
1

Zhao Xia

zhaoxia@os.pku.edu.cn

Chapter 2 Chapter 2
ProcessProcess，， thread, and thread, and
schedulingscheduling

—— kernel services

2

Outline

 Kernel Services Kernel Services

 System call

 Trap

 Interrupt

 kernel callout

 system clock

3

Access to Kernel Services

User mode

 kernel mode
Access Kernel data structures and hardware

devices

When a user process needs to access
kernel system services
 thread within the process transitions from

user mode to kernel mode through a set of
interfaces known as system calls

4

Enter the kernel mode

 system call
user process requests a kernel service

 processor trap
vectored transfer of control into the kernel,

initiated by the processor

 interrupt
vectored transfer of control into the kernel,

typically initiated by a hardware device

5

Context of thread

 describes the environment for a thread of
execution

 Execution Context
 thread stacks, open file lists, resource accounting,

etc.

 virtual memory context
 set of virtual-to-physical address translations
 Each process has its own virtual memory context
 each process context has kernel’s virtual memory

mapped within it

6

Execution Context

 Process Context
 acts on behalf of the user process
 access to the process’s user area (uarea), and process

structures for resource accounting
 Interrupt Context

 Interrupt threads execute in an interrupt context
 have their own stack and can access only kernel data

structures
 Kernel Context

 Kernel management threads run in the kernel context
 share the kernel’s environment with each other
 typically cannot access process-related data
 E.g. Page scanner

7

Threads in Kernel and Interrupt Context

 Interrupt Handlers
 Kernel threads handle all but high-priority interrupts.

 Kernel Management Threads
 kernel has own threads to carry out system

management tasks
 kernel management threads execute in the kernel’s

execution context
 scheduled in the system (SYS) scheduling class at

a higher priority than most other threads on the
system.

8

Process, Interrupt, and Kernel Threads

9

Outline

 Kernel Services

 system callsystem call

 Trap

 Interrupt

 kernel callout

 system clock

10

Enter the kernel mode by System Calls

 User processes/applications access kernel services
through the system call facility

 Modes of execution (kernel & user) provide protection
 invocation of a system call causes the processor to

change from user mode to kernel mode

11

Regular System Calls

 kernel sysent table
contains an entry for every system call

supported on the system

an array populated with sysent structures

12

Execution of System Calls
 results in the software issuing a trap instruction
 is executed on behalf of the calling thread

13

Fast Trap System Calls

 Solaris kernel’s feature

 user processes can
 jump into protected kernel mode
 do minimal processing and thenreturn
without the overhead of saving all the state that a

regular system call does

 only be used when the processing required in
the kernel does not significantly interfere with
registers and stacks.

14

Outline

 Kernel Services

 system call

 TrapTrap

 Interrupt

 kernel callout

 system clock

15

UltraSPARC I & II Traps

 SPARC processor architecture uses traps as a
unified mechanism to handle
 system calls
 processor exceptions
 interrupts

 A SPARC trap is a procedure call as a result of
 synchronous processor exception,
 an asynchronous processor exception
 a software-initiated trap instruction
 a device interrupt

16

Processing of Traps

 hardware do
Save certain processor state
enters privileged mode
executing code in the corresponding trap

table slot

 And go on
Execute trap handler for the type of trap
Once interrupt handler has finished, control

is returned to the interrupted thread

17

UltraSPARC I & II Trap Types(1)

 Processor resets
 Power-on reset, machine resets, software-initiated

resets

 Memory management exceptions
MMU page faults, page protection violations,

memory errors, misaligned accesses, etc.

 Instruction exceptions
 Attempts to execute privileged instructions from

nonprivileged mode, illegal instructions, etc.

18

UltraSPARC I & II Trap Types(2)

 Floating-point exceptions
 Floating-point exceptions, floating-point mode

instruction attempted when floating point unit
disabled, etc.

 SPARC register management
 Traps for SPARC register window spilling, filling, or

cleaning.

 Software-initiated traps
 Traps initiated by the SPARC trap instruction (Tcc);

primarily used for system call entry in Solaris.

19

UltraSPARC I & II Trap Priority Levels

 Each UltraSPARC I & II trap has an
associated priority level

Highest-priority trap is taken first
0 is the highest priority

 Interrupt traps are subject to trap priority
precedence
compared against the processor interrupt

level (PIL)

20

UltraSPARC I & II Trap Levels

Nested traps
a trap can be received while another trap is

being handled

Nested traps have five levels
From trap level 0 (normal execution, no trap)

To trap level 4 (an error handling state and
should not be reached during normal
processing)

21

UltraSPARC I & II Trap Table Layout（ 1）

UltraSPARC I & II trap table is halved
 the lower half contains trap handlers for traps

taken at trap level 0
 the upper half contains handlers for traps

taken when the trap level is 1 or greater

 Each half of the trap table is further
divided into two sections
256 hardware traps in the lower section
256 software traps in the upper section (for

the SPARC Tcc software trap instructions)

22

UltraSPARC I & II Trap Table Layout（ 2）

23

Software Traps

 Software traps are initiated by the SPARC trap
instruction, Tcc.

 used primarily for system calls in the Solaris
kernel

 three software traps for system calls
 native system calls
 32-bit system calls (when 32-bit applications are

run on a 64-bit kernel)
 SunOS 4.x binary compatibility system calls

 several ultra-fast system calls implemented as
their own trap

24

UltraSPARC Software Traps

25

A Utility for Trap Analysis

 Trapstat
dynamically

monitors trap
activity

analyze the traps
taken on each
processor installed
in the system

26

Outline

 Kernel Services

 system call

 Trap

 InterruptInterrupt

 kernel callout

 system clock

27

Interrupts

 An asynchronous event, not associated with the
currently executing instruction

 Like traps
 interrupts result in a vectored transfer of control to

a specific routine
> a device interrupt handler (part of the device driver).

 interrupts are hardware architecture specific

 Interrupts can be “hardware” or “software”
 “Hard”ware interrupts generated by I/O devices
 Soft interrupts are established via a call to the

kernel add_softintr() function

28

Interrupt priority

 based on interrupt level
 higher levels have higher priority

 15 (1-15) interrupt levels defined
 Levels 1-9 are serviced by an interrupt thread

linked to the processor that took the interrupt
 Level 10 is the clock, and is handled by a dedicated

clock_intr_thread
 Levels 11-15 are handled in the context of the

thread that was executing
> these are considered high priority interrupts

 Dispatcher locks are held at level 11

29

Interrupt priority

30

Interrupt Thread Priorities

31

interrupt threads

 When a CPU takes an interrupt, the currently
running thread is “pinned” (not context switched
out), some context is “borrowed”, and the
interrupt thread runs

 If the interrupt thread completes
 Simply unpin the pinned thread, and let it resume

 If the interrupt thread blocks
Must be upgraded to a “complete” thread, so it can

block
> This is the ithr column in mpstat

 Allow the pinned thread to resume

32

Handling Interrupts with Threads

33

Outline

 Kernel Services

 system call

 Trap

 Interrupt

 kernel calloutkernel callout

 system clock

34

Kernel Callout

 general-purpose, time-based event
scheduling

 kernel routines can place functions on the
callout table through the timeout(9F)
interface.

With each clock interrupt, the tick value is
tested and the function is executed when
the time interval expires

35

Solaris 2.6 and 7 Callout Tables

36

Outline

 Kernel Services

 system call

 Trap

 Interrupt

 kernel callout

 system clocksystem clock

37

System Clocks

 All Sun systems implement a Time-Of-Day
(TOD) clock chip that keeps time

 TOD clock circuitry is part of the system
EEPROM

 TOD device driver implemented to read/write
TOD -accessable as a device

 Clock interrupts generated 100 times a second
- every 10 milliseconds

 Clock interrupt handler performs generic
housekeeping functions

38

System Clocks

39

Clock interrupt handler

 Calculate free anon space
 Calculate freemem
 Calculate waitio
 Calculate usr, sys & idle for each cpu
 Do dispatcher tick processing
 Increment lbolt
 Check the callout queue
 Update vminfo stats
 Calculate runq and swapq sizes
 Run fsflush if it’s time
 Wake up the memory scheduler if necessary

40

High-Resolution Timer

 nanosecond-level timing functions

 internal gethrestime() (get high-resolution time)
function

 System call API
 setitimer(2)

> support for real-time interval timers

 gethrtime(3C)
> provides programs with nanosecond-level granularity for timing

 gethrtime(3C)
> read the TICK register and return a normalized (converted to nanoseconds) value

41

Reference

 Solaris Internals-Core Kernel Components, Jim
Mauro, Richard McDougall, Sun Microsystems Press,
2000

 SOLARIS Kernel Performance, Observability &
Debugging, Richard McDougall, James
Mauro,USENIX’05 ,2005

 Solaris Internals and Performance Management,
Richard McDougall,2002

42

End

•Last.first@Sun.COM

