
	

Hasso	Plattner	Institute		Operating	Systems	and	Middleware	Group	

Project	Seminar:		
Parallel	and	Distributed	Systems	
Assignment	3	(Submission	deadline:	Nov	30th	2015,	23:59	CET)	

General	Rules	
The	assignment	solutions	have	to	be	submitted	at:	

https://www.dcl.hpi.uni-potsdam.de/submit/	

Our	 automated	 submission	 system	 is	 intended	 to	 give	 you	 feedback	 about	 the	 validity	of	 your	 file	
upload.	A	submission	is	considered	as	accepted	if	the	following	rules	are	fulfilled:	

• You	did	not	miss	the	deadline.	
• Your	file	upload	can	be	decompressed	with	a	zip	/	tar	decompression	tool.	
• Your	submitted	solution	contains	only	the	source	code	files	and	a	Makefile.	Please	leave	out	

any	Git	/	Mercurial	repository	clones	or	SVN	/	CVS	meta-information.	
• Your	solution	can	be	compiled	using	the	“make”	command,	without	entering	a	separate	sub-

directory	after	decompression.	
• You	program	runs	without	expecting	any	kind	of	keyboard	input	or	GUI	interaction.	
• Our	assignment-specific	validation	script	accepts	your	program	output	/	generated	files.	

If	 something	 is	wrong	with	 your	 submission,	 you	will	 be	 informed	via	 email	 (console	output,	 error	
code).	Re-uploads	of	corrected	solutions	are	possible	until	the	deadline.		

All	tasks	must	be	submitted	accordingly	in	order	to	pass	the	assignment.	

Assignment	3	
The	third	assignment	covers	OpenMP	in	shared	memory	systems.	OpenMP-enabled	compilers	should	
be	available	in	all	modern	development	systems,	such	as	with	the	default	compiler	under	Linux	and	
MacOS	X	(gcc	–fopenmp)	 	



	

Hasso	Plattner	Institute		Operating	Systems	and	Middleware	Group	

Task	3.1:	Decrypt	with	OpenMP	
Develop	an	OpenMP-based	command	line	tool	that	performs	a	brute-force	dictionary	attack	on	Unix	
crypt(3)	passwords.	One	of	the	users	has	a	password	exactly	matching	one	dictionary	entry.	A	second	
user	 has	 a	 password	 build	 from	 one	 of	 the	 dictionary	 entries	 plus	 a	 single	 number	 digit	 (0-9)	
attached,	e.g.	“Abakus5”.	

It	is	recommended	to	start	with	a	serial	version	of	your	program,	and	add	the	OpenMP	parallelization	
as	the	last	step.	

Please	note	that	the	first	two	characters	of	the	encrypted	password	string	in	the	pw.txt	are	the	salt	
string	 used	 in	 the	 original	 encryption	 process.	 A	 correct	 solution	 therefore	 splits	 the	 encrypted	
password	 string	 into	 salt	and	encryption	payload,	 calls	 some	crypt(3)	 implementation	with	 the	 salt	
and	all	of	the	dictionary	entries,	and	checks	if	one	of	the	crypt	results	matches	with	an	entry	from	the	
user	list. 

Input	

Your	program	has	to	be	named	“decrypt”	and	has	to	take	two	arguments,	the	name	of	the	password	
file	as	the	first	and	the	name	of	the	dictionary	file	as	the	second	command	line	argument.	

Example: ./decrypt ../../pw.txt ./../dict.txt 

Output	
The	program	must	terminate	with	exit	code	0	and	produce	an	output	file	with	the	name	“output.txt”	
in	 the	 same	 directory.	 This	 file	 has	 to	 contain	 nothing	 but	 the	 users	 whose	 passwords	 could	 be	
decrypted	with	the	dictionary.	Each	line	of	the	result	file	has	to	be	a	combination	of	username	and	
decrypted	password,	separated	by	semicolon:	

User01;pass 
User02;Abakus5 

Submit	a	compressed	archive	with	 the	OpenMP	sources	as	a	 solution.	Beside	 the	source	code,	 the	
archive	can	also	contain	a	file	named	“output.txt”	with	the	cracked	users	for	the	example	data.	In	this	
case	 the	 validation	 step	will	 tell	 you	 if	 you	 found	 the	 right	 ones.	 Please	 do	 not	 let	 the	 validation	
machine	perform	the	cracking	of	the	example	data,	since	this	may	take	several	hours. 

	 	



	

Hasso	Plattner	Institute		Operating	Systems	and	Middleware	Group	

Task	3.2:	IEEE	Floating	Point	standard	
	

Make	yourself	familiar	with	the	main	cornerstones	of	the	IEEE	Standard	for	Floating-Point	Arithmetic	
(IEEE	 754).	What	 aspects	 of	 the	 standard	 should	 highlighted	 for	 applications	 in	 parallel	 computing	
use	 cases?	Please	 submit	a	 text	 file	 and	 list	5	aspects	 that	are	 covered	by	 the	 standard.	Write	2-3	
sentences	and	reason	the	relevance	with	respect	to	parallel	computing.	 	



	

Hasso	Plattner	Institute		Operating	Systems	and	Middleware	Group	

Task	3.3:	Matrix	Multiplication	with	OpenMP	
	

Matrix	multiplication	 is	 an	 elementary	 operation	 for	many	 algorithms	 and	 use	 cases.	 As	 a	matter	
thereof,	a	large	portion	of	the	Basic	Linear	Algebra	Subprograms	(BLAS)	is	built	around	the	operation.	
The	goal	of	this	task	is	to	compute	the	matrix	product	C	(n	x	p)	from	the	two	input	matrices	A	(n	x	m)	
and	B	(m	x	p)	using	OpenMP.	Although	several	specialized	approaches	exist	for	sparse	matrices	and	
matrices	of	odd	dimensions,	your	task	assumes	balanced	dimensions.		

Input	

Your	program	has	to	be	named	“matmul”	and	has	to	take	five	arguments,	the	file	containing	matrix	
A,	the	file	containing	matrix	B,	as	well	as	the	dimensions	n,	m	and	p.	

Example: ./matmul a.csv b.csv 3 3 3 

	
Matrices	are	stored	in	CSV	files	(delimiter:	“,”),	using	the	decimal	point	notation:	

a.csv 

0.929089,0.927045,0.325209 
0.860091,0.848562,0.0269771 
0.91075,0.395736,0.593213 

b.csv 

0.909713,0.17103,0.521874 
0.363113,0.617162,0.973297 
0.613226,0.0434021,0.309842 

Output	

The	program	must	terminate	with	exit	code	0	and	produce	an	output	file	with	the	name	“output.csv”	
in	the	same	directory.		The	file	“output.csv”	must	adhere	to	the	format	of	the	input	files.	
	
output.csv 

0.845204,0.158553,0.169718 
0.31231,0.5237,0.0262567 
0.558496,0.0171758,0.183802 

Further	Remarks	

For	the	purpose	of	comparability,	please	use	single	precision	floating	point	data	types.	If	you	want	to	
add	 low-level	 optimizations,	 note	 that	 the	 execution	 platform	 uses	 ARM	 v7l	 CPUs,	 not	 x86_64:	
	

https://www.dcl.hpi.uni-potsdam.de/submit/machine/36/	


