Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Shared-Memory
Programming Models

Programmierung Paralleler und Verteilter Systeme (PPV)

Sommer 2015

Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc.,
Prof. Dr. Andreas Polze

Hasso
i Plattner
Shared-Memory Parallelism ﬂ Institut

m Process model

o All memory is local, unless explicitely specified

o Traditional UNIX approach
m Light-weight process / thread model

o All memory is global for all execution threads

¢ Logical model, remember NUMA !

o Stack is local

o Thread scheduling by operating system, manual synchronization

o POSIX Threads API as industry standard for portability
m Task model

o Directive / library based concept of tasks

o Dynamic mapping of tasks to threads from a pool

Hasso
. . . Plattner
Threads in classical operating systems H Institut

m Windows Threads
m Unix processes / threads / tasks

m Windows fibers

P R
Apple Grand Central Dispatch Institut

m Part of MacOS X operating system since 10.6
m Task parallelism concept for developer, execution in thread pools

0 Tasks can be functions or blocks
(C / C++ / ObjectiveC extension)

o Submitted to dispatch queues, executed in thread pool under
control of the Mac OS X operating system

¢ Main queue: Tasks execute serially on application‘s main
thread

¢ Concurrent queue: Tasks start executing in FIFO order,
but might run concurrently

¢ Serial queue: Tasks execute serially in FIFO order
m Dispatch groups for aggregate synchronization

m On events, dispatch sources can submit tasks to dispatch queues
automatically

Hasso
POSIX Threads (Pthreads) T

m Part of the POSIX specification collection, defining an API for
thread creation and management (pthread.h)

m Implemented by all (1) Unix-alike operating systems available

o Utilization of kernel- or user-mode threads depends on
implementation

m Groups of functionality (pthread_ function prefix)

o Thread management - Start, wait for termination, ...

0 Mutex-based synchronization

o Synchronization based on condition variables

0 Synchronization based on read/write locks and barriers
m Semaphore API is a separate POSIX specification (sem_ prefix)

Hasso
POSIX Threads ﬂ Inatitut

m pthread_create()

o Create new thread in the process, with given routine and
argument

m pthread exit(), pthread _cancel()
0 Terminate thread from inside our outside of the thread
m pthread_attr_init() , pthread_attr_destroy()

o Abstract functions to deal with implementation-specific
attributes (f.e. stack size limit)

o See discussion in man page about how this improves portability

int pthread create(pthread t *restrict thread,
const pthread attr t *restrict attr,
void * (*start routine) (void *),
void *restrict arg);

/**

FILE: hello.c
DESCRIPTION:
A "hello world" Pthreads program. Demonstrates thread creation and
termination.
AUTHOR: Blaise Barney
LAST REVISED: 08/09/11
**/
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5

* X ¥ % 3k

*

void *PrintHello(void *threadid)

{
long tid; tid = (long)threadid;
printf("Hello World! It's me, thread #%1d!\n", tid);
pthread exit (NULL);
}
int main(int argc, char *argv[])
{
pthread t threads[NUM THREADS];
int rc;
long t;

for (t=0;t<NUM THREADS;t++) {
printf("In main: creating thread %1d\n", t);
rc = pthread create(&threads[t], NULL, PrintHello, (void *)t);

if (rc){
printf ("ERROR; return code from pthread create() is %d\n", rc);
exit(-1);
}

}

/* Last thing that main() should do */
pthread exit (NULL);

Hasso
POSIX Threads ﬂ Inatitut

m pthread_join()
0 Blocks the caller until the specific thread terminates

o If thread gave exit code to pthread_exit(), it can be
determined here

o Only one joining thread per target is thread is allowed
m pthread _detach()

o Mark thread as not-joinable (detached) - may free some
system resources

m pthread_attr_setdetachstate()

o Prepare attr block so that a thread can be created in some
detach state

int pthread attr setdetachstate (pthread attr t *attr, int detachstate);

Hasso
POSIX Threads ﬂ Inatitut

pthread create() & pthread_join() | ——

Master
Thread

Worker
Thread

DOWORK ———® pthread exit()|

Worker

Thread

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM THREADS 4

void *BusyWork(void *t) {
int I; long tid; double result=0.0; tid = (long)t;
printf("Thread %1d starting...\n",tid);
for (i=0; i<1000000; i++) {
result = result + sin(i) * tan(i); }
printf("Thread %1d done. Result = %e\n",tid, result);
pthread exit((void*) t); }

int main (int argc, char *argv([]) {
pthread t thread[NUM THREADS]; pthread attr t attr; int rc; long t; void *status;

pthread attr init(&attr);
pthread attr_setdetachstate(&attr, PTHREAD CREATE JOINABLE);

for(t=0; t<NUM THREADS; t++) {
printf("Main: creating thread %1d\n", t);
rc = pthread create(&thread[t], &attr, BusyWork, (void *)t);
if (rc) {
printf ("ERROR; return code from pthread create() is %d\n", rc);
exit(-1);}}

pthread attr destroy(&attr);
for (t=0; t<NUM THREADS; t++) {
rc = pthread join(thread[t], &status);
if (rc) {
printf ("ERROR; return code from pthread join() is %d\n", rc);
exit(-1); }
printf("Main: completed join with thread %1d having a status of %1d\n",t, (long)status);}

printf("Main: program completed. Exiting.\n");
pthread exit(NULL); }

P e
POSIX Threads Institut
H m pthread _mutex_init()
o Initialize new mutex, which is unlocked by default
m pthread_mutex_lock(), pthread _mutex_trylock()
o Blocking / non-blocking wait for a mutex lock
m pthread_mutex_unlock()
o Operating system decides about wake-up preference

o Focus on speed of operation, no deadlock or starvation
protection mechanism

m Support for normal, recursive, and error-check mutex that reports
double locking

int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);

Hasso
POSIX Threads ﬂ Inatitut

12
m Condition variables are always used in conjunction with a mutex

m Allow to wait on a variable change without polling it in a critical
section

m pthread _cond_init()

o Initializes a condition variable
m pthread cond_wait()

o Called with a locked mutex

0 Releases the mutex and blocks on the condition in one atomic
step

o On return, the mutex is again locked and owned by the caller
m pthread _cond_signal(), pthread_cond_broadcast()
o Unblock thread waiting on the given condition variable

pthread cond_t cond_queue_empty, cond_queue_full;
pthread mutex t task_queue_ cond_lock;

int task available;

/* other data structures here */

main() {
/* declarations and initializations */
task available = 0;
pthread init();
pthread cond init(&cond queue empty, NULL);
pthread cond init(&cond queue full, NULL);
pthread mutex init(&task queue cond lock, NULL);
/* create and join producer and consumer threads */

}

void *producer(void *producer thread data) ({

int inserted;

while (!done()) {
create task();
pthread mutex lock(&task queue cond lock);
while (task available == 1)

pthread cond wait(&cond queue empty, &task queue cond lock);

insert into queue();
task available = 1;
pthread cond signal(&cond queue full);
pthread mutex unlock(&task queue cond lock);

}

void *consumer (void *consumer thread data) {..}

void *watch_count(void *t)
{
long my id = (long)t;
printf("Starting watch count(): thread %1d\n", my id);
pthread _mutex_lock(&count mutex);
while (count < COUNT LIMIT) {
printf("Thread %1d Count= %d. Going into wait...\n”, my id,count);
pthread cond _wait(&count threshold cv, &count mutex);
printf("Thread %1d Signal received. Count= %d\n", my id,count);
printf("Thread %1d Updating count...\n", my id,count);
count += 125;
printf("Thread %1d count = %d.\n", my id, count);
}
printf("watch count(): thread %1d Unlocking mutex.\n", my id);
pthread _mutex_unlock(&count mutex);
pthread exit (NULL);

}

int main(int argc, char *argv[]) {
pthread t threads[3]; pthread attr t attr; int i, rc; long tl=1, t2=2, t3=3;

pthread mutex_init(&count mutex, NULL);

pthread cond_init (&count threshold cv, NULL);

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD CREATE JOINABLE) ;

pthread_create(&threads[0], &attr, watch count, (void *)tl);

pthread_create(&threads[1l], &attr, inc_count, (void *)t2);

pthread create(&threads[2], &attr, inc _count, (void *)t3);

for (i = 0; i < NUM THREADS; i++) {
pthread_join(threads[i], NULL);

}

printf ("Main(): Count = %d. Done.\n", NUM THREADS, count);

pthread attr_destroy(&attr);

pthread_mutex_destroy(&count mutex);

pthread_cond_destroy(&count threshold cv);

pthread_exit (NULL);

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM THREADS 3
#define TCOUNT 10
#define COUNT LIMIT 12

int count = 0;
pthread mutex t count mutex;
pthread cond_t count_threshold cv;

void *inc_count(void *t) {
int i;
long my id = (long)t;

for (i=0; i < TCOUNT; i++) {
pthread_mutex_lock(&count mutex);
count++;

if (count == COUNT LIMIT) ({
printf("Thread %1d, count = %d Threshold reached. ",
my id, count);
pthread_cond_signal (&count threshold cv);
printf("Just sent signal.\n");

}

printf("Thread %1d, count = %d, unlocking mutex\n",
my id, count);
pthread_mutex unlock(&count mutex);
/* Do some work so threads can alternate on mutex lock */
sleep(l); }
pthread exit (NULL);

Hasso
- - . Plattner
Windows vs. POSIX Synchronization ﬂ Institut

16

Windows POSIX
WaitForSingleObject pthread_mutex_lock()
WaitForSingleObject(timeout==0) pthread_mutex_trylock()

Auto-reset events Condition variables

Hasso
Further PThreads Functionality T

17
m pthread_setconcurrency()

o Only meaningful for m:n threading environments
m pthread_setaffinity _np()
0 Modify processor affinity mask of a thread
0 Forked children inherit this mask
o Useful for pinning threads explicitely
¢ Better load balancing, avoid cache pollution
m pthread_sigmask()

o Individual threads can mask out signals for explicit
responsibilites

m pthread_barrier_wait()

o Barrier implementation, optional part of POSIX standard
(check for _POSIX_BARRIERS macro)

Hasso
Plattner
Institut

Java

18
m Java supports concurrency with Java / operating system threads

m Functions bundled in java.util.concurrent

m Classical concurrency support

0 synchronized methods: Allow only one thread in an objects
synchronized methods, based on intrinsic object lock

¢ For static methods, locking based on class object

0 synchronized statements: Synchronize execution by intrinsic
lock of the given object

0 volatile keyword: Indicate shared nature of variable -
ensures atomic synchronized access, no thread-local caching

0 wait / notify semantics in Object

19

Hasso
Plattner

Java Examples Institut

public class HelloRunnable implements Runnable {

public void run() {
System.out.println("Hello from a thread!");
}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}
}
T — B
public class HelloThread extends Thread {
public void run() {
System.out.println("Hello from a thread!");
}
public static void main(String args[]) {
(new HelloThread()).start();
}
public void addName(String name) { }
synchronized(this) {
lastName = name; R — ——
nameCount++;

}

nameList.add(name);

}

[— ——

H Ilsllasso
Java Monitors Inetitut

20
m Each object can act as guard with wait () / notify () functions

o Guard waiting must always be surrounded by explicit condition
check

public synchronized guardedJoy() {

//This guard only loops once for each special event, which may not
//be the event we're waiting for.
while(!joy) {

try {

wait();

} catch (InterruptedException e) {}

}

System.out.println("Joy and efficiency have been achieved!");

Hasso
. Plattner
Java High-Level Concurrency ﬂ Institut

21
m Introduced with Java 5
0 java.utill.concurrent.locks

m Separation of thread management and parallel activities -
Executors

0 java.util.concurrent.Executor

¢ Implementing object provides execute () method,
is able to execute submitted Runnable tasks

¢ No assumption on where the task runs, might be even in
the callers context, but typically in managed thread pool

¢ ThreadPoolExecutor implementation provided by class
library

22

Hasso
. Plattner
Java High-Level Concurrency ﬂ Institut

Java.util.concurrent.ExecutorService

0 Supports also callable objects as input, which can return a
value

o Additional submit () function, which returns a Future object
on the result

0 Future object allows to wait on the result, or cancel execution
Methods for submitting large collections of callable’s
Methods for managing executor shutdown
java.util.concurrent.ScheduledExecutorService

0 Additional methods to schedule tasks repeatedly

o Available thread pools from executor implementations:
Single background thread, fixed size, unbound with automated
reclamation

. P e
Java High-Level Concurrency Institut
23

interface ArchiveSearcher { String search(String target); }
class App {
ExecutorService executor = ...
ArchiveSearcher searcher = ...
void showSearch(final String target)
throws InterruptedException {
Future<String> future
= executor.submit(new Callable<String>() {
public String call() {
return searcher.search(target);

}})i
displayOtherThings(); // do other things while searching

try {
displayText(future.get()); // use future
} catch (ExecutionException ex) { cleanup(); return; }

}
}

. attner
Java High-Level Concurrency Institut

24

class NetworkService implements Runnable {
private final ServerSocket serverSocket;
private final ExecutorService pool;

public NetworkService(int port, int poolSize)
throws IOException {
serverSocket = new ServerSocket(port);
pool = Executors.newFixedThreadPool(poolSize);

}

public void run() { // run the service
try {
for (;;) {
pool.execute(new Handler(serverSocket.accept())):;
}
} catch (IOException ex) {
pool.shutdown();

}
}
}

class Handler implements Runnable {
private final Socket socket;
Handler (Socket socket) { this.socket = socket; }
public void run() {
// read and service request on socket

}
}

ﬂ Hasso
Java 6 / 7 Ingti?l?{

25 m Lock elision

o If the references to a lock have only some ,local scope’, it is
silently ommited by the JIT compiler

o Example: Appending strings to a StringBuffer
= Biased locking
o Locking consists of lease acquision and lock allocation

0 Looping over a synchronized block optimized by not requiring
the thread to release the lease every time

s Lock coarsening / merging

0 Combine subsequent synchronized blocks or synchronized
method calls

m Java spin locks suspend the thread after a while

o Adaptive spin locks are based on previous attempts on the
same lock in the same thread

ﬂ Hasso
Plattner
] N ET Institut

26
m As Java, .NET CLR relies on native thread model

o Synchronization and scheduling mapped to operating system
concepts

m .NET 4 has variety of support libraries
o Task Parallel Library (TPL) - Loop parallelization, task concept
o Task factories, task schedulers

o Parallel LINQ (PLINQ) -
Implicit data parallelism through query language

o Collection classes, synchronization support
o Debugging and visualization support

ﬂ Hasso
Plattner
C++11

Institut

m C++11 specification added support concurrency constructs
m Allows asynchronous tasks with std::async or std::thread

m Relies on Callable instance (functions, member functions, ...)

#include <iostream>

void write message(std::string const& message) {
std: :cout<<message;

}

int main() {

auto f=std::async(write message,"hello world from std::async\n");

write message("hello world from main\n");
f.wait(); }

#include <thread>
#include <iostream>

void write message(std::string const& message) {
std: :cout<<message;

}

int main() {

std::thread t(write message, "hello world from std::thread\n");
write message("hello world from main\n");
t.join(); }

ﬂ Hasso
Plattner
C_|_ + 1 1 Institut

28
m Launch policy can be specified for the async call

o Deferred or immediate launch of the activity
m As for all asynchronous task types, a future is returned

o Object representing the (future) result of an asynchronous
operation, allows to block on the result reading

o Original concept by Baker and Hewitt [1977]

m A promise object can store a value that is later acquired via a
future object

0 Separate concept since futures are only readable

m Promise and future as concept also available in Java 5, Smalltalk,
Scheme, CORBA, ...

#include <iostream>
#include <future>
#include <thread>

int main()

{

// future from a packaged task

std: :packaged task<int()> task([]1(){ return 7; }); // wrap the function
std:: future<int> fl = task.get future(); // get a future
std::thread(std: :move(task)).detach(); // launch on a thread

// future from an async()
std:: future<int> f2 = std::async(std::launch::async, []1(){ return 8; });

// future from a promise

std::promise<int> p;

std::future<int> f3 = p.get future();

std::thread([](std::promise<int>& p){ p.set value(9); },
std::ref(p)).detach();

std::cout << "Waiting..." << std::flush;
fl.wait();
f2.wait();
f3.wait();
std::cout << "Done!\nResults are: "
<< fl.get() << ' ' << f2.get() << ' ' << f3.get() << '\n’';

ﬂ Hasso
Plattner
C + + 1 1 Institut

30

m Four mutex classes, basic operations in the Lockable concept:
m.lock(), m.try_lock(), m.unlock()

m Locking is tricky with exceptions,
so C++ offers some high-level templates

std: :mutex m;void f(){
std: :lock_guard<std::mutex> guard(m);
std::cout<<"In f()"<<std::endl;
}int main(){
m.lock();
std::thread t(£f);
for(unsigned i=0;i<5;++1i){
std::cout<<"In main()"<<std::endl;
std::this thread::sleep for(std::chrono::seconds(1l));

}

m.unlock();
t.join();

ﬂ Hasso
Plattner
C + + 1 1 Institut

31
m Waiting for events with condition variables avoids polling

std::condition_variable the cv;

void wait and pop(my class& data) ({
std::unique lock<std::mutex> lk(the mutex);
the_cv.wait(1lk,[]() {return !the queue.empty();}):;
data=the queue.front();
the queue.pop();

void push(Data const& data)
{

{
std::lock guard<std::mutex> lk(the mutex);

the queue.push(data);
}

the_cv.notify one();

ﬂ Hasso
Plattner
C + + 1 1 Institut

32
m Lock-free atomic types that are free from data races

o char, schar, uchar, short, ushort, int, uint, long, ulong,
charl6_t, wchar_t, intptr_t, size_t, ...

m Common member functions
o is_lock_free()
o store(), load()
o exchange()
m Specialized member functions

o fetch_add(), fetch_sub(), fetch_and(), fetch_or(), operator++,
operator+=, ...

P e
C++11 Memory Model Institut
>3 m C++11 makes concurrency a first-class language citizen

o Similar to Java, .NET, and other runtime-based languages

0 (Side note: Fixed Java >=5 memory model with JSR-133)

o Unlike any C++ or C version before

m Demands a memory model of the language
o What means atomicity? When is a written value visible?
o Relationship between variables and registers / memory

o Only chance for the compiler to apply optimizations such as
re-ordering of instructions

o Irrelevant without a concurrency concept in the language
o Proper definition leads to portable concurrency behavior
m C++11 needs to define that for native code !!!

m http://www.hpl.hp.com/personal/Hans Boehm/c++mm/threadsintro.html

Hasso
C++11 Memory Model ﬂ Institut

34
m Example: Atomic objects have store() and load() methods that

ensure sequential consistency
o Comparable to Java volatile
o0 Leads to X86 instructions for memory fencing

o Fine-grained options to influence access order from threads,
which may allow fence removal by the compiler

o http://en.cppreference.com/w/cpp/atomic/memory order

// Thread 1:

rl = y.load(memory order relaxed); // A . _

x.store(rl, memory order relaxed); // B A SequenCEd before B

// Thread 2: « C sequenced-before D

r2 = x.load(memory_order_relaxed); // C « rl == r2 == 42 may happen

y.store(42, memory order relaxed); // D

std:memory_order

Defined in header <atomic=>
enum memory order {

memory order relaxed,
memory order consume,

memory order acquire,
memory order release,

(since C++11)

memory order acq rel,
memory order seq cst

};

std::memory order specifies how regular (non-atomic) memory accesses are to be ordered around an atomic
operation. The rationale of this is that when several threads simultaneously read and write to several variables on
multi-core systems, one thread might see the values change in different order than another thread has written them.
Also, the apparent order of changes may be different across several reader threads. Ensuring that all memory
accesses to atomic variables are sequential may hurt performance in some cases. std: :memory order allows to

specify the exact constrai

nts that the compiler must enforce.

It's possible to specify custom memory order for each atomic operation in the library via an additional parameter. The
defaultis std: :memory_order_seq_cst.

Constants

Defined in header <atomic>
Value

memory order relaxed

memory order consume

memory order acquire

memory order release

memory order acq rel

memory order seq cst

Explanation

Relaxed ordering: there are no synchronization or ordering constraints, only atomicity is
required of this operation.

A load operation with this memory order performs a consume operation on the affected
memory location: prior writes to data-dependent memory locations made by the thread that
did a release operation become visible to this thread.

A load operation with this memory order performs the acquire operation on the affected
memory location: prior writes made to other memory locations by the thread that did the
release become visible in this thread.

A store operation with this memory order performs the release operation: prior writes to
other memory locations become visible to the threads that do a consume or an acquire on
the same location.

A load operation with this memory order performs the acquire operation on the affected
memory location and a store operation with this memory order performs the release
operation.

Same as memory order acq rel, and a single total order exists in which all threads observe
all modifications (see below)

Hasso
Plattner
Institut

Concurrent Programming in C++

Mathematizing C++ Concurrency

Mark Batty Scott Owens Susmit Sarkar Peter Sewell — Tjark Weber
University of Cambridge

Abstract

Shared-memory concurrency in C and C++ is pervasive in systems
programming, but has long been poorly defined. This motivated
an ongoing shared effort by the standards committees to specify
concurrent behaviour in the next versions of both languages. They
aim to provide strong guarantees for race-free programs, together
with new (but subtle) relaxed-memory atomic primitives for high-
performance concurrent code. However, the current draft standards,
while the result of careful deliberation, are not yet clear and rigor-
ous definitions, and harbour substantial problems in their details.

In this paper we establish a mathematical (yet readable) seman-
tics for C++ concurrency. We aim to capture the intent of the cur-
rent (‘Final Committee’) Draft as closely as possible, but discuss
changes that fix many of its problems. We prove that a proposed
x86 implementation of the concurrency primitives is correct with
respect to the x86-TSO model, and describe our CPPMEM tool for
exploring the semantics of examples, using code generated from
our Isabelle/HOL definitions.

Having already motivated changes to the draft standard, this

work will aid dicenccion of anv further chanoes nrvide a cor-

quential consistency (SC) [Lam79], simplifies reasoning about pro-
grams but at the cost of invalidating many compiler optimisa-
tions, and of requiring expensive hardware synchronisation instruc-
tions (e.g. fences). The C++0x design resolves this by providing
a relatively strong guarantee for typical application code together
with various atomic primitives, with weaker semantics, for high-
performance concurrent algorithms. Application code that does not
use atomics and which is race-free (with shared state properly pro-
tected by locks) can rely on sequentially consistent behaviour; in
an intermediate regime where one needs concurrent accesses but
performance is not critical one can use SC atomics; and where
performance is critical there are low-level atomics. It is expected
that only a small fraction of code (and of programmers) will use
the latter, but that code —concurrent data structures, OS kernel
code, language runtimes, GC algorithms, etc.— may have a large
effect on system performance. Low-level atomics provide a com-
mon abstraction above widely varying underlying hardware: x86
and Sparc provide relatively strong TSO memory [SSO™ 10, Spa];
Power and ARM provide a weak model with cumulative barri-
ers [Pow09, ARM08, AMSS10]; and Itanium provides a weak

I —

—————————...

P e
Threads vs. Tasks Institut
37 m Process: Address space, resource handles, code, set of threads
s Thread: Control flow

0 Preemptive scheduling by the operating system

o Can migrate between cores

m Task: Control flow

0 Modeled as object, statement, lambda expression,
or anonymous function

o Cooperative scheduling, typically by a user-mode library

o Dynamically mapped to threads from a pool

o Task model replaces context switch with yielding approach
o Typical scheduling policy is central queue or work stealing

ﬂ Hasso

. . Plattner
Multi-Tasking Institut
38

m Relevant issues: Task generation, synchronization, data access

o Explicit activity as part of some sequential code
(operating system thread API, Java / .NET threads, ...)
-> explicit” threading

o Implicit activity based on a framework
(OpenMP, OpenCL, Intel TBB, MS TPL, ...)
-> implicit” threading

m Concurrency problems remain the same
o Critical section problem with shared variables in different tasks

o Low-level synchronization primitives typically wrapped by
~concurrent data structures” in the task framework

ﬂ Hasso
Plattner
Open M P Institut

39 m Specification for C/C++ and Fortran language extension

o Portable shared memory thread programming
o High-level abstraction of task- and loop parallelism

o Derived from compiler-directed parallelization of serial
language code (HPF), with support for incremental change of
legacy code

m Programming model: Fork-Join-Parallelism
o Master thread spawns group of threads for limited code region

Master
Thread

Parallel Regions

ﬂ Hasso
Plattner
Open MP Institut
OpenMP language
extensions
parallel control , data L ru.ntlme
work sharing , synchronization functions, env.
structures environment .
variables

governs flow of
control in the
program

parallel directive

distributes work
among threads

do/parallel do
and
section directives

scopes
variables

shared and
private
clauses

coordinates thread
execution

critical and
atomic directives
barrier directive

runtime environment

omp_set_num_threads()
omp_get_thread_num()

OMP_NUM_THREADS
OMP_SCHEDULE

(from Wikipedia)

ﬂ Hasso
Plattner
Open M P Institut

41
m OpenMP runtime library:

query functions, runtime functions, lock functions
m Parallel region

0 OpenMP constructs are applied to dedicated code blocks,
marked by #pragma omp parallel

o Parallel region should have only one entry and one exit point
o Implicit barrier at beginning and end of the block
m Thread pool for execution of parallel activities

m Idle worker threads may sleep or spin, depending on library
configuration (performance issue in serial parts)

/E\%
Master
Thread

! /'
Parallel Regions

. attner
OpenMP Parallel Region Institut

42
m Encountering thread for the parallel region generates a set of

implicit tasks, each with possibly different instructions
m Each resulting implicit task is assigned to a different thread
m Task execution may suspend at some scheduling point
o Implicit barrier regions (!), encountered barrier primitives
o Encountered task / taskwait constructs
o At the end of a task region

A set of implicit tasks, equal in number to the number of threads in the team, is
generated by the encountering thread. The structured block of the parallel construct
determines the code that will be executed in each implicit task. Each task is assigned to
a different thread in the team and becomes tied. The task region of the task being
executed by the encountering thread is suspended and each thread in the team executes
its implicit task. Each thread can execute a path of statements that is different from that
of the other threads.

The implementation may cause any thread to suspend execution of its implicit task at a
task scheduling point, and switch to execute any explicit task generated by any of the
threads in the team, before eventually resuming execution of the implicit task (for more
details see Section 2.7 on page 59).

OpenMP Configuration and ﬂ Hasso
Query Functions

Institut

43
m Environment variables

o0 OMP NUM THREADS: number of threads during execution,
upper limit for dynamic adjustment of threads

0 OMP SCHEDULE: set schedule type and chunk size for
parallelized loops of scheduling type runtime

m Query functions

0 omp get num threads: Number of threads in the current
parallel region

0 omp get thread num: Current thread number in the team,
master=0

0 omp get num procs: Available number of processors

#include <omp.h>
#include <stdio.h>

int main (int argc, char * const argv[]) {
#pragma omp parallel
printf("Hello from thread %d, nthreads %d\n”,
omp get thread num(),

omp_get num threads());
return 0;

>> gcc -fopenmp -o omp omp.cC

P R
OpenMP Work Sharing institut

45 m Possibilities for distribution of tasks across threads

(,work sharing)
0 omp sections - Define code blocks dividable among threads
¢ Implicit barrier at the end
0 omp for - Automatically divide a loop‘s iterations into tasks
¢ Implicit barrier at the end

0 omp single / master - Denotes a task to be executed only
by first arriving thread resp. the master thread

¢ Implicit barrier at the end,
intended for non-thread-safe activities (I/0)

0 omp task - Explicitly define a task
m Task scheduling is handled by the OpenMP implementation
m Clause combinations possible: #pragma omp parallel for

P P
OpenMP Sections Inetitut

4
° m Explicit definition of code blocks being distributable amongst threads

with section directive
m Executed in the context of the implicit task
m Intended for non-iterative parallel work in the code
m One thread may execute more than one section - runtime decision
m Implicit barrier at the end of the sections block
o Can be overriden with the nowait clause

#pragma omp parallel
{

#pragma omp sections [clause [clause] ...]

{
[#pragma omp section]
structured-blockl

[#pragma omp section]

structured-block?2
}}

Hasso
OpenMP Data Sharing ﬂ institut

47

= Shared variable: Name provides access to memory in all tasks

o Shared by default: global variables, static variables,

O

O

variables with namespace scope, variables with file scope

shared clause can be added to any omp construct, defines a
list of additionally shared variables

Provides no automatic protection, just marking of variables for
handling by runtime environment

m Private variable: Clone variable in each task, no initialization

O

O

Use private clause for having one copy per thread

Private by default: Local variables in functions called from
parallel regions, loop iteration variables, automatic variables

firstprivate: Initialization with last value before region

lastprivate: Result value after region from last loop
iteration or lexically last section directive

P P
. attner
OpenMP Consistency Model Institut

48 m Thread’s temporary view of memory is not required to be

consistent with memory at all times (weak-ordering consistency)
o Example: Keeping loop variable in a register for efficiency
o Compiler needs information when consistent view is demanded
o Implicit flush on different occasions, such as barrier region
o In all other cases, read variables must be flushed before

m #pragma omp flush

a=b=20
thread 1 thread 2
b = 1 a = 1
flush(a,b) flush (a,b)
if (a == 0) then if (b == 0) then
critical section critical section

end if end if

49

OpenMP Loop Parallelization

for construct:
Parallel execution of
iterations

Iteration variable
must be integer

Mapping of threads
to iterations is
controlled by
schedule clause

Implications on
exception handling,
break-out calls and
continue primitive

Hasso
Plattner
Institut

#pragma omp parallel for

for(ii = 0; i1 < n; ii++){
value = some_complex_long_fuctionCa[iil);
#pragma omp critical
sum = sum + value;

#include <math.h>
void a92(int n, float *a, float *b, float *c, float *y, float *z)
{
int i;
#pragma omp parallel
{
#pragma omp for schedule(static) nowait
for (i=0; i<n; i++)
cl[i] = (ali]l + b[il) / 2.0;
#pragma omp for schedule(static) nowait
for (i=0; i<n; i++)
z[i] = sqgrt(clil);
#pragma omp for schedule(static) nowait
for (i=1; i<=n; i++)
yl[i] = z[i-1] + ali]l;
}
}

e

P R
OpenMP Loop Parallelization Scheduling Institut

50
m schedule (static, [chunk])

o Contiguous ranges of iterations (chunks) are assigned to the threads
o Low overhead, round robin assignment to free threads
o Static scheduling for predictable and similar work per iteration
o Increasing chunk size reduces overhead, improves cache hit rate
o Decreasing chunk size allows finer balancing of work load
o Default is one chunk per thread
m schedule (dynamic, [chunk])
o Threads grab iteration resp. chunk
o Higher overhead, but good for unbalanced iteration work load
m schedule (guided, [chunk])
o Dynamic schedule, shrinking ranges per step
o Starts with large block, until minimum chunk size is reached

o Good for computations with increasing iteration length
(e.g. prime sieve test)

P P
. . attner
OpenMP Synchronization Institut

51 .. . :
m Synchronizing variable access with #pragma omp critical

o Enclosed block is executed by all threads,
but restricted to one at a time

float dot prod(float* a, float* b, int N)
{
float sum = 0.0;
#pragma omp parallel for
for(int 1 = 0; i < N; i++) {
#pragma omp critical
sum += af[i] * b[i];
}

return sum;

Hasso
Plattner
Institut

OpenMP Synchronization

52
m Synchronizing with task completion

o Implicit barrier at the end of single block,
removable by nowait clause
O #pragma omp barrier (wait for all other threads in the team)

O #pragma omp taskwait (wait for completion of child tasks)

#include <omp.h>
#include <stdio.h>

int main() {
#pragma omp parallel
{

printf("Start: %d\n", omp get thread num());
#pragma omp single //nowait

printf("Got it: %d\n", omp get thread num());
printf("Done: %d\n", omp get thread num());

}

return 0;

}

Hasso
- . Plattner
OpenMP Synchronization ﬂ Institut

53
m Alternative: #pragma omp reduction (op: list)
0 Execute parallel tasks based on private copies of 1ist
o Perform reduction on results with op afterwards
o Without race conditions

m Supported associative operands:
+, *, -, ©, bitwise AND, bitwise OR, logical AND, logical OR

#pragma omp parallel for reduction (+:sum)
for(i = 0; 1 < N; 1i++) {
sum += al[1] * b[1];

}

54

ﬂ Hasso
OpenMP Tasks Institut

Major change with OpenMP 3, allows description of irregular
parallelization problems

o Farmer / worker algorithms, recursive algorithms, while loops

Definition of tasks as composition of code to execute,
data environment, and control variables

o Unit of work that may be deferred

o Can be nested inside parallel regions and other tasks,
SO recursion becomes possible

o Implicit task generation with parallel and for constructs
Tasks run at task scheduling points
Runtime may move tasks between threads, or delay them
sections are similar, but mainly work for static partitioning

Tied tasks always keep the same thread and follow the
scheduling point concept, developer may untie tasks

55

OpenMP Tasks

void traverse_list (List |) void traverse_list (List |
{ {
BBt e Element e;
. for (e = |—>first; e ; e =

#pragma omp parallel private(e) : :

for (e = |—>first; e ; e = e—>next) #pragma omp ta-sk

#pragma omp single nowait process(e);
rocess(e);

} P #pragma omp taskwait

m Parallelize operations on list items
m Traversal of dynamic structure, so sections do not help
m Without tasks

o Poor performance due to abuse of single construct
m Barrier with taskwait

o Thread suspends until all direct child tasks are done

Hasso
Plattner
Institut

)

e—>next)

[Duran, BSC]

56

OpenMP Best Practices [SuUB & Leopold]

m Typical correctness mistakes
o Access to shared variables not protected
o Use of locks / shared variables without f1ush
o Declaring parallel loop variable as shared
m Typical performance mistakes
0 Use of critical when atomic would be sufficient
o0 Too much work inside a critical section
0 Unnecessary flush / critical

Hasso
Plattner
Institut

7
OpenMP 4 Ingti?l?{

57
m SIMD extensions

o Portable primitives to describe SIMD parallelization

o Loop vectorization with simd construct

o Several arguments for guiding the compiler (e.g. alignment)
m Targeting extensions

o Thread with the OpenMP program executes on the host device,
an implementation may support other target devices

o Control off-loading of loops and code regions on such devices
m New API for using a device data environment

o OpenMP - managed data items can be moved to the device

0 Threads cannot migrate between devices
m New primitives for better cancellation support
m User-defined reduction operations

58

ﬂ o
i Plattner
Work Stealing Institut

Blumofe, Leiserson, Charles:
Scheduling Multithreaded Computations by Work Stealing (FOCS 1994)

Problem of scheduling scalable multithreading problems on SMP

Work sharing: When processors create new work,
the scheduler migrates threads for balanced utilization

Work stealing: Underutilized core takes work from other processor,
leads to less thread migrations

¢ Goes back to work stealing research in Multilisp (1984)

¢ Supported in OpenMP implementations, TPL, TBB, Java, Cilk, ...
Randomized work stealing: Lock-free ready dequeue per processor

¢ Task are inserted at the bottom, local work is taken from the bottom

¢ If no ready task is available, the core steals the top-most one from
another randomly chosen core; added at the bottom

0 Ready tasks are executed, or wait for a processor becoming free
Large body of research about other work stealing variations

ﬂ Hasso
. Plattner
Ci | k Institut

m C language combined with several new keywords
o Different approach to OpenMP pragmas
0 Developed at MIT since 1994 (!)
o Initial commercial version Cilk++ with C / C++ support
m Since 2010, offered by Intel as Cilk Plus
o Official language specification to foster other implementations

0o Meanwhile maintained as GCC branch
(similar to OpenMP)

o Support for Windows, Linux, and MacOS X
m Basic concept of serialization

o Any Cilk program compiled as concurrent code has the same
execution semantics as the serial version

ﬂ Hasso
Intel Cilk Plus Institut

60
m Three keywords to express potential parallelism

o cilk_spawn: Asynchronous function call
¢ Runtime decides, spawning is not mandated
o cilk_for: Allows loop iterations to be performed in parallel
¢ Runtime decides, parallelization is not mandated
o cilk_sync: Wait until all spawned calls are completed
¢ Barrier for cilk_spawn activity
m Runtime decided the level of parallelism, performs work stealing
m Strand: Instruction sequence in-between a change of parallelism
m Reducers: Lock-free private ‘views’ on variables
= Notation for SIMD array operations and SIMD functions

m Serialization: Cilk keyword become ordinary statements, code
semantics are expected to remain the same

Intel Cilk Plus

61
m Strand concept makes it

possible to express every
program as directed acyclic
graph (DAG)

|

cilk_spawn

{

Strand

Strand

Strand {
}

cilk_sync

return x+y l

R\\\

int fib(int n)

Hasso
Plattner
Institut

{
if (n < 2)
return n;
int x = fib(n-1);
int y = fib(n-2);
return x + y;
}

int f£ib(int n)

if (n < 2)

return n;
int x = cilk spawn
int y = £ib(n-2);
cilk sync;
return x + y;

Implicit cilk_sync

fib(n-1);

—

\ 4
Continuation /
Strand

[cilkplus.org]

Intel Cilk Plus

62
for (int 1 = 0; i < 8; ++1i)
{
do work(1i);

}

for (int 1 = 0; 1 < 8; ++1i)

{

cilk_spawn do_work(i);

}

cilk sync;

cilk for (int i = 0; i < 8; ++1i)

{
}

do work(1i);

Hasso
Plattner
Institut

[cilkplus.org]

63

Hasso
. ﬂ Plattner
Intel Cilk Plus Institut
m Accumulator / reduction algorithm
o Compute one result value by updating it with every
computational step (that may be parallelized)
0 Same reduction concept as with OpenMP and others
o Problem of avoiding data races
#include <iostream>
#include <iostream> #include <cilk/cilk.h>
int main()
{ int main()
unsigned long accum = 0; {
for (int 1 = 0; i != 1000; i++) { unsigned long accum = 0;
accum += i*i; cilk_for (int i = 0; i != 1000; i++) {
} accum += i*i;
std: :cout << accum << "\n"; }
} std::cout << accum << "\n";

[software.intel.com]

64

Intel Cilk Plus

Hasso
Plattner
Institut

m Express accumulated result as reducer pointer variable to get

automated locking

m Parallel reducer operations are promised to be in serial ordering

#tinclude <iostream>
#tinclude <cilk/cilk.h>

int main()

{

unsigned long accum = 0;

cilk_for (int i = 0; i != 1000; i++) {

accum += i*i;

}

std::cout << accum << "\n";

#tinclude <iostream>
##tinclude <cilk/cilk.h>
#include <cilk/reducer_opadd.h>

int main()

{

cilk: :reducer_opadd<unsigned long> accum(0);

cilk for (int i = 0; i != 1000; i++) {
*accum += i*i;

¥

std::cout << accum.get_value() << "\n";

[software.intel.com]

65

Intel Cilk Plus

Hasso
Plattner
Institut

m Express accumulated result as reducer pointer variable to get

automated locking

m Parallel reducer operations are promised to be in serial ordering

#tinclude <iostream>
#tinclude <cilk/cilk.h>

int main()

{

unsigned long accum = 0;

cilk_for (int i = 0; i != 1000; i++) {

accum += i*i;

}

std::cout << accum << "\n";

#tinclude <iostream>
##tinclude <cilk/cilk.h>
#include <cilk/reducer_opadd.h>

int main()

{

cilk: :reducer_opadd<unsigned long> accum(0);

cilk for (int i = 0; i != 1000; i++) {
*accum += i*i;

¥

std::cout << accum.get_value() << "\n";

[software.intel.com]

66

Intel Cilk Plus

#include<cilk/cilk.h>
#include <cilk/reducer_list.h>

// The tree node structure.
//
template <typename Key, typename Value>
struct TreeNode {
TreeNode* left_subtree;
TreeNode* right_subtreee;
Key key;
Value value;

};

m Parallel tree search

m Resulting list is
always ‘in-order’

o Left subtree
0 Root
o Right subtree

m Stable semantics
regardless of
parallelization

Hasso
Plattner
Institut

// The worker function. Walk a subtree and add the values

// of all nodes that match a key to a list reducer.

//

template <typename Key, typename Value>

void filter_and_collect(const TreeNode<Key, Value>* subtree,

const Key& key,

cilk::reducer_list append<Value>& list)

{
if (!subtree) return;
cilk_spawn filter_and_collect(subtree->left, key, list);
if (subtree->key == key) {
list->push_back(subtree->value);
}
filter_and_collect(subtree->right, key, list);
}

// The main function. Compute and return a list of the 'value’
// fields of all the nodes in a tree whose 'key' fields match a
// specified 'key"'.

//

template <typename Key, typename Value>
std::list<Value> filter_tree(const TreeNode<Key, Value>* tree,

{

const Key& key)

cilk::reducer_list_append<Value> list;
filter_and_collect(tree, key, list);
return list.get _value();

[software.intel.com]

ﬂ Hasso
Intel Cilk Plus Inetitut

o7 m Predefined reducers for C and C++, custom reducers supported

m Optimized internal operation based on strands concept
o Each strand gets a private view on the reducer variable
¢ No locking during update
o When strands join again, the reducer merges the operations

Lists
reducer_list_append Creates a list by adding elements to the back.
reducer_list_prepend Creates a list by adding elements to the front.

Min/Max
reducer_max Calculates the maximum value of a set of values.
reducer_max_index Calculates the maximum value and index of that value of a set of values.
reducer_min Calculates the minimum value of a set of values.
reducer_min_index Calculates the minimum value and index of that value of a set of values.
Math Operators
reducer_opadd Calculates the sum of a set of values.
Bitwise Operators
reducer_opand Calculates the binary AND of a set of values.
reducer_opor Calculate the binary OR of a set of values.
reducer_opxor Calculate the binary XOR of a set of values.
String Operators
reducer_string Accumulates a string using append operations.
reducer_wstring Accumulates a "wide" string using append operations.
Files

reducer_ostream An output stream that can be written in parallel.

Intel Cilk Plus

68

o Gives the runtime a chance
to parallelize work

o Intended for data parallel
element operations without
any ordering constraints

m New operator [:]

o Specify data parallelism on

an array

o array-expression[lower-
bound : length : stride]

0 Multi-dimensional sections
are supported: af:]J[:]

m Cilk support the high-level
expression of array operations

O

Hasso
Plattner
Institut

m Short-hand description for
complex loops

A[:]1=5

for (i=0;i<10; i++)
Ali] = 5;

A[O:n] = 5;

A[0:5:2] = 5;

for (i =0;i<10;i+=2)
Ali] = 5;

A[:] = B[:];

A[:] = B[:] + 5;

D[:] = A[:] + B[:];

func (A[:]);

69

ﬂ Hasso
Intel Cilk Plus Institut

Array notation can be used inside conditions

if (5 ==a[:])
results[:] = "Matched”;
else

results[:] = "Not Matched";
Function mapping is executed in parallel with no specific order
Al:] = pow(B[:], c);
In C++, this works with any defined operator
Al:] =B[:] + C[:]; //A[:] = operator+(B[:], C[:]);
Several predefined reduction macros applicable to array sections

O __ Sec_reduce_add, ___sec _reduce_mul,
___sec_reduce_max, __sec_reduce_min,
___sec _reduce_all_zero, __sec_reduce_any_zero

Array sections can be used as array indices for gather / scatter
o C[:] = A[B[:]] (gather), A[B[:]] = C[:] (scatter)

70

Hasso
Intel Threading Building Blocks (TBB) |

Portable C++ library, toolkits for different operating systems
Also available as open source version
Complements basic OpenMP / Cilk features

o Loop parallelization, parallel reduction, synchronization,
explicit tasks

High-level concurrent containers

o hash map, queue, vector, set
High-level parallel operations

o prefix scan, sorting, data-flow pipelining, deterministic reduce
Unfair scheduling approach, to favor threads having data in cache
Supported for cache-aware memory allocation
Comparable: Microsoft C++ Concurrency Runtime

Hasso
Intel Math Kernel Library (MKL) " b

71
m Intel library with hand-optimized functions for ...
o Highly vectorized and threaded linear algebra

¢ Basic Linear Algebra Subprograms (BLAS) API, confirms to
de-facto standards in high-performance computing

¢ Vector-vector, matrix-vector, matrix-matrix operations
o Fast fourier transforms (FFT)
¢ Single precision, double precision, complex, real, ...
o Vector math and statistics functions
¢ Random number generators and probability distributions
¢ Spline-based data fitting
m C or Fortran API calls
m Beats any automated compiler optimization

P R
Easy Mappings [Dig] Institut

72
Oracle Java Intel TBB MS .Net TPL
Parallel For ParallelArray parallel_for Parallel.For
Concurrent concurrent_hash_map,
Collections ConcurrentHashMap, ...
AL Atomiclnteger, atomic<T> Interlocked
Classes ger ...
ForkJoin Task Task,

Parallelism ForkJoinTask framework task ReplicableTask

