Il Trap Levels

0 Nested traps

»>a trap can be received while another trap is
being handled

O Nested traps have five levels
> From trap level 0 (normal execution, no trap)

> To trap level 4 (an error handling state and
should not be reached during normal
processing)

20

UltraSPARC | & Il Trap Table Layout (1)

O UltraSPARC | & Il trap table is halved

»the lower half contains trap handlers for traps
taken at trap level O

»the upper half contains handlers for traps
taken when the trap level is 1 or greater

O Each half of the trap table is further
divided into two sections

» 256 hardware traps in the lower section

» 256 software traps in the upper section (for
the SPARC Tcc software trap instructions)

21

UltraSPARC | & Il Trap Table Layout (2)

Trap Table Contents Trap Types

Hardware Traps 000...07F

Trap Level = 0 Spill/Fill Traps 080...0FF
Software Traps 100...17F

Reserved 180...1FF
Hardware Traps 000...07F
Trap Level > 0 Spill’Fill Traps 080...0FF
Software Traps 100...17F

Reserved 180...1FF

22

Software Traps

O Software traps are initiated by the SPARC trap
instruction, Tcc.

O used |‘orimarily for system calls in the Solaris
kerne

O three software traps for system calls
> native system calls

» 32-bit system calls (when 32-bit applications are
run on a 64-bit kernel)

> SunOS 4.x binary compatibility system calls

O several ultra-fast system calls implemented as
their own trap

23

Trap Definition Trap Type Priority
Value
Trap instruction (SunOS 4.x syscalls) 100 16
Trap instruction (user breakpoints) 101 16
Trap instruction (divide by zero) 102 16
Trap instruction (flush windows) 103 16
Trap instruction (clean windows) 104 16
Trap instruction (do unaligned references) 106 16
Trap instruction (32-bit system call) 108 16
Trap instruction (set trap0) 109 16
Trap instructions (user traps) 110 - 123 16
Trap instructions (get hrtime) 124 16
Trap instructions (get hrvtime) 125 16
Trap instructions (self xcall) 126 16
Trap instructions (get hrestime) 127 16
Trap instructions (trace) 130-137 16
Trap instructions (64-bit system call) 140 16

UltraSPARC Software Traps

24

A Utility for Trap Analysis

trapstat 3
wvot nams

OTrapstat =20

24 eoleanwin
41 lewvel-1

»dynamically e
monitors trap .

Ei(:ti\/it)/ de level-14

60 int-vec

64 itlb-miss

> analyze the traps 6 dclb-miss

|
+
|
|
|
|
|
|
|
|
|
|
|
gc dtlb-prot |
taken on eaCh B4 @pill-l-nermal | 1210 002
8c spill-3-normal | 126 286
98 spill-é-normal |
|
|
|
|
|
|
|
|
|
+
|

processor installed « siioene

. ac apill-3-other
Ir] tr]fa E;)/S;tEErT1 cd fill-l1-normal
g fill-3-normal
deg fill-&6-normal
102 flush-wins
108 syscall-32
124 getts
127 gethrtime

76401 165150

25

Outline

O Kernel Services
O system call

O Trap

O Interrupt

O kernel callout

O system clock

26

Interrupts

O An asynchronous event, not associated with the
currently executing instruction

O Like traps

> Interrupts result in a vectored transfer of control to
a specific routine
> a device interrupt handler (part of the device driver).

> interrupts are hardware architecture specific

O Interrupts can be “hardware” or “software”
» “Hard”ware interrupts generated by I/O devices

» Soft interrupts are established via a call to the
kernel add_ softintr() function

27

Interrupt priority

O based on interrupt level
> higher levels have higher priority

0 15 (1-15) interrupt levels defined

> Levels 1-9 are serviced by an interrupt thread
Inked to the processor that took the interrupt

» Level 10 is the clock, and is handled by a dedicated
clock intr_thread

» Levels 11-15 are handled in the context of the

thread that was executing
> these are considered high priority interrupts

O Dispatcher locks are held at level 11

28

Interrupt priority

High Interrupt Priority Leve' [45

[
I

ey
L

PO Serial Intermupts

—
Fa

lh
iy

Clock Interrupt

—
-1

i

Interrugss at level

10 or below are
Metwork Interupts handled by interrupt

Disk Interrupts intemupts are handed

— | ko | s [en]| oo | = | oo

Low Interrupt Priority Leve!

29

opensoLaris

Interrupt Thread Priorities

level 10

level 1

30

iInterrupt threads

O When a CPU takes an interrupt, the currently
running thread iIs “pinned” (not context switched
out), some context is “borrowed”, and the
Interrupt thread runs

O If the interrupt thread completes

» Simply unpin the pinned thread, and let it resume

O If the interrupt thread blocks

» Must be upgraded to a “complete” thread, so it can
block

> This is the ithr column in mpstat

O Allow the pinned thread to resume

31

Handling Interrupts with Threads

Thread is intermupted. Thread is resumed.
@ 9 AR—
Ezecuting Thread | ; CPU
¥ ' Interrupt
v Threads

@ Interrupt thread from
CFL thread pool for the

priority of the interrupt e Ll
handles the intermupt.

—lMUJ-h-Lﬂm"-JD:IILD

32

Outline

O Kernel Services
O system call

O Trap

O Interrupt

O kernel callout
O system clock

33

Kernel Callout

00 general-purpose, time-based event
scheduling

O kernel routines can place functions on the
callout table through the timeout(9F)
Interface.

O With each clock interrupt, the tick value is
tested and the function is executed when
the time interval expires

34

Solaris 2.6 and 7 Callout Tables

callout ID hashlist

"T_idnext
*c_idprev
*c_lbnext
*c_lbprev
c xid

C_runtime
{"C_func)
c_arg

¢_executof

¢_done

callout structures

callout_tabl
-tah | ct_lock short-term callouts
-~ ct freelist
- - [] ct_curtime
normal CHHNMSE I
callouts,] o B%a oo
0-7. ct_short_id long-term callouts
| | ct_!ung_'[ulj
>’ ct_idhash[]
I I ct_Ibhashp(]
real-time callout_table_t
callouts,
8 -15. callout freelist
= [*C_idnext | [*C_idnext |
- = *c_idprev S| *c_idprev
*c_lbnext 'c_lbnext
*c_lbprev *c_lbprev | ["C_IdNEXT
cxid c xid *c_idprey
C_runtime C_runtime *c_Ibnext
E"c_ﬁmc] ‘(:E"._ﬁJnc] *c_lbprev
™| ct_lock 4 c_a C_xid .
of freelist c_executof c_executof c_runtime
cf_curtime c_done c_done ‘(iccamnc]
ct_runtime — I
ct_threadpool E_gﬁﬁ'éum
cltpe callout Ibolt value hashlist | —
ct_long id | T_IONext |, ['T_jdnext
ct_idhash *c_idprev [“m| *c_idprev
ct Ibhash | *c_lbnext *c_lbnext
— p[k# "c_lbpreyv *c_lbprev
C_XI C_Xi
t:allnut_tahle_\l\ C_runtime C_runtime
| ‘(t"c_ﬁJnc] E"c_func]
c_a c_a
c_executol c_executof
c_done c_done

35

Outline

O Kernel Services
O system call

O Trap

O Interrupt

O kernel callout

O system clock

36

System Clocks

O All Sun systems implement a Time-Of-Day
(TOD) clock chip that keeps time

O TOD clock circuitry is part of the system
EEPROM

O TOD device driver implemented to read/write
TOD -accessable as a device

O Clock interrupts generated 100 times a second
- every 10 milliseconds

O Clock interrupt handler performs generic
housekeeping functions

37

System Clocks

C commands — 1:Iata{1:]>

Process
context

cilongs —
n::tlm 1}3::: aac:ﬂmn[ﬂt:} g"ﬂtll‘l‘iﬂ{ﬁ@
localtime|3c)

_________________ ;

(tlrruEtln amnd date)
Kernel ? H&? ﬂhmnlil

____________ (_ roowenveromwen)

clk_alm_secs
clE alm mins
ek _alm_

clk_alm_days

clk sec -
clk min Eg - %
clk hour Ji]

clk_day
ClE_wee :‘r[
ik month [

L e e e e e e = = clk_year [0 - 'EI'EI]

hardware

38

Clock interrupt handler

Calculate free anon space

Calculate freemem

Calculate waitio

Calculate usr, sys & idle for each cpu
Do dispatcher tick processing
Increment |bolt

Check the callout queue

Update vminfo stats

Calculate rung and swapq sizes

Run fsflush if it’s time

Wake up the memory scheduler if necessary

OO0O0000000:0

39

High-Resolution Timer

O nanosecond-level timing functions

O internal gethrestime() (get high-resolution time)
function

O System call API
> setitimer(2)

> support for real-time interval timers

> gethrtime(3C)

> provides programs with nanosecond-level granularity for timing

» gethrtime(3C)

> read the TICK register and return a normalized (converted to nanoseconds) value

40

Reference

O Solaris Internals-Core Kernel Components, Jim
g/loaouoro, Richard McDougall, Sun Microsystems Press,

0 SOLARIS Kernel Performance, Observability &
Debug%ngE, Richard McDougall, James
Mauro,USENIX’05 ,2005

O Solaris Internals and Performance Management,
Richard McDougall,2002

41

