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Shared-Memory Parallelism 

■  Process model 

□  All memory is local, unless explicitely specified 

□  Traditional UNIX approach 

■  Light-weight process / thread model 

□  All memory is global for all execution threads 

◊  Logical model, remember NUMA ! 

□  Stack is local 

□  Thread scheduling by operating system, manual synchronization 

□  POSIX Threads API as industry standard for portability 

■  Task model 

□  Directive / library based concept of tasks 

□  Dynamic mapping of tasks to threads from a pool 
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Threads in classical operating systems 

■  Windows Threads 

■  Unix processes / threads / tasks 

■  Windows fibers 
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Apple Grand Central Dispatch 

■  Part of MacOS X operating system since 10.6 

■  Task parallelism concept for developer, execution in thread pools 

□  Tasks can be functions or blocks  
(C / C++ / ObjectiveC extension) 

□  Submitted to dispatch queues, executed in thread pool under 
control of the Mac OS X operating system 

◊ Main queue: Tasks execute serially on application‘s main 
thread 

◊ Concurrent queue: Tasks start executing in FIFO order,  
but might run concurrently 

◊  Serial queue: Tasks execute serially in FIFO order 

■  Dispatch groups for aggregate synchronization 

■  On events, dispatch sources can submit tasks to dispatch queues 
automatically 
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POSIX Threads (Pthreads) 

■  Part of the POSIX specification collection, defining an API for 
thread creation and management (pthread.h) 

■  Implemented by all (!) Unix-alike operating systems available 

□  Utilization of kernel- or user-mode threads depends on 
implementation 

■  Groups of functionality (pthread_ function prefix) 

□  Thread management - Start, wait for termination, … 

□  Mutex-based synchronization 

□  Synchronization based on condition variables 

□  Synchronization based on read/write locks and barriers 

■  Semaphore API is a separate POSIX specification (sem_ prefix) 
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POSIX Threads 

■  pthread_create() 

□  Create new thread in the process, with given routine and 
argument 

■  pthread_exit(), pthread_cancel() 

□  Terminate thread from inside our outside of the thread 

■  pthread_attr_init() , pthread_attr_destroy() 

□  Abstract functions to deal with implementation-specific 
attributes (f.e. stack size limit) 

□  See discussion in man page about how this improves portability 
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int pthread_create(pthread_t *restrict thread, 
                   const pthread_attr_t *restrict attr,  
                   void *(*start_routine)(void *),  
                   void *restrict arg); 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

/******************************************************************************!
* FILE: hello.c!
* DESCRIPTION:!
*   A "hello world" Pthreads program.  Demonstrates thread creation and!
*   termination.!
* AUTHOR: Blaise Barney!
* LAST REVISED: 08/09/11!
******************************************************************************/!
#include <pthread.h>!
#include <stdio.h>!
#include <stdlib.h>!
#define NUM_THREADS!5!
!
void *PrintHello(void *threadid)!
{!
   long tid; tid = (long)threadid;!
   printf("Hello World! It's me, thread #%ld!\n", tid);!
   pthread_exit(NULL);!
}!
!
int main(int argc, char *argv[])!
{!
   pthread_t threads[NUM_THREADS];!
   int rc;!
   long t;!
   for(t=0;t<NUM_THREADS;t++){!
     printf("In main: creating thread %ld\n", t);!
     rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);!
     if (rc){!
       printf("ERROR; return code from pthread_create() is %d\n", rc);!
       exit(-1);!
       }!
     }!
!
   /* Last thing that main() should do */!
   pthread_exit(NULL);!
}!

 



POSIX Threads 

■  pthread_join() 

□  Blocks the caller until the specific thread terminates 

□  If thread gave exit code to pthread_exit(), it can be 
determined here 

□  Only one joining thread per target is thread is allowed 

■  pthread_detach() 

□  Mark thread as not-joinable (detached) - may free some 
system resources 

■  pthread_attr_setdetachstate() 

□  Prepare attr block so that a thread can be created in some 
detach state 
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 int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate); 



POSIX Threads 
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#include <pthread.h>!
#include <stdio.h>!
#include <stdlib.h>!
#define NUM_THREADS!4!
!
void *BusyWork(void *t) {!
   int I; long tid; double result=0.0; tid = (long)t;!
   printf("Thread %ld starting...\n",tid);!
   for (i=0; i<1000000; i++) {!
      result = result + sin(i) * tan(i); }!
   printf("Thread %ld done. Result = %e\n",tid, result);!
   pthread_exit((void*) t); }!
!
int main (int argc, char *argv[]) {!
   pthread_t thread[NUM_THREADS]; pthread_attr_t attr; int rc; long t; void *status;!
!
   pthread_attr_init(&attr);!
   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);!
!
   for(t=0; t<NUM_THREADS; t++) {!
      printf("Main: creating thread %ld\n", t);!
      rc = pthread_create(&thread[t], &attr, BusyWork, (void *)t); !
      if (rc) {!
         printf("ERROR; return code from pthread_create() is %d\n", rc);!
         exit(-1);}}!
!
   pthread_attr_destroy(&attr);!
   for(t=0; t<NUM_THREADS; t++) {!
      rc = pthread_join(thread[t], &status);!
      if (rc) {!
         printf("ERROR; return code from pthread_join() is %d\n", rc);!
         exit(-1); }!
      printf("Main: completed join with thread %ld having a status of %ld\n",t,(long)status);}!
 !
printf("Main: program completed. Exiting.\n");!
pthread_exit(NULL); }!

 



POSIX Threads 

■  pthread_mutex_init() 

□  Initialize new mutex, which is unlocked by default 

■  pthread_mutex_lock(), pthread_mutex_trylock() 

□  Blocking / non-blocking wait for a mutex lock 

■  pthread_mutex_unlock() 

□  Operating system decides about wake-up preference 

□  Focus on speed of operation, no deadlock or starvation 
protection mechanism 

■  Support for normal, recursive, and error-check mutex that reports 
double locking 
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int pthread_mutex_lock(pthread_mutex_t *mutex);        
int pthread_mutex_trylock(pthread_mutex_t *mutex);        
int pthread_mutex_unlock(pthread_mutex_t *mutex); 



POSIX Threads 

■  Condition variables are always used in conjunction with a mutex 

■  Allow to wait on a variable change without polling it in a critical 
section 

■  pthread_cond_init() 

□  Initializes a condition variable 

■  pthread_cond_wait() 

□  Called with a locked mutex 

□  Releases the mutex and blocks on the condition in one atomic 
step 

□  On return, the mutex is again locked and owned by the caller 

■  pthread_cond_signal(), pthread_cond_broadcast() 

□  Unblock thread waiting on the given condition variable 
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pthread_cond_t cond_queue_empty, cond_queue_full; !
pthread_mutex_t task_queue_cond_lock;  
int task_available;  
/* other data structures here */ !
!
main() {  
  /* declarations and initializations */ !
  task_available = 0;  
  pthread_init(); !
  pthread_cond_init(&cond_queue_empty, NULL);!
  pthread_cond_init(&cond_queue_full, NULL);!
  pthread_mutex_init(&task_queue_cond_lock, NULL); !
  /* create and join producer and consumer threads */!
  ... !
}!
!
void *producer(void *producer_thread_data) {!
  int inserted; !
  while (!done()) {!
    create_task(); !
    pthread_mutex_lock(&task_queue_cond_lock); !
    while (task_available == 1) !
      pthread_cond_wait(&cond_queue_empty, &task_queue_cond_lock);!
    insert_into_queue();  
    task_available = 1; !
    pthread_cond_signal(&cond_queue_full);     !
    pthread_mutex_unlock(&task_queue_cond_lock);!
} !
!
void *consumer(void *consumer_thread_data) {…}!
!
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void *watch_count(void *t) !
{!
  long my_id = (long)t;!
  printf("Starting watch_count(): thread %ld\n", my_id);!
  pthread_mutex_lock(&count_mutex);!
  while (count < COUNT_LIMIT) {!
    printf("Thread %ld Count= %d. Going into wait...\n”, my_id,count);!
    pthread_cond_wait(&count_threshold_cv, &count_mutex);!
    printf("Thread %ld Signal received. Count= %d\n", my_id,count);!
    printf("Thread %ld Updating count...\n", my_id,count);!
    count += 125;!
    printf("Thread %ld count = %d.\n", my_id, count);!
  }!
  printf("watch_count(): thread %ld Unlocking mutex.\n", my_id);!
  pthread_mutex_unlock(&count_mutex);!
  pthread_exit(NULL);!
}!
!
int main(int argc, char *argv[]) {!
  pthread_t threads[3]; pthread_attr_t attr; int i, rc; long t1=1, t2=2, t3=3;!
!
  pthread_mutex_init(&count_mutex, NULL);!
  pthread_cond_init (&count_threshold_cv, NULL);!
  pthread_attr_init(&attr);!
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);!
  pthread_create(&threads[0], &attr, watch_count, (void *)t1);!
  pthread_create(&threads[1], &attr, inc_count, (void *)t2);!
  pthread_create(&threads[2], &attr, inc_count, (void *)t3);!
  for (i = 0; i < NUM_THREADS; i++) {!
    pthread_join(threads[i], NULL);!
  }!
  printf ("Main(): Count = %d. Done.\n", NUM_THREADS, count);!
  pthread_attr_destroy(&attr);!
  pthread_mutex_destroy(&count_mutex);!
  pthread_cond_destroy(&count_threshold_cv);!
  pthread_exit (NULL); 
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#include <pthread.h>!
#include <stdio.h>!
#include <stdlib.h>!
#define NUM_THREADS  3!
#define TCOUNT 10!
#define COUNT_LIMIT 12!
!
int count = 0;!
pthread_mutex_t count_mutex;!
pthread_cond_t count_threshold_cv;!
!
void *inc_count(void *t) {!
  int i;!
  long my_id = (long)t;!
!
  for (i=0; i < TCOUNT; i++) {!
    pthread_mutex_lock(&count_mutex);!
    count++;!
!
    if (count == COUNT_LIMIT) {!
      printf("Thread %ld, count = %d  Threshold reached. ",!
              my_id, count);!
      pthread_cond_signal(&count_threshold_cv);!
      printf("Just sent signal.\n");!
    }!
    printf("Thread %ld, count = %d, unlocking mutex\n", !

!       my_id, count);!
    pthread_mutex_unlock(&count_mutex);!
    /* Do some work so threads can alternate on mutex lock */!
    sleep(1); }!
  pthread_exit(NULL); !
} 



Windows vs. POSIX Synchronization 
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Windows POSIX

WaitForSingleObject pthread_mutex_lock()

WaitForSingleObject(timeout==0) pthread_mutex_trylock()

Auto-reset events Condition variables



Further PThreads Functionality 

■  pthread_setconcurrency() 

□  Only meaningful for m:n threading environments 

■  pthread_setaffinity_np() 

□  Modify processor affinity mask of a thread 

□  Forked children inherit this mask 

□  Useful for pinning threads explicitely 

◊  Better load balancing, avoid cache pollution 

■  pthread_sigmask() 

□  Individual threads can mask out signals for explicit 
responsibilites 

■  pthread_barrier_wait() 

□  Barrier implementation, optional part of POSIX standard 
(check for _POSIX_BARRIERS macro) 
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Java 

■  Java supports concurrency with Java / operating system threads 

■  Functions bundled in java.util.concurrent 

■  Classical concurrency support 

□  synchronized methods: Allow only one thread in an objects‘ 
synchronized methods, based on intrinsic object lock 

◊  For static methods, locking based on class object 

□  synchronized statements: Synchronize execution by intrinsic 
lock of the given object  

□  volatile keyword: Indicate shared nature of variable -  
ensures atomic synchronized access, no thread-local caching 

□  wait / notify semantics in Object 
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Java Examples 
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Java Monitors 

■  Each object can act as guard with wait() / notify() functions 

□  Guard waiting must always be surrounded by explicit condition 
check 
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Java High-Level Concurrency 

■  Introduced with Java 5 

□  java.util.concurrent.locks 
■  Separation of thread management and parallel activities – 

Executors 

□  java.util.concurrent.Executor 
◊  Implementing object provides execute() method,  

is able to execute submitted Runnable tasks 

◊ No assumption on where the task runs, might be even in 
the callers context, but typically in managed thread pool 

◊  ThreadPoolExecutor implementation provided by class 
library 
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Java High-Level Concurrency 

■  java.util.concurrent.ExecutorService 
□  Supports also Callable objects as input, which can return a 

value 

□  Additional submit() function, which returns a Future object 
on the result 

□  Future object allows to wait on the result, or cancel execution 

■  Methods for submitting large collections of Callable‘s 

■  Methods for managing executor shutdown 

■  java.util.concurrent.ScheduledExecutorService 
□  Additional methods to schedule tasks repeatedly  

□  Available thread pools from executor implementations:  
Single background thread, fixed size, unbound with automated 
reclamation 
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Java High-Level Concurrency 
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Java High-Level Concurrency 
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Java 6 / 7 

■  Lock elision 
□  If the references to a lock have only some ‚local scope‘, it is 

silently ommited by the JIT compiler 

□  Example: Appending strings to a StringBuffer 

■  Biased locking 

□  Locking consists of lease acquision and lock allocation 

□  Looping over a synchronized block optimized by not requiring 
the thread to release the lease every time 

■  Lock coarsening / merging 

□  Combine subsequent synchronized blocks or synchronized 
method calls 

■  Java spin locks suspend the thread after a while 

□  Adaptive spin locks are based on previous attempts on the 
same lock in the same thread 
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.NET 

■  As Java, .NET CLR relies on native thread model 

□  Synchronization and scheduling mapped to operating system 
concepts 

■  .NET 4 has variety of support libraries 

□  Task Parallel Library (TPL) - Loop parallelization, task concept 

□  Task factories, task schedulers 

□  Parallel LINQ (PLINQ) –  
Implicit data parallelism through query language 

□  Collection classes, synchronization support 

□  Debugging and visualization support 
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C++11 

■  C++11 specification added support concurrency constructs 

■  Allows asynchronous tasks with std::async or std::thread 

■  Relies on Callable instance (functions, member functions, ...) 
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#include <iostream>!
 
void write_message(std::string const& message) {!
    std::cout<<message;!
}!
 
int main() {  
  auto f=std::async(write_message,"hello world from std::async\n");  
  write_message("hello world from main\n");  
  f.wait(); }!

#include <thread>  
#include <iostream>!

void write_message(std::string const& message) {  
    std::cout<<message;  
}!

int main() {  
   std::thread t(write_message, "hello world from std::thread\n");  
   write_message("hello world from main\n");  
   t.join(); }  
!



C++11 

■  Launch policy can be specified for the async call 

□  Deferred or immediate launch of the activity 

■  As for all asynchronous task types, a future is returned 

□  Object representing the (future) result of an asynchronous 
operation, allows to block on the result reading 

□  Original concept by Baker and Hewitt [1977] 

■  A promise object can store a value that is later acquired via a 
future object 

□  Separate concept since futures are only readable 

■  Promise and future as concept also available in Java 5, Smalltalk, 
Scheme, CORBA, … 
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C++11 

■  Four mutex classes, basic operations in the Lockable concept:  
m.lock(), m.try_lock(), m.unlock() 

■  Locking is tricky with exceptions,  
so C++ offers some high-level templates 

30 

std::mutex m;void f(){  
    std::lock_guard<std::mutex> guard(m);  
    std::cout<<"In f()"<<std::endl;  
}int main(){  
    m.lock();  
    std::thread t(f);  
    for(unsigned i=0;i<5;++i){  
        std::cout<<"In main()"<<std::endl;  
        std::this_thread::sleep_for(std::chrono::seconds(1));  
    }  
    m.unlock();  
    t.join();  
}!



C++11 

■  Waiting for events with condition variables avoids polling 
31 

std::condition_variable the_cv;  
void wait_and_pop(my_class& data) {  
    std::unique_lock<std::mutex> lk(the_mutex);  
    the_cv.wait(lk,[]() {return !the_queue.empty();});  
    data=the_queue.front();  
    the_queue.pop();  
}!

void push(Data const& data)  
{  
    {  
        std::lock_guard<std::mutex> lk(the_mutex);  
        the_queue.push(data);  
    }  
    the_cv.notify_one();  
}!



C++11 

■  Lock-free atomic types that are free from data races 

□  char, schar, uchar, short, ushort, int, uint, long, ulong, 
char16_t, wchar_t, intptr_t, size_t, ... 

■  Common member functions 

□  is_lock_free() 

□  store(), load() 

□  exchange() 

■  Specialized member functions 

□  fetch_add(), fetch_sub(), fetch_and(), fetch_or(), operator++, 
operator+=, ... 
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C++11 Memory Model 

■  C++11 makes concurrency a first-class language citizen 

□  Similar to Java, .NET, and other runtime-based languages 

□  (Side note: Fixed Java >=5 memory model with JSR-133)  

□  Unlike any C++ or C version before 

■  Demands a memory model of the language 

□  What means atomicity? When is a written value visible? 

□  Relationship between variables and registers / memory 

□  Only chance for the compiler to apply optimizations such as 
re-ordering of instructions 

□  Irrelevant without a concurrency concept in the language 

□  Proper definition leads to portable concurrency behavior 

■  C++11 needs to define that for native code !!! 
■  http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/threadsintro.html 
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C++11 Memory Model 

■  Example: Atomic objects have store() and load() methods that 
ensure sequential consistency 

□  Comparable to Java volatile 

□  Leads to X86 instructions for memory fencing 

□  Fine-grained options to influence access order from threads, 
which may allow fence removal by the compiler 

□  http://en.cppreference.com/w/cpp/atomic/memory_order 
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•  A sequenced-before B 
•  C sequenced-before D 
•  r1 == r2 == 42 may happen 
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Concurrent Programming in C++ 
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Threads vs. Tasks 

■  Process: Address space, resource handles, code, set of threads 
■  Thread: Control flow 

□  Preemptive scheduling by the operating system 

□  Can migrate between cores 

■  Task: Control flow 

□  Modeled as object, statement, lambda expression,  
or anonymous function  

□  Cooperative scheduling, typically by a user-mode library 

□  Dynamically mapped to threads from a pool 

□  Task model replaces context switch with yielding approach 

□  Typical scheduling policy is central queue or work stealing 

37 



Multi-Tasking 

■  Relevant issues: Task generation, synchronization, data access 

□  Explicit activity as part of some sequential code 
(operating system thread API, Java / .NET threads, ...)  
-> „explicit“ threading 

□  Implicit activity based on a framework  
(OpenMP, OpenCL, Intel TBB, MS TPL, ...)  
-> „implicit“ threading 

■  Concurrency problems remain the same 

□  Critical section problem with shared variables in different tasks 

□  Low-level synchronization primitives typically wrapped by 
„concurrent data structures“ in the task framework 
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OpenMP 

■  Specification for C/C++ and Fortran language extension  

□  Portable shared memory thread programming  

□  High-level abstraction of task- and loop parallelism 

□  Derived from compiler-directed parallelization of serial 
language code (HPF), with support for incremental change of 
legacy code 

■  Programming model: Fork-Join-Parallelism 

□  Master thread spawns group of threads for limited code region 
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OpenMP 
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(from Wikipedia) 



OpenMP 

■  OpenMP runtime library:  
query functions, runtime functions, lock functions 

■  Parallel region 

□  OpenMP constructs are applied to dedicated code blocks,  
marked by #pragma omp parallel 

□  Parallel region should have only one entry and one exit point 

□  Implicit barrier at beginning and end of the block 

■  Thread pool for execution of parallel activities 

■  Idle worker threads may sleep or spin, depending on library 
configuration (performance issue in serial parts) 
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OpenMP Parallel Region 

■  Encountering thread for the parallel region generates a set of 
implicit tasks, each with possibly different instructions 

■  Each resulting implicit task is assigned to a different thread 

■  Task execution may suspend at some scheduling point 

□  Implicit barrier regions (!), encountered barrier primitives  

□  Encountered task / taskwait constructs 

□  At the end of a task region 
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OpenMP Configuration and  
Query Functions 

■  Environment variables 

□  OMP_NUM_THREADS: number of threads during execution,  
upper limit for dynamic adjustment of threads 

□  OMP_SCHEDULE: set schedule type and chunk size for 
parallelized loops of scheduling type runtime 

■  Query functions 

□  omp_get_num_threads: Number of threads in the current 
parallel region 

□  omp_get_thread_num: Current thread number in the team, 
master=0 

□  omp_get_num_procs: Available number of processors 

□  ... 
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44 #include <omp.h>!
#include <stdio.h>!
!
int main (int argc, char * const argv[]) {!
    #pragma omp parallel!
    printf("Hello from thread %d, nthreads %d\n”,!
           omp_get_thread_num(), !
           omp_get_num_threads());!
    return 0;!
}!
!
!
!
!
>> gcc -fopenmp -o omp omp.c!



OpenMP Work Sharing 

■  Possibilities for distribution of tasks across threads  
(,work sharing‘) 

□  omp sections - Define code blocks dividable among threads 

◊  Implicit barrier at the end 

□  omp for - Automatically divide a loop‘s iterations into tasks 

◊  Implicit barrier at the end 

□  omp single / master - Denotes a task to be executed only 
by first arriving thread resp. the master thread 

◊  Implicit barrier at the end,  
intended for non-thread-safe activities (I/O) 

□  omp task - Explicitly define a task 

■  Task scheduling is handled by the OpenMP implementation 

■  Clause combinations possible: #pragma omp parallel for 
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OpenMP Sections 

■  Explicit definition of code blocks being distributable amongst threads 
with section directive 

■  Executed in the context of the implicit task 

■  Intended for non-iterative parallel work in the code 

■  One thread may execute more than one section - runtime decision 

■  Implicit barrier at the end of the sections block 

□  Can be overriden with the nowait clause 
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#pragma omp parallel  
{  
  #pragma omp sections [ clause [ clause ] ... ]  
  {  
    [#pragma omp section ]!

       structured-block1!
!
    [#pragma omp section ]!
 !
       structured-block2         !
}}!



OpenMP Data Sharing 

■  Shared variable: Name provides access to memory in all tasks 

□  Shared by default: global variables, static variables,  
variables with namespace scope, variables with file scope 

□  shared clause can be added to any omp construct, defines a 
list of additionally shared variables 

□  Provides no automatic protection, just marking of variables for 
handling by runtime environment 

■  Private variable: Clone variable in each task, no initialization 

□  Use private clause for having one copy per thread 

□  Private by default: Local variables in functions called from 
parallel regions, loop iteration variables, automatic variables 

□  firstprivate: Initialization with last value before region 

□  lastprivate: Result value after region from last loop 
iteration or lexically last section directive 

□    
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OpenMP Consistency Model 

■  Thread’s temporary view of memory is not required to be 
consistent with memory at all times (weak-ordering consistency) 

□  Example: Keeping loop variable in a register for efficiency 

□  Compiler needs information when consistent view is demanded 

□  Implicit flush on different occasions, such as barrier region 

□  In all other cases, read variables must be flushed before 

■  #pragma omp flush 
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OpenMP Loop Parallelization 

■  for construct: 
Parallel execution of 
iterations  

■  Iteration variable 
must be integer 

■  Mapping of threads 
to iterations is 
controlled by 
schedule clause 

■  Implications on 
exception handling, 
break-out calls and 
continue primitive 
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PT 2012 

#pragma omp parallel for 	
for(ii = 0; ii < n; ii++){	
   value = some_complex_long_fuction(a[ii]);          	
   #pragma omp critical  	
   sum = sum + value;        	
}	



OpenMP Loop Parallelization Scheduling 

■  schedule (static, [chunk]) 

□  Contiguous ranges of iterations (chunks) are assigned to the threads 

□  Low overhead, round robin assignment to free threads 

□  Static scheduling for predictable and similar work per iteration 

□  Increasing chunk size reduces overhead, improves cache hit rate 

□  Decreasing chunk size allows finer balancing of work load 

□  Default is one chunk per thread 

■  schedule (dynamic, [chunk]) 

□  Threads grab iteration resp. chunk 

□  Higher overhead, but good for unbalanced iteration work load 

■  schedule (guided, [chunk]) 
□  Dynamic schedule, shrinking ranges per step 

□  Starts with large block, until minimum chunk size is reached 

□  Good for computations with increasing iteration length  
(e.g. prime sieve test) 
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OpenMP Synchronization 

■  Synchronizing variable access with #pragma omp critical  

□  Enclosed block is executed by all threads,  
but restricted to one at a time 
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float dot_prod(float* a, float* b, int N)  
{ 
  float sum = 0.0; 
  #pragma omp parallel for 
  for(int i = 0; i < N; i++) { 
     #pragma omp critical 
     sum += a[i] * b[i]; 
  } 
  return sum; 
} 



OpenMP Synchronization 

■  Synchronizing with task completion 

□  Implicit barrier at the end of single block,  
removable by nowait clause 

□  #pragma omp barrier  (wait for all other threads in the team) 

□  #pragma omp taskwait (wait for completion of child tasks) 
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#include <omp.h>!
#include <stdio.h>!
!
int main() {  !
  #pragma omp parallel!
  {!
    printf("Start: %d\n", omp_get_thread_num());!
    #pragma omp single //nowait!
    printf("Got it: %d\n", omp_get_thread_num());!
    printf("Done: %d\n", omp_get_thread_num());!
  }!
  return 0;!
}!



OpenMP Synchronization 

■  Alternative: #pragma omp reduction (op: list) 

□  Execute parallel tasks based on private copies of list 

□  Perform reduction on results with op afterwards 

□  Without race conditions 

■  Supported associative operands:  
+, *, -, ^, bitwise AND, bitwise OR, logical AND, logical OR 
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#pragma omp parallel for reduction(+:sum) 
   for(i = 0; i < N; i++) { 
     sum += a[i] * b[i]; 
   } 

 



OpenMP Tasks 

■  Major change with OpenMP 3, allows description of irregular 
parallelization problems 

□  Farmer / worker algorithms, recursive algorithms, while loops 

■  Definition of tasks as composition of code to execute,  
data environment, and control variables 

□  Unit of work that may be deferred 

□  Can be nested inside parallel regions and other tasks, 
so recursion becomes possible 

□  Implicit task generation with parallel and for constructs 

■  Tasks run at task scheduling points 

■  Runtime may move tasks between threads, or delay them  

■  sections are similar, but mainly work for static partitioning 

■  Tied tasks always keep the same thread and follow the 
scheduling point concept, developer may untie tasks 
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OpenMP Tasks 

■  Parallelize operations on list items 

■  Traversal of dynamic structure, so sections do not help 

■  Without tasks 

□  Poor performance due to abuse of single construct 

■  Barrier with taskwait 

□  Thread suspends until all direct child tasks are done 
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OpenMP Best Practices [Süß & Leopold] 

■  Typical correctness mistakes 

□  Access to shared variables not protected 

□  Use of locks / shared variables without flush 

□  Declaring parallel loop variable as shared 

■  Typical performance mistakes 

□  Use of critical when atomic would be sufficient 

□  Too much work inside a critical section 

□  Unnecessary flush / critical 
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OpenMP 4 

■  SIMD extensions 

□  Portable primitives to describe SIMD parallelization 

□  Loop vectorization with simd construct 

□  Several arguments for guiding the compiler (e.g. alignment) 

■  Targeting extensions 

□  Thread with the OpenMP program executes on the host device,  
an implementation may support other target devices 

□  Control off-loading of loops and code regions on such devices 

■  New API for using a device data environment 

□  OpenMP - managed data items can be moved to the device 

□  Threads cannot migrate between devices 

■  New primitives for better cancellation support 

■  User-defined reduction operations 
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Work Stealing 

■  Blumofe, Leiserson, Charles:  
Scheduling Multithreaded Computations by Work Stealing (FOCS 1994) 

■  Problem of scheduling scalable multithreading problems on SMP 

■  Work sharing: When processors create new work,  
the scheduler migrates threads for balanced utilization 

■  Work stealing: Underutilized core takes work from other processor,  
leads to less thread migrations 

◊  Goes back to work stealing research in Multilisp (1984) 

◊  Supported in OpenMP implementations, TPL, TBB, Java, Cilk, … 

■  Randomized work stealing: Lock-free ready dequeue per processor 

◊  Task are inserted at the bottom, local work is taken from the bottom 

◊  If no ready task is available, the core steals the top-most one from 
another randomly chosen core; added at the bottom 

□  Ready tasks are executed, or wait for a processor becoming free 

■  Large body of research about other work stealing variations 
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Cilk 

■  C language combined with several new keywords 

□  Different approach to OpenMP pragmas 

□  Developed at MIT since 1994 (!) 

□  Initial commercial version Cilk++ with C / C++ support 

■  Since 2010, offered by Intel as Cilk Plus 

□  Official language specification to foster other implementations 

□  Meanwhile maintained as GCC branch 
(similar to OpenMP) 

□  Support for Windows, Linux, and MacOS X 

■  Basic concept of serialization 

□  Any Cilk program compiled as concurrent code has the same 
execution semantics as the serial version 



Intel Cilk Plus 

■  Three keywords to express potential parallelism 

□  cilk_spawn: Asynchronous function call  

◊  Runtime decides, spawning is not mandated 

□  cilk_for: Allows loop iterations to be performed in parallel 

◊  Runtime decides, parallelization is not mandated 

□  cilk_sync: Wait until all spawned calls are completed 

◊  Barrier for cilk_spawn activity 

■  Runtime decided the level of parallelism, performs work stealing 

■  Strand: Instruction sequence in-between a change of parallelism 

■  Reducers: Lock-free private ‘views’ on variables 

■  Notation for SIMD array operations and SIMD functions 

■  Serialization: Cilk keyword become ordinary statements, code 
semantics are expected to remain the same 
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Intel Cilk Plus 

■  Strand concept makes it 
possible to express every 
program as directed acyclic 
graph (DAG) 
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Continuation / 
Strand 

Implicit cilk_sync 

Strand 

Strand 

Strand 

cilk_spawn 

cilk_sync 

return x+y 

fib(n-2) fib(n-1) 



Intel Cilk Plus 
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Intel Cilk Plus 

■  Accumulator / reduction algorithm 

□  Compute one result value by updating it with every 
computational step (that may be parallelized) 

□  Same reduction concept as with OpenMP and others 

□  Problem of avoiding data races 
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Intel Cilk Plus 

■  Express accumulated result as reducer pointer variable to get 
automated locking 

■  Parallel reducer operations are promised to be in serial ordering 
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Intel Cilk Plus 

■  Express accumulated result as reducer pointer variable to get 
automated locking 

■  Parallel reducer operations are promised to be in serial ordering 
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Intel Cilk Plus 

■  Parallel tree search 

■  Resulting list is 
always ‘in-order’ 

□  Left subtree 

□  Root 

□  Right subtree 

■  Stable semantics 
regardless of 
parallelization  

66 

[s
of

tw
ar

e.
in

te
l.c

om
] 



Intel Cilk Plus 

■  Predefined reducers for C and C++, custom reducers supported 

■  Optimized internal operation based on strands concept 

□  Each strand gets a private view on the reducer variable 

◊ No locking during update 

□  When strands join again, the reducer merges the operations 
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Intel Cilk Plus 

■  Cilk support the high-level 
expression of array operations 

□  Gives the runtime a chance 
to parallelize work 

□  Intended for data parallel 
element operations without 
any ordering constraints 

■  New operator [:] 

□  Specify data parallelism on 
an array 

□  array-expression[lower-
bound : length : stride] 

□  Multi-dimensional sections 
are supported: a[:][:] 

■  Short-hand description for 
complex loops 

□  A[:]=5 
for (i = 0; i < 10; i++) 

 A[i] = 5; 

□  A[0:n] = 5; 

□  A[0:5:2] = 5; 
for (i = 0; i < 10; i += 2) 

 A[i] = 5; 

□  A[:] = B[:]; 

□  A[:] = B[:] + 5; 

□  D[:] = A[:] + B[:]; 

□  func (A[:]); 
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Intel Cilk Plus 

■  Array notation can be used inside conditions 
if (5 == a[:]) 
    results[:] = "Matched”; 
else 
    results[:] = "Not Matched"; 

■  Function mapping is executed in parallel with no specific order 
 A[:] = pow(B[:], c); 

■  In C++, this works with any defined operator 
 A[:] = B[:] + C[:];  // A[:] = operator+(B[:], C[:]); 

■  Several predefined reduction macros applicable to array sections 

□  __sec_reduce_add, __sec_reduce_mul,  
__sec_reduce_max, __sec_reduce_min, 
__sec_reduce_all_zero, __sec_reduce_any_zero 

■  Array sections can be used as array indices for gather / scatter 

□  C[:] = A[B[:]] (gather), A[B[:]] = C[:] (scatter) 
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Intel Threading Building Blocks (TBB) 

■  Portable C++ library, toolkits for different operating systems 

■  Also available as open source version 

■  Complements basic OpenMP / Cilk features  

□  Loop parallelization, parallel reduction, synchronization, 
explicit tasks 

■  High-level concurrent containers 

□  hash map, queue, vector, set 

■  High-level parallel operations 

□  prefix scan, sorting, data-flow pipelining, deterministic reduce 

■  Unfair scheduling approach, to favor threads having data in cache 

■  Supported for cache-aware memory allocation 

■  Comparable: Microsoft C++ Concurrency Runtime 
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Intel Math Kernel Library (MKL) 

■  Intel library with hand-optimized functions for ... 

□  Highly vectorized and threaded linear algebra 

◊  Basic Linear Algebra Subprograms (BLAS) API, confirms to 
de-facto standards in high-performance computing 

◊  Vector-vector, matrix-vector, matrix-matrix operations 

□  Fast fourier transforms (FFT) 

◊  Single precision, double precision, complex, real, ... 

□  Vector math and statistics functions 

◊  Random number generators and probability distributions 

◊  Spline-based data fitting 

■  C or Fortran API calls 

■  Beats any automated compiler optimization 
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Easy Mappings [Dig] 
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Oracle Java Intel TBB MS .Net TPL

Parallel For ParallelArray parallel_for Parallel.For

Concurrent 
Collections ConcurrentHashMap, ... concurrent_hash_map, 

...

Atomic 
Classes AtomicInteger, ... atomic<T> Interlocked

ForkJoin Task 
Parallelism ForkJoinTask framework task Task, 

ReplicableTask


