opensoLaris

(GHEPIERZ PIOGESS iHIEa s 2rna
sechHeduling

Solaris Multithreaded Process

Outline

O Introduction to Solaris Processes
0 Multithreaded Process Model

1 Proc tools

The Process Model

OSolaris Kernel is Multi-threaded

» Kernel level threads (kthreads) are the unit of
concurrency within the kernel

» Scheduling, synchronization are kernel-level
(kthread) concepts

0 Processes are a combination of state and
one or more user threads

» Process threads are abstracted upon kernel threads
> Single threaded processes have just one thread

The Process Model

O Processes

> All processes begin life as a program , a disk file (ELF
object)

» All processes have “state” or context that defines their
execution environment - hardware & software context

O Hardware context
» The processor state, which is CPU architecture dependent.

> In general, the state of the hardware registers (general
reqgisters, privileged registers)

> Maintained in the LWP

0 Software context

> Address space, credentials, open files, resource limits, etc —
stuff shared by all the threads In a process

> can be further divided into “hardware” context and “software”
context

opensoLaris

Conceptual View of a Process

physical memory
open files virtual address mapping .
signals | § 00010000 a.outfie virtual-to- ﬂ"’l
credentials | & 00022000 heapspace physical
@ ef7a2000 libc shared obj address memo
ef7aB8000 anon space . ages
o S e£7d0000 linkeditor translatio e
e T effed000 stack
< Some Rl/rc:cess
a memory pages
originafe as
disk files.
1T~ Rardivare — = 1
LWP context | |
saved in
& restored | |
from sfructs
in the LWP | |
(mcontext)
kthread ™ | |
= ~ N ngr% earge
~ “mﬂq_ TS

Processor

the process structure

‘p_as

"p_Eues

"p_cred
p_swap
p_stat

p_wcod

p_pipid

“E_pidp

"o_lockp
p_crock

‘p_parent
"p_child

"o_pgido

—{_plock |

-

credeniials

cnt

e

p_cutim
p_csiim

p_sig

p_haphor

“p_thst

‘o_plist

p_uitirne
p_stme

p_brkbass
p_brksize

‘po_sipoueus
‘p_sigghdr ~]
'p_ashapip

p_zombent

"p_zombist
'o_trace

Er:n: groug [0 |

=2

vnode

address
_ space

hat

e

nardware address
translation.

d
£

—

tal

= segment

inode

binary ol

axecuUtable
file

CProc structure

the on-disk

) Iject

—|

segvn_data

—)

vy 4

segment

—-|

segvn_data

v 4

seqment

-

segvn_data

al gueue.
=

1 na|-m sign

ders. |

SEr

u_flis

{proc

i

] i | nnEI B iII'I Es Ec:- -:}m':

Of primary vno

kernel
thread

/node and
entry list

tha “ashwp”
thread for
signals

user

e

al:

"o_aio

"p_itimer
"p_door_list
"p_sc_door |

[,\,%)
—| structu

aio structure

W

a3

'

anon_mag

ynode

| >

ointers |

i vnode segment

is mapping fo

INades

] |

/@ad

tsproc

vy 4

scheduling-
class-
spacific

tsproc kthread

-

data
struciures

LWP

v 4

(cl_data)

|-l———

tsproc kthread

Lwy

LW \——L:Ti
scheduler acTVations doar vnode.

inked list of kernel
freads and LWFs. Each
ernel thread links to a
cheduling class spacific
ata struciure (2.g., isproc).

cpu

giroct

= |

door_node

re of the cpu

‘ Cp
the thread lasiranm on

Process Execution Environment

Mapped memory
pages for process s

/ hard ! various address space
a (| scheduling class and priority | Eg;t:ftre || Segments
L H 4 I (registers, N
© | rocess . stack !
‘ : (parents, . ,
& T? \ ' children) \Hﬁw address | Memory
E \ I space I
£ ¢¢ \ ! process state . 0
oo session |
\ ! |/process ID{PIEIJ d ::nforiﬂattmn :
. rocess grou : contro ,
Vo Earent plgncesps D W"ﬂ terminal, .
| job control |
pE—— rﬁ [credentiais (UD, GID) | state) :

Process State Diagram

OFor the most part, for each process state, there
IS a corresponding kthread state

OSomewhat misleading - kthreads change state,

not processes

preempied or tme guanium used

for
N debugger SSTDF' —
or job control H: J
| sioL J)—={ SRUN)—~{SONPROC)
N — —-__1
I fnrk mmpleh& A syscall ~
' | L SSII_EEF")
wait} - M | |
\ SZOMB) I :
-t — = wakelp

exlt, Tall through main, signal, etc.

Process and Kernel Thread States

Process Kernel Thread Description
SIDL State during £ork(2) (creation).
SRUN TS RUN Runnable.
SONPROC TS ONPROC Running on a processor.
SELEEP TS SLEEP Sleeping (blocked).
SSTOF Ts STOPPED Stopped.
SZCOMB TS ZOMB Kthread/process has terminated.
TS FREE Thread is waiting to be reaped.
OKthread creation is not flagged as a distinct state - they

go rightto TS _RUN

OKthread structures are flagged as TS _FREE when the
proc or kthread/LWP is terminated

> This allows the kernel to maintain a cache of free
kthread/LWP structures

opensoLaris

Process, LWP, and Kthread Linkage

OKernel maintains system-wide linked lists of
processes, LWPs and kthreads

ORelationship links maintained at every level

| the kernel process table
practiveT.. proc| | Proc}l | Proc| [proc}| [proc

userthremi\fl/'z§§ - - 22 n n
-l —— Es -l -] — -l —

| L~

|

| a
L R S I | _ S R R
[il i] i
LWP LWP LwrP | wwe||| Lwr|| LWP| || LWP LWP
ol et] v
=] =] =] = = = = =]
s8] e ds s s s—s

10

Solaris Thread Concepts

OKernel Threads
» Kernel’s unit of concurrency

OLWP

> Implemented to allow concurrent system calls from a
single process

» Without LWPs, user threads would contend at
system call

COUser Threads

» The thread abstraction of the userland programming
model

11

The Lightweight Process (LWP)

O the attribute of a LWP

> Resource utilization counters and microstate
accounting information

»The sum total of all LWPs resource usage is
stored in the process

» Most of the LWP structure members exist to
support system calls and to maintain hardware
context information

> An LWP blocked on a system call does not
cause the entire process to block

12

The kernel thread (KThread)

CFeatures

»the entity that actually gets put on a dispatch
gqueue and scheduled

» scheduling class and priority Is assigned to a
kthread , not the process

» kthread associated with the LWP, has a
priority and scheduling class

13

Outline

O Introduction to Solaris Processes

O Multithreaded Process Model
O Proc tool

14

opensoLaris

Multithreaded Process Model

OProcesses can have varying numbers of user
Othreads, LWPs and kernel threads

pracl proc2 procl proc 4

User Threads
s User Layer
. Kernel Laver
readas

\ the dispatch

An unattached N ‘,,_-—-—-——""_'_'_'—F"J

kernel th /

___________ Hardware Laver
Processors (CPU’s)

15

The Multithreading Revolution

Solaris 8, 9, 10, ...

Solaris 2.0 - Solaris 8

i

Multi-level Thread Model
(M:N thread model)

COPros:

Usemmeadss S S S S S > Fast user thread create
and destroy
oo Userthreads are scheduled

ST ol WRsso ey > No system call required

| Pl for synchronization
PARIRY » Fast context-switching
ol [P [uPp OCons:
Process P .
e femel || kel || fene » Complex, and tricky
]| e | | e programming model

> Signal delivery

17

Single-level Thread Model
(1:1 Thread Model)

A mulithreaded process
O Every user level thread
S S S has an Iwp, and a
kthread
WP LWP | | LWP .
Process 0 Kernel level scheduling
kemel | kemel | Kemel :
Gl bod| | test | | e 00 More expensive thread
; . The keme! d|?palcheb| mﬁnag?s create/ destroy,
'\ ' fUN . .
S 5 \ fh egg:uaeﬁd0| sllghneadufesekgfnel Sy nchronization
A ' treads onto avallable processors

according to prioriy and scheduling 0O More responsive
Coss scheduling,

synchronization
Kernel Management

Threads/Daemons
e.g., Memory Mgmt Thread

;
| I I

18

Outline

O Introduction to Solaris Processes
0 Multithreaded Process Model

O Proc tool

19

proc(1) Debugging Utilities

OSolaris provides a powerful and unrivaled
set of debugging and observation utilities —
fully documented in the proc(1) man page.

[0 Solaris 10 provides substantial
Improvements for two of these tools, and a
new directory In /proc

> pmap(1)
> pfiles(1)
> [proc/pid/path

20

pmap(1)

OShows information about the address
space of a process.

example$ pmap 121969
121969: ./stacks

00010000 8K r-x—— /tmp/stacks Location and size of
00020000 8K rwx-— /tmp/stacks /

FEFFA000 8K rwx—R [stack tid=4] /_every_ thread S_taCk’
FFOFR000 8K rwx-R [stack tid=3] / identified by tid
FE1IFAQQO 8K rwx-R [stack tid=2]
FF220000 64K rw——- [altstack tid=4]

FEZ240000 112K rw——-— [anon |

- I Alternate signal stacks
FFEFAQOO 24K rwx—— [stack]

total 1400K shown for each thread

that has one (see
sigaltstack(Z))

21

pmap(1)

COMay also be used on core files

OSegments not present in the core files are
marked with a "™

example$ pmap core
core 'core' of 404654: ksh

00010000 200K r-x——* /usr/bin/ksh
00052000 8K rwx——- /usr/bin/ksh
00054000 1160K rwx—— [heap |
FE200000 856K r—-x——* /lib/libc.so.l
FF2E6000 32K rwx-- /lib/libc.so.1l

FFE2EEQQ0 BK rwx—— /lib/libc.so.1l

22

Reference

0 Jim Mauro, Richard McDougall, Solaris Internals-Core Kernel Components,
Sun Microsystems Press, 2000

O Sun, Multithreading in the Solaris Operating Environment, A Technical
White Paper,2002

O Max Bruning, Threading Model In Solaris, Training lectures,2005
O Solaris internals and performance management, Richard McDougall, 2002

23

