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The Process Model

OSolaris Kernel is Multi-threaded

» Kernel level threads (kthreads) are the unit of
concurrency within the kernel

» Scheduling, synchronization are kernel-level
(kthread) concepts

0 Processes are a combination of state and
one or more user threads

» Process threads are abstracted upon kernel threads
> Single threaded processes have just one thread



The Process Model

O Processes

> All processes begin life as a program , a disk file (ELF
object)

» All processes have “state” or context that defines their
execution environment - hardware & software context

O Hardware context
» The processor state, which is CPU architecture dependent.

> In general, the state of the hardware registers (general
reqgisters, privileged registers)

> Maintained in the LWP

0 Software context

> Address space, credentials, open files, resource limits, etc —
stuff shared by all the threads In a process

> can be further divided into “hardware” context and “software”
context
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Conceptual View of a Process
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the process structure
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Process Execution Environment
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Process State Diagram

OFor the most part, for each process state, there
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Process and Kernel Thread States

Process Kernel Thread Description
SIDL State during £ork(2) (creation).
SRUN TS RUN Runnable.
SONPROC TS ONPROC Running on a processor.
SELEEP TS SLEEP Sleeping (blocked).
SSTOF Ts STOPPED Stopped.
SZCOMB TS ZOMB Kthread/process has terminated.
TS FREE Thread is waiting to be reaped.
OKthread creation is not flagged as a distinct state - they

go rightto TS _RUN

OKthread structures are flagged as TS _FREE when the
proc or kthread/LWP is terminated

> This allows the kernel to maintain a cache of free
kthread/LWP structures
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Process, LWP, and Kthread Linkage

OKernel maintains system-wide linked lists of
processes, LWPs and kthreads

ORelationship links maintained at every level
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Solaris Thread Concepts

OKernel Threads
» Kernel’s unit of concurrency

OLWP

> Implemented to allow concurrent system calls from a
single process

» Without LWPs, user threads would contend at
system call

COUser Threads

» The thread abstraction of the userland programming
model

11



The Lightweight Process (LWP)

O the attribute of a LWP

> Resource utilization counters and microstate
accounting information

»The sum total of all LWPs resource usage is
stored in the process

» Most of the LWP structure members exist to
support system calls and to maintain hardware
context information

> An LWP blocked on a system call does not
cause the entire process to block
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The kernel thread (KThread)

CFeatures

»the entity that actually gets put on a dispatch
gqueue and scheduled

» scheduling class and priority Is assigned to a
kthread , not the process

» kthread associated with the LWP, has a
priority and scheduling class
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Multithreaded Process Model

OProcesses can have varying numbers of user
Othreads, LWPs and kernel threads
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The Multithreading Revolution

Solaris 8, 9, 10, ...

Solaris 2.0 - Solaris 8
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Multi-level Thread Model
(M:N thread model)
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Single-level Thread Model
(1:1 Thread Model)
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proc(1) Debugging Utilities

OSolaris provides a powerful and unrivaled
set of debugging and observation utilities —
fully documented in the proc(1) man page.

[0 Solaris 10 provides substantial
Improvements for two of these tools, and a
new directory In /proc

> pmap(1)
> pfiles(1)
> [proc/pid/path
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pmap(1)

OShows information about the address
space of a process.

example$ pmap 121969
121969: ./stacks

00010000 8K r-x—— /tmp/stacks Location and size of
00020000 8K rwx-— /tmp/stacks /

FEFFA000 8K rwx—R [ stack tid=4 ] /_every_ thread S_taCk’
FFOFR000 8K rwx-R [ stack tid=3 ] / identified by tid
FE1IFAQQO 8K rwx-R [ stack tid=2 ]
FF220000 64K rw——- [ altstack tid=4 ]

FEZ240000 112K rw——-— [ anon |

- I Alternate signal stacks
FFEFAQOO 24K rwx—— [ stack ]

total 1400K shown for each thread

that has one (see
sigaltstack(Z))
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pmap(1)

COMay also be used on core files

OSegments not present in the core files are
marked with a "™

example$ pmap core
core 'core' of 404654: ksh

00010000 200K r-x——* /usr/bin/ksh
00052000 8K rwx——- /usr/bin/ksh
00054000 1160K rwx—— [ heap |
FE200000 856K r—-x——* /lib/libc.so.l
FF2E6000 32K rwx-- /lib/libc.so.1l

FFE2EEQQ0 BK rwx—— /lib/libc.so.1l
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