
Shared-Memory
Programming Models
Programmierung Paralleler und Verteilter Systeme (PPV)

Sommer 2015

Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc.,
Prof. Dr. Andreas Polze

Shared-Memory Parallelism

■  Process model

□  All memory is local, unless explicitely specified

□  Traditional UNIX approach

■  Light-weight process / thread model

□  All memory is global for all execution threads

◊  Logical model, remember NUMA !

□  Stack is local

□  Thread scheduling by operating system, manual synchronization

□  POSIX Threads API as industry standard for portability

■  Task model

□  Directive / library based concept of tasks

□  Dynamic mapping of tasks to threads from a pool

2

Threads in classical operating systems

■  Windows Threads

■  Unix processes / threads / tasks

■  Windows fibers

3

Apple Grand Central Dispatch

■  Part of MacOS X operating system since 10.6

■  Task parallelism concept for developer, execution in thread pools

□  Tasks can be functions or blocks
(C / C++ / ObjectiveC extension)

□  Submitted to dispatch queues, executed in thread pool under
control of the Mac OS X operating system

◊ Main queue: Tasks execute serially on application‘s main
thread

◊ Concurrent queue: Tasks start executing in FIFO order,
but might run concurrently

◊  Serial queue: Tasks execute serially in FIFO order

■  Dispatch groups for aggregate synchronization

■  On events, dispatch sources can submit tasks to dispatch queues
automatically

4

POSIX Threads (Pthreads)

■  Part of the POSIX specification collection, defining an API for
thread creation and management (pthread.h)

■  Implemented by all (!) Unix-alike operating systems available

□  Utilization of kernel- or user-mode threads depends on
implementation

■  Groups of functionality (pthread_ function prefix)

□  Thread management - Start, wait for termination, …

□  Mutex-based synchronization

□  Synchronization based on condition variables

□  Synchronization based on read/write locks and barriers

■  Semaphore API is a separate POSIX specification (sem_ prefix)

5

POSIX Threads

■  pthread_create()

□  Create new thread in the process, with given routine and
argument

■  pthread_exit(), pthread_cancel()

□  Terminate thread from inside our outside of the thread

■  pthread_attr_init() , pthread_attr_destroy()

□  Abstract functions to deal with implementation-specific
attributes (f.e. stack size limit)

□  See discussion in man page about how this improves portability

6

int pthread_create(pthread_t *restrict thread,
 const pthread_attr_t *restrict attr,
 void *(*start_routine)(void *),
 void *restrict arg);

/**!
* FILE: hello.c!
* DESCRIPTION:!
* A "hello world" Pthreads program. Demonstrates thread creation and!
* termination.!
* AUTHOR: Blaise Barney!
* LAST REVISED: 08/09/11!
**/!
#include <pthread.h>!
#include <stdio.h>!
#include <stdlib.h>!
#define NUM_THREADS!5!
!
void *PrintHello(void *threadid)!
{!
 long tid; tid = (long)threadid;!
 printf("Hello World! It's me, thread #%ld!\n", tid);!
 pthread_exit(NULL);!
}!
!
int main(int argc, char *argv[])!
{!
 pthread_t threads[NUM_THREADS];!
 int rc;!
 long t;!
 for(t=0;t<NUM_THREADS;t++){!
 printf("In main: creating thread %ld\n", t);!
 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);!
 if (rc){!
 printf("ERROR; return code from pthread_create() is %d\n", rc);!
 exit(-1);!
 }!
 }!
!
 /* Last thing that main() should do */!
 pthread_exit(NULL);!
}!

POSIX Threads

■  pthread_join()

□  Blocks the caller until the specific thread terminates

□  If thread gave exit code to pthread_exit(), it can be
determined here

□  Only one joining thread per target is thread is allowed

■  pthread_detach()

□  Mark thread as not-joinable (detached) - may free some
system resources

■  pthread_attr_setdetachstate()

□  Prepare attr block so that a thread can be created in some
detach state

8

 int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

POSIX Threads

9

10

#include <pthread.h>!
#include <stdio.h>!
#include <stdlib.h>!
#define NUM_THREADS!4!
!
void *BusyWork(void *t) {!
 int I; long tid; double result=0.0; tid = (long)t;!
 printf("Thread %ld starting...\n",tid);!
 for (i=0; i<1000000; i++) {!
 result = result + sin(i) * tan(i); }!
 printf("Thread %ld done. Result = %e\n",tid, result);!
 pthread_exit((void*) t); }!
!
int main (int argc, char *argv[]) {!
 pthread_t thread[NUM_THREADS]; pthread_attr_t attr; int rc; long t; void *status;!
!
 pthread_attr_init(&attr);!
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);!
!
 for(t=0; t<NUM_THREADS; t++) {!
 printf("Main: creating thread %ld\n", t);!
 rc = pthread_create(&thread[t], &attr, BusyWork, (void *)t); !
 if (rc) {!
 printf("ERROR; return code from pthread_create() is %d\n", rc);!
 exit(-1);}}!
!
 pthread_attr_destroy(&attr);!
 for(t=0; t<NUM_THREADS; t++) {!
 rc = pthread_join(thread[t], &status);!
 if (rc) {!
 printf("ERROR; return code from pthread_join() is %d\n", rc);!
 exit(-1); }!
 printf("Main: completed join with thread %ld having a status of %ld\n",t,(long)status);}!
 !
printf("Main: program completed. Exiting.\n");!
pthread_exit(NULL); }!

POSIX Threads

■  pthread_mutex_init()

□  Initialize new mutex, which is unlocked by default

■  pthread_mutex_lock(), pthread_mutex_trylock()

□  Blocking / non-blocking wait for a mutex lock

■  pthread_mutex_unlock()

□  Operating system decides about wake-up preference

□  Focus on speed of operation, no deadlock or starvation
protection mechanism

■  Support for normal, recursive, and error-check mutex that reports
double locking

11

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

POSIX Threads

■  Condition variables are always used in conjunction with a mutex

■  Allow to wait on a variable change without polling it in a critical
section

■  pthread_cond_init()

□  Initializes a condition variable

■  pthread_cond_wait()

□  Called with a locked mutex

□  Releases the mutex and blocks on the condition in one atomic
step

□  On return, the mutex is again locked and owned by the caller

■  pthread_cond_signal(), pthread_cond_broadcast()

□  Unblock thread waiting on the given condition variable

12

13

pthread_cond_t cond_queue_empty, cond_queue_full; !
pthread_mutex_t task_queue_cond_lock;  
int task_available;  
/* other data structures here */ !
!
main() {  
 /* declarations and initializations */ !
 task_available = 0;  
 pthread_init(); !
 pthread_cond_init(&cond_queue_empty, NULL);!
 pthread_cond_init(&cond_queue_full, NULL);!
 pthread_mutex_init(&task_queue_cond_lock, NULL); !
 /* create and join producer and consumer threads */!
 ... !
}!
!
void *producer(void *producer_thread_data) {!
 int inserted; !
 while (!done()) {!
 create_task(); !
 pthread_mutex_lock(&task_queue_cond_lock); !
 while (task_available == 1) !
 pthread_cond_wait(&cond_queue_empty, &task_queue_cond_lock);!
 insert_into_queue();  
 task_available = 1; !
 pthread_cond_signal(&cond_queue_full); !
 pthread_mutex_unlock(&task_queue_cond_lock);!
} !
!
void *consumer(void *consumer_thread_data) {…}!
!

14

void *watch_count(void *t) !
{!
 long my_id = (long)t;!
 printf("Starting watch_count(): thread %ld\n", my_id);!
 pthread_mutex_lock(&count_mutex);!
 while (count < COUNT_LIMIT) {!
 printf("Thread %ld Count= %d. Going into wait...\n”, my_id,count);!
 pthread_cond_wait(&count_threshold_cv, &count_mutex);!
 printf("Thread %ld Signal received. Count= %d\n", my_id,count);!
 printf("Thread %ld Updating count...\n", my_id,count);!
 count += 125;!
 printf("Thread %ld count = %d.\n", my_id, count);!
 }!
 printf("watch_count(): thread %ld Unlocking mutex.\n", my_id);!
 pthread_mutex_unlock(&count_mutex);!
 pthread_exit(NULL);!
}!
!
int main(int argc, char *argv[]) {!
 pthread_t threads[3]; pthread_attr_t attr; int i, rc; long t1=1, t2=2, t3=3;!
!
 pthread_mutex_init(&count_mutex, NULL);!
 pthread_cond_init (&count_threshold_cv, NULL);!
 pthread_attr_init(&attr);!
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);!
 pthread_create(&threads[0], &attr, watch_count, (void *)t1);!
 pthread_create(&threads[1], &attr, inc_count, (void *)t2);!
 pthread_create(&threads[2], &attr, inc_count, (void *)t3);!
 for (i = 0; i < NUM_THREADS; i++) {!
 pthread_join(threads[i], NULL);!
 }!
 printf ("Main(): Count = %d. Done.\n", NUM_THREADS, count);!
 pthread_attr_destroy(&attr);!
 pthread_mutex_destroy(&count_mutex);!
 pthread_cond_destroy(&count_threshold_cv);!
 pthread_exit (NULL);

15

#include <pthread.h>!
#include <stdio.h>!
#include <stdlib.h>!
#define NUM_THREADS 3!
#define TCOUNT 10!
#define COUNT_LIMIT 12!
!
int count = 0;!
pthread_mutex_t count_mutex;!
pthread_cond_t count_threshold_cv;!
!
void *inc_count(void *t) {!
 int i;!
 long my_id = (long)t;!
!
 for (i=0; i < TCOUNT; i++) {!
 pthread_mutex_lock(&count_mutex);!
 count++;!
!
 if (count == COUNT_LIMIT) {!
 printf("Thread %ld, count = %d Threshold reached. ",!
 my_id, count);!
 pthread_cond_signal(&count_threshold_cv);!
 printf("Just sent signal.\n");!
 }!
 printf("Thread %ld, count = %d, unlocking mutex\n", !

! my_id, count);!
 pthread_mutex_unlock(&count_mutex);!
 /* Do some work so threads can alternate on mutex lock */!
 sleep(1); }!
 pthread_exit(NULL); !
}

Windows vs. POSIX Synchronization

16

Windows POSIX

WaitForSingleObject pthread_mutex_lock()

WaitForSingleObject(timeout==0) pthread_mutex_trylock()

Auto-reset events Condition variables

Further PThreads Functionality

■  pthread_setconcurrency()

□  Only meaningful for m:n threading environments

■  pthread_setaffinity_np()

□  Modify processor affinity mask of a thread

□  Forked children inherit this mask

□  Useful for pinning threads explicitely

◊  Better load balancing, avoid cache pollution

■  pthread_sigmask()

□  Individual threads can mask out signals for explicit
responsibilites

■  pthread_barrier_wait()

□  Barrier implementation, optional part of POSIX standard
(check for _POSIX_BARRIERS macro)

17

Java

■  Java supports concurrency with Java / operating system threads

■  Functions bundled in java.util.concurrent

■  Classical concurrency support

□  synchronized methods: Allow only one thread in an objects‘
synchronized methods, based on intrinsic object lock

◊  For static methods, locking based on class object

□  synchronized statements: Synchronize execution by intrinsic
lock of the given object

□  volatile keyword: Indicate shared nature of variable -
ensures atomic synchronized access, no thread-local caching

□  wait / notify semantics in Object

18

Java Examples

19

Java Monitors

■  Each object can act as guard with wait() / notify() functions

□  Guard waiting must always be surrounded by explicit condition
check

20

Java High-Level Concurrency

■  Introduced with Java 5

□  java.util.concurrent.locks
■  Separation of thread management and parallel activities –

Executors

□  java.util.concurrent.Executor
◊  Implementing object provides execute() method,

is able to execute submitted Runnable tasks

◊ No assumption on where the task runs, might be even in
the callers context, but typically in managed thread pool

◊  ThreadPoolExecutor implementation provided by class
library

21

Java High-Level Concurrency

■  java.util.concurrent.ExecutorService
□  Supports also Callable objects as input, which can return a

value

□  Additional submit() function, which returns a Future object
on the result

□  Future object allows to wait on the result, or cancel execution

■  Methods for submitting large collections of Callable‘s

■  Methods for managing executor shutdown

■  java.util.concurrent.ScheduledExecutorService
□  Additional methods to schedule tasks repeatedly

□  Available thread pools from executor implementations:
Single background thread, fixed size, unbound with automated
reclamation

22

Java High-Level Concurrency

23

Java High-Level Concurrency

24

Java 6 / 7

■  Lock elision
□  If the references to a lock have only some ‚local scope‘, it is

silently ommited by the JIT compiler

□  Example: Appending strings to a StringBuffer

■  Biased locking

□  Locking consists of lease acquision and lock allocation

□  Looping over a synchronized block optimized by not requiring
the thread to release the lease every time

■  Lock coarsening / merging

□  Combine subsequent synchronized blocks or synchronized
method calls

■  Java spin locks suspend the thread after a while

□  Adaptive spin locks are based on previous attempts on the
same lock in the same thread

25

.NET

■  As Java, .NET CLR relies on native thread model

□  Synchronization and scheduling mapped to operating system
concepts

■  .NET 4 has variety of support libraries

□  Task Parallel Library (TPL) - Loop parallelization, task concept

□  Task factories, task schedulers

□  Parallel LINQ (PLINQ) –
Implicit data parallelism through query language

□  Collection classes, synchronization support

□  Debugging and visualization support

26

C++11

■  C++11 specification added support concurrency constructs

■  Allows asynchronous tasks with std::async or std::thread

■  Relies on Callable instance (functions, member functions, ...)

27

#include <iostream>!
 
void write_message(std::string const& message) {!
 std::cout<<message;!
}!
 
int main() {  
 auto f=std::async(write_message,"hello world from std::async\n");  
 write_message("hello world from main\n");  
 f.wait(); }!

#include <thread>  
#include <iostream>!

void write_message(std::string const& message) {  
 std::cout<<message;  
}!

int main() {  
 std::thread t(write_message, "hello world from std::thread\n");  
 write_message("hello world from main\n");  
 t.join(); }  
!

C++11

■  Launch policy can be specified for the async call

□  Deferred or immediate launch of the activity

■  As for all asynchronous task types, a future is returned

□  Object representing the (future) result of an asynchronous
operation, allows to block on the result reading

□  Original concept by Baker and Hewitt [1977]

■  A promise object can store a value that is later acquired via a
future object

□  Separate concept since futures are only readable

■  Promise and future as concept also available in Java 5, Smalltalk,
Scheme, CORBA, …

28

C++11

■  Four mutex classes, basic operations in the Lockable concept:
m.lock(), m.try_lock(), m.unlock()

■  Locking is tricky with exceptions,
so C++ offers some high-level templates

30

std::mutex m;void f(){  
 std::lock_guard<std::mutex> guard(m);  
 std::cout<<"In f()"<<std::endl;  
}int main(){  
 m.lock();  
 std::thread t(f);  
 for(unsigned i=0;i<5;++i){  
 std::cout<<"In main()"<<std::endl;  
 std::this_thread::sleep_for(std::chrono::seconds(1));  
 }  
 m.unlock();  
 t.join();  
}!

C++11

■  Waiting for events with condition variables avoids polling
31

std::condition_variable the_cv;  
void wait_and_pop(my_class& data) {  
 std::unique_lock<std::mutex> lk(the_mutex);  
 the_cv.wait(lk,[]() {return !the_queue.empty();});  
 data=the_queue.front();  
 the_queue.pop();  
}!

void push(Data const& data)  
{  
 {  
 std::lock_guard<std::mutex> lk(the_mutex);  
 the_queue.push(data);  
 }  
 the_cv.notify_one();  
}!

C++11

■  Lock-free atomic types that are free from data races

□  char, schar, uchar, short, ushort, int, uint, long, ulong,
char16_t, wchar_t, intptr_t, size_t, ...

■  Common member functions

□  is_lock_free()

□  store(), load()

□  exchange()

■  Specialized member functions

□  fetch_add(), fetch_sub(), fetch_and(), fetch_or(), operator++,
operator+=, ...

32

C++11 Memory Model

■  C++11 makes concurrency a first-class language citizen

□  Similar to Java, .NET, and other runtime-based languages

□  (Side note: Fixed Java >=5 memory model with JSR-133)

□  Unlike any C++ or C version before

■  Demands a memory model of the language

□  What means atomicity? When is a written value visible?

□  Relationship between variables and registers / memory

□  Only chance for the compiler to apply optimizations such as
re-ordering of instructions

□  Irrelevant without a concurrency concept in the language

□  Proper definition leads to portable concurrency behavior

■  C++11 needs to define that for native code !!!
■  http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/threadsintro.html

33

C++11 Memory Model

■  Example: Atomic objects have store() and load() methods that
ensure sequential consistency

□  Comparable to Java volatile

□  Leads to X86 instructions for memory fencing

□  Fine-grained options to influence access order from threads,
which may allow fence removal by the compiler

□  http://en.cppreference.com/w/cpp/atomic/memory_order

34

•  A sequenced-before B
•  C sequenced-before D
•  r1 == r2 == 42 may happen

35

Concurrent Programming in C++

36

Threads vs. Tasks

■  Process: Address space, resource handles, code, set of threads
■  Thread: Control flow

□  Preemptive scheduling by the operating system

□  Can migrate between cores

■  Task: Control flow

□  Modeled as object, statement, lambda expression,
or anonymous function

□  Cooperative scheduling, typically by a user-mode library

□  Dynamically mapped to threads from a pool

□  Task model replaces context switch with yielding approach

□  Typical scheduling policy is central queue or work stealing

37

Multi-Tasking

■  Relevant issues: Task generation, synchronization, data access

□  Explicit activity as part of some sequential code
(operating system thread API, Java / .NET threads, ...)
-> „explicit“ threading

□  Implicit activity based on a framework
(OpenMP, OpenCL, Intel TBB, MS TPL, ...)
-> „implicit“ threading

■  Concurrency problems remain the same

□  Critical section problem with shared variables in different tasks

□  Low-level synchronization primitives typically wrapped by
„concurrent data structures“ in the task framework

38

OpenMP

■  Specification for C/C++ and Fortran language extension

□  Portable shared memory thread programming

□  High-level abstraction of task- and loop parallelism

□  Derived from compiler-directed parallelization of serial
language code (HPF), with support for incremental change of
legacy code

■  Programming model: Fork-Join-Parallelism

□  Master thread spawns group of threads for limited code region

39

OpenMP

40

(from Wikipedia)

OpenMP

■  OpenMP runtime library:
query functions, runtime functions, lock functions

■  Parallel region

□  OpenMP constructs are applied to dedicated code blocks,
marked by #pragma omp parallel

□  Parallel region should have only one entry and one exit point

□  Implicit barrier at beginning and end of the block

■  Thread pool for execution of parallel activities

■  Idle worker threads may sleep or spin, depending on library
configuration (performance issue in serial parts)

41

OpenMP Parallel Region

■  Encountering thread for the parallel region generates a set of
implicit tasks, each with possibly different instructions

■  Each resulting implicit task is assigned to a different thread

■  Task execution may suspend at some scheduling point

□  Implicit barrier regions (!), encountered barrier primitives

□  Encountered task / taskwait constructs

□  At the end of a task region

42

OpenMP Configuration and
Query Functions

■  Environment variables

□  OMP_NUM_THREADS: number of threads during execution,
upper limit for dynamic adjustment of threads

□  OMP_SCHEDULE: set schedule type and chunk size for
parallelized loops of scheduling type runtime

■  Query functions

□  omp_get_num_threads: Number of threads in the current
parallel region

□  omp_get_thread_num: Current thread number in the team,
master=0

□  omp_get_num_procs: Available number of processors

□  ...

43

44 #include <omp.h>!
#include <stdio.h>!
!
int main (int argc, char * const argv[]) {!
 #pragma omp parallel!
 printf("Hello from thread %d, nthreads %d\n”,!
 omp_get_thread_num(), !
 omp_get_num_threads());!
 return 0;!
}!
!
!
!
!
>> gcc -fopenmp -o omp omp.c!

OpenMP Work Sharing

■  Possibilities for distribution of tasks across threads
(,work sharing‘)

□  omp sections - Define code blocks dividable among threads

◊  Implicit barrier at the end

□  omp for - Automatically divide a loop‘s iterations into tasks

◊  Implicit barrier at the end

□  omp single / master - Denotes a task to be executed only
by first arriving thread resp. the master thread

◊  Implicit barrier at the end,
intended for non-thread-safe activities (I/O)

□  omp task - Explicitly define a task

■  Task scheduling is handled by the OpenMP implementation

■  Clause combinations possible: #pragma omp parallel for

45

OpenMP Sections

■  Explicit definition of code blocks being distributable amongst threads
with section directive

■  Executed in the context of the implicit task

■  Intended for non-iterative parallel work in the code

■  One thread may execute more than one section - runtime decision

■  Implicit barrier at the end of the sections block

□  Can be overriden with the nowait clause

46

#pragma omp parallel  
{  
 #pragma omp sections [clause [clause] ...]  
 {  
 [#pragma omp section]!

 structured-block1!
!
 [#pragma omp section]!
 !
 structured-block2 !
}}!

OpenMP Data Sharing

■  Shared variable: Name provides access to memory in all tasks

□  Shared by default: global variables, static variables,
variables with namespace scope, variables with file scope

□  shared clause can be added to any omp construct, defines a
list of additionally shared variables

□  Provides no automatic protection, just marking of variables for
handling by runtime environment

■  Private variable: Clone variable in each task, no initialization

□  Use private clause for having one copy per thread

□  Private by default: Local variables in functions called from
parallel regions, loop iteration variables, automatic variables

□  firstprivate: Initialization with last value before region

□  lastprivate: Result value after region from last loop
iteration or lexically last section directive

□ 

47

OpenMP Consistency Model

■  Thread’s temporary view of memory is not required to be
consistent with memory at all times (weak-ordering consistency)

□  Example: Keeping loop variable in a register for efficiency

□  Compiler needs information when consistent view is demanded

□  Implicit flush on different occasions, such as barrier region

□  In all other cases, read variables must be flushed before

■  #pragma omp flush

48

OpenMP Loop Parallelization

■  for construct:
Parallel execution of
iterations

■  Iteration variable
must be integer

■  Mapping of threads
to iterations is
controlled by
schedule clause

■  Implications on
exception handling,
break-out calls and
continue primitive

49

PT 2012

#pragma omp parallel for 	
for(ii = 0; ii < n; ii++){	
 value = some_complex_long_fuction(a[ii]); 	
 #pragma omp critical 	
 sum = sum + value; 	
}	

OpenMP Loop Parallelization Scheduling

■  schedule (static, [chunk])

□  Contiguous ranges of iterations (chunks) are assigned to the threads

□  Low overhead, round robin assignment to free threads

□  Static scheduling for predictable and similar work per iteration

□  Increasing chunk size reduces overhead, improves cache hit rate

□  Decreasing chunk size allows finer balancing of work load

□  Default is one chunk per thread

■  schedule (dynamic, [chunk])

□  Threads grab iteration resp. chunk

□  Higher overhead, but good for unbalanced iteration work load

■  schedule (guided, [chunk])
□  Dynamic schedule, shrinking ranges per step

□  Starts with large block, until minimum chunk size is reached

□  Good for computations with increasing iteration length
(e.g. prime sieve test)

50

OpenMP Synchronization

■  Synchronizing variable access with #pragma omp critical

□  Enclosed block is executed by all threads,
but restricted to one at a time

51

float dot_prod(float* a, float* b, int N)
{
 float sum = 0.0;
 #pragma omp parallel for
 for(int i = 0; i < N; i++) {
 #pragma omp critical
 sum += a[i] * b[i];
 }
 return sum;
}

OpenMP Synchronization

■  Synchronizing with task completion

□  Implicit barrier at the end of single block,
removable by nowait clause

□  #pragma omp barrier (wait for all other threads in the team)

□  #pragma omp taskwait (wait for completion of child tasks)

52

#include <omp.h>!
#include <stdio.h>!
!
int main() { !
 #pragma omp parallel!
 {!
 printf("Start: %d\n", omp_get_thread_num());!
 #pragma omp single //nowait!
 printf("Got it: %d\n", omp_get_thread_num());!
 printf("Done: %d\n", omp_get_thread_num());!
 }!
 return 0;!
}!

OpenMP Synchronization

■  Alternative: #pragma omp reduction (op: list)

□  Execute parallel tasks based on private copies of list

□  Perform reduction on results with op afterwards

□  Without race conditions

■  Supported associative operands:
+, *, -, ^, bitwise AND, bitwise OR, logical AND, logical OR

53

#pragma omp parallel for reduction(+:sum)
 for(i = 0; i < N; i++) {
 sum += a[i] * b[i];
 }

OpenMP Tasks

■  Major change with OpenMP 3, allows description of irregular
parallelization problems

□  Farmer / worker algorithms, recursive algorithms, while loops

■  Definition of tasks as composition of code to execute,
data environment, and control variables

□  Unit of work that may be deferred

□  Can be nested inside parallel regions and other tasks,
so recursion becomes possible

□  Implicit task generation with parallel and for constructs

■  Tasks run at task scheduling points

■  Runtime may move tasks between threads, or delay them

■  sections are similar, but mainly work for static partitioning

■  Tied tasks always keep the same thread and follow the
scheduling point concept, developer may untie tasks

54

OpenMP Tasks

■  Parallelize operations on list items

■  Traversal of dynamic structure, so sections do not help

■  Without tasks

□  Poor performance due to abuse of single construct

■  Barrier with taskwait

□  Thread suspends until all direct child tasks are done

55

[D
ur

an
,

B
S
C
]

OpenMP Best Practices [Süß & Leopold]

■  Typical correctness mistakes

□  Access to shared variables not protected

□  Use of locks / shared variables without flush

□  Declaring parallel loop variable as shared

■  Typical performance mistakes

□  Use of critical when atomic would be sufficient

□  Too much work inside a critical section

□  Unnecessary flush / critical

56

OpenMP 4

■  SIMD extensions

□  Portable primitives to describe SIMD parallelization

□  Loop vectorization with simd construct

□  Several arguments for guiding the compiler (e.g. alignment)

■  Targeting extensions

□  Thread with the OpenMP program executes on the host device,
an implementation may support other target devices

□  Control off-loading of loops and code regions on such devices

■  New API for using a device data environment

□  OpenMP - managed data items can be moved to the device

□  Threads cannot migrate between devices

■  New primitives for better cancellation support

■  User-defined reduction operations

57

Work Stealing

■  Blumofe, Leiserson, Charles:
Scheduling Multithreaded Computations by Work Stealing (FOCS 1994)

■  Problem of scheduling scalable multithreading problems on SMP

■  Work sharing: When processors create new work,
the scheduler migrates threads for balanced utilization

■  Work stealing: Underutilized core takes work from other processor,
leads to less thread migrations

◊  Goes back to work stealing research in Multilisp (1984)

◊  Supported in OpenMP implementations, TPL, TBB, Java, Cilk, …

■  Randomized work stealing: Lock-free ready dequeue per processor

◊  Task are inserted at the bottom, local work is taken from the bottom

◊  If no ready task is available, the core steals the top-most one from
another randomly chosen core; added at the bottom

□  Ready tasks are executed, or wait for a processor becoming free

■  Large body of research about other work stealing variations

58

Cilk

■  C language combined with several new keywords

□  Different approach to OpenMP pragmas

□  Developed at MIT since 1994 (!)

□  Initial commercial version Cilk++ with C / C++ support

■  Since 2010, offered by Intel as Cilk Plus

□  Official language specification to foster other implementations

□  Meanwhile maintained as GCC branch
(similar to OpenMP)

□  Support for Windows, Linux, and MacOS X

■  Basic concept of serialization

□  Any Cilk program compiled as concurrent code has the same
execution semantics as the serial version

Intel Cilk Plus

■  Three keywords to express potential parallelism

□  cilk_spawn: Asynchronous function call

◊  Runtime decides, spawning is not mandated

□  cilk_for: Allows loop iterations to be performed in parallel

◊  Runtime decides, parallelization is not mandated

□  cilk_sync: Wait until all spawned calls are completed

◊  Barrier for cilk_spawn activity

■  Runtime decided the level of parallelism, performs work stealing

■  Strand: Instruction sequence in-between a change of parallelism

■  Reducers: Lock-free private ‘views’ on variables

■  Notation for SIMD array operations and SIMD functions

■  Serialization: Cilk keyword become ordinary statements, code
semantics are expected to remain the same

60

Intel Cilk Plus

■  Strand concept makes it
possible to express every
program as directed acyclic
graph (DAG)

61

[c
ilk

pl
us

.o
rg

]

Continuation /
Strand

Implicit cilk_sync

Strand

Strand

Strand

cilk_spawn

cilk_sync

return x+y

fib(n-2) fib(n-1)

Intel Cilk Plus

62

[c
ilk

pl
us

.o
rg

]

Intel Cilk Plus

■  Accumulator / reduction algorithm

□  Compute one result value by updating it with every
computational step (that may be parallelized)

□  Same reduction concept as with OpenMP and others

□  Problem of avoiding data races

63

[s
of

tw
ar

e.
in

te
l.c

om
]

Intel Cilk Plus

■  Express accumulated result as reducer pointer variable to get
automated locking

■  Parallel reducer operations are promised to be in serial ordering

64

[s
of

tw
ar

e.
in

te
l.c

om
]

Intel Cilk Plus

■  Express accumulated result as reducer pointer variable to get
automated locking

■  Parallel reducer operations are promised to be in serial ordering

65

[s
of

tw
ar

e.
in

te
l.c

om
]

Intel Cilk Plus

■  Parallel tree search

■  Resulting list is
always ‘in-order’

□  Left subtree

□  Root

□  Right subtree

■  Stable semantics
regardless of
parallelization

66

[s
of

tw
ar

e.
in

te
l.c

om
]

Intel Cilk Plus

■  Predefined reducers for C and C++, custom reducers supported

■  Optimized internal operation based on strands concept

□  Each strand gets a private view on the reducer variable

◊ No locking during update

□  When strands join again, the reducer merges the operations

67

Intel Cilk Plus

■  Cilk support the high-level
expression of array operations

□  Gives the runtime a chance
to parallelize work

□  Intended for data parallel
element operations without
any ordering constraints

■  New operator [:]

□  Specify data parallelism on
an array

□  array-expression[lower-
bound : length : stride]

□  Multi-dimensional sections
are supported: a[:][:]

■  Short-hand description for
complex loops

□  A[:]=5
for (i = 0; i < 10; i++)

 A[i] = 5;

□  A[0:n] = 5;

□  A[0:5:2] = 5;
for (i = 0; i < 10; i += 2)

 A[i] = 5;

□  A[:] = B[:];

□  A[:] = B[:] + 5;

□  D[:] = A[:] + B[:];

□  func (A[:]);

68

Intel Cilk Plus

■  Array notation can be used inside conditions
if (5 == a[:])
 results[:] = "Matched”;
else
 results[:] = "Not Matched";

■  Function mapping is executed in parallel with no specific order
 A[:] = pow(B[:], c);

■  In C++, this works with any defined operator
 A[:] = B[:] + C[:]; // A[:] = operator+(B[:], C[:]);

■  Several predefined reduction macros applicable to array sections

□  __sec_reduce_add, __sec_reduce_mul,
__sec_reduce_max, __sec_reduce_min,
__sec_reduce_all_zero, __sec_reduce_any_zero

■  Array sections can be used as array indices for gather / scatter

□  C[:] = A[B[:]] (gather), A[B[:]] = C[:] (scatter)

69

Intel Threading Building Blocks (TBB)

■  Portable C++ library, toolkits for different operating systems

■  Also available as open source version

■  Complements basic OpenMP / Cilk features

□  Loop parallelization, parallel reduction, synchronization,
explicit tasks

■  High-level concurrent containers

□  hash map, queue, vector, set

■  High-level parallel operations

□  prefix scan, sorting, data-flow pipelining, deterministic reduce

■  Unfair scheduling approach, to favor threads having data in cache

■  Supported for cache-aware memory allocation

■  Comparable: Microsoft C++ Concurrency Runtime

70

Intel Math Kernel Library (MKL)

■  Intel library with hand-optimized functions for ...

□  Highly vectorized and threaded linear algebra

◊  Basic Linear Algebra Subprograms (BLAS) API, confirms to
de-facto standards in high-performance computing

◊  Vector-vector, matrix-vector, matrix-matrix operations

□  Fast fourier transforms (FFT)

◊  Single precision, double precision, complex, real, ...

□  Vector math and statistics functions

◊  Random number generators and probability distributions

◊  Spline-based data fitting

■  C or Fortran API calls

■  Beats any automated compiler optimization

71

Easy Mappings [Dig]

72

Oracle Java Intel TBB MS .Net TPL

Parallel For ParallelArray parallel_for Parallel.For

Concurrent
Collections ConcurrentHashMap, ... concurrent_hash_map,

...

Atomic
Classes AtomicInteger, ... atomic<T> Interlocked

ForkJoin Task
Parallelism ForkJoinTask framework task Task,

ReplicableTask

