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Von Neumann Model 

■  Processor executes a sequence of instructions 

◊  Arithmetic operations 

◊ Memory to be read / written 

◊  Address of next instruction 

■  Software layering tackles complexity of instruction stream 

■  Parallelism adds coordination problem between multiple instruction 
streams being executed 
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Concurrency in History 

■  1961, Atlas Computer, Kilburn & Howarth 

□  Based on Germanium transistors,  
assembler only 

□  First use of interrupts to simulate 
concurrent execution of multiple 
programs - multiprogramming 

■  60‘s and 70‘s: Foundations for concurrent 
software developed  

□  1965, Cooperating Sequential Processes, 
E.W.Dijkstra 

◊  First principles of concurrent 
programming 

◊  Basic concepts: Critical section, 
mutual exclusion, fairness,  
speed independence 
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Cooperating Sequential Processes 
[Dijkstra] 

■  1965, Cooperating Sequential Processes, E.W.Dijkstra 

□  Comparison of sequential and non-sequential machine 

□  Example: Electromagnetic solution to find the largest value  
in an array 

◊ Current lead through magnet coil 

◊  Switch to magnet with larger current 

□  Progress of time is relevant 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Progress of time is relevant 

□  After applying one step, machine needs  
some time to show the result 

□  Same line differs only in left operand 

□  Concept of a parameter that comes from history, 
leads to alternative setup for the same behavior 

■  Rules of behavior form a program 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Idea: Many programs for expressing the same intent 

□  Example: Consider repetitive nature of the problem 

□  Invest in a variable j  
à generalize the solution for any number of items 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Assume we have multiple of these sequential programs 

■  How about the cooperation between such, maybe loosely coupled, 
sequential processes ? 

□  Beside rare moments of communication,  
processes run autonomously 

■  Disallow any assumption about the relative speed 

□  Aligns to understanding of sequential process,  
which is not affected in its correctness by execution time 

□  If this is not fulfilled, it might bring „analogue interferences“ 

■  Note: Dijkstra already identified the „race condition“ problem 

■  Idea of a critical section for two cyclic sequential processes 

□  At any moment, at most one process is engaged in the section 

□  Implemented through common variables 

□  Demands atomic read / write behavior 
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Critical Section 
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Critical Section 

■  N threads has some code - critical section - with shared data access 

■  Mutual Exclusion requirement 

□  Only one thread at a time is allowed into its critical section, among all 
threads that have critical sections for the same resource. 

■  Progress requirement 

□  If no other thread is in the critical section, the decision for entering 
should not be postponed indefinitely. Only threads that wait for 
entering the critical section are allowed to participate in decisions.  

■  Bounded Waiting requirement 

□  It must not be possible for a thread requiring access to a critical 
section to be delayed indefinitely by other threads entering the section  
(starvation problem) 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Attempt to develop a  
critical section concept in 
ALGOL60 

□  parbegin / parend  
extension 

□  Atomicity on source 
code line level 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Attempt to develop a  
critical section concept in 
ALGOL60 

□  parbegin / parend  
extension 

□  Atomicity on source 
code line level 

■  First approach 

□  Too restrictive, since 
strictly alternating 

□  One process may die 
or hang outside of 
the critical section 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Separate indicators  
for enter/ leave 

■  More fine-grained 
waiting approach 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Separate indicators  
for enter/ leave 

■  More fine-grained 
waiting approach 

■  Too optimistic, both 
processes may end  
up in the critical section 
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Cooperating Sequential Processes 
[Dijkstra] 

■  First ,raise the flag‘,  
   then check for the other 

■  Concept of a selfish process 
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Cooperating Sequential Processes 
[Dijkstra] 

■  First ,raise the flag‘,  
   then check for the other 

■  Concept of a selfish process 

■  Mutual exclusion works 

□  If c1=0, then c2=1,  
and vice versa 

■  Variables change outside  
    of the critical section only 

□  Danger of mutual  
blocking (deadlock) 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Reset locking of critical  
   section if the other one  
   is already in 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Reset locking of critical  
   section if the other one  
   is already in 

■  Problem due to assumption 
   of relative speed 

□  Process 1 may run much 
faster, always hits the 
point in time were c2=1 

□  Can lead for one process  
to ,wait forever‘ without  
any progress 
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Cooperating Sequential Processes 
[Dijkstra] 

■  Solution: Dekker‘s algorithm, referenced by Dijkstra 

□  Combination of fourth approach and turn ,variable‘,  
which realizes mutual blocking avoidance through prioritization 

□  Idea: Spin for section entry only if it is your turn 
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Critical Sections 

■  Dekker provided first correct solution only based on shared 
memory, guarantees three major properties  

□  Mutual exclusion 

□  Freedom from deadlock 

□  Freedom from starvation 

■  Generalization by Lamport with the Bakery algorithm 

□  Relies only on memory access atomicity 

■  Both solutions assume atomicity and predictable sequential 
execution on machine code level 

■  Hardware today: Unpredictable sequential instruction stream 

◊ Out-of-order execution 

◊  Re-ordered memory access 

◊ Compiler optimizations  
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Bakery Algorithm [Lamport] 

20 def lock(i) { # wait until we have the smallest num 

   choosing[i] = True; 

   num[i] = max(num[0],num[1] ...,num[n-1]) + 1; 

   choosing[i] = False; 

   for (j = 0; j < n; j++) { 

  while (choosing[i]) ;  

  while ((num[j] != 0) &&  
  ((num[j],j) ‘’<‘’ (num[i],i))) {};}} 

def unlock(i) { 

   num[i] = 0; } 

 

lock(i) 

… critical section … 

unlock(i) 

 



Test-and-Set 

■  Test-and-set processor instruction, wrapped by the operating system 

□  Write to a memory location and return its old value as atomic step 

□  Also known as compare-and-swap (CAS) or read-modify-write 

■  Idea: Spin in writing 1 to a memory cell, until the old value was 0 

□  Between writing and test, no other operation can modify the value 

■  Busy waiting for acquiring a lock 

■  Efficient especially for short  
waiting periods 
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function Lock(boolean *lock) {!
    while (test_and_set (lock))!
      ;!
}!
!
#define LOCKED 1!
 int TestAndSet(int* lockPtr) {!
     int oldValue;!
     oldValue = SwapAtomic(lockPtr, LOCKED);!
     return oldValue == LOCKED;!
 }!
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Binary and General Semaphores 
[Dijkstra] 

■  Find a solution to allow waiting sequential processes to ,sleep‘ 

■  Special purpose integer called semaphore 

□  P-operation: Decrease value of its argument semaphore by 1 as 
atomic step, “wait” if the semaphore is already zero 

□  V-operation: Increase value of its argument semaphore by 1 as 
atomic step, useful as „signal“ operation 

■  Solution for critical section shared between N processes 

■  Original proposal by Dijkstra did not mandate any wakeup order 

□  Later debated from operating system point of view  

□  „Bottom layer should not bother with macroscopic considerations“ 
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Example: Binary Semaphore 
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Example: General Semaphore 



Coroutines 

■  Conway, Melvin E. (1963). 
 "Design of a Separable Transition-Diagram Compiler".  

■  Generalization of the subroutine concept 

□  Explicit language primitive to indicate transfer of control flow 

□  Leads to multiple entry points in the routine 

■  Routines can suspend (yield) and resume in their execution  

■  Co-routines may always yield new results -> generators 

□  Less flexible version of a coroutine, since yield always returns to caller 

■  Good for concurrent, not for parallel programming 

■  Foundation for other concurrency concepts 

□  Exceptions, iterators, pipes, … 

■  Implementation demands stack handling and context switch 

□  Portable implementations in C are difficult 

□  Fiber concept in the operating system is helpful 



Coroutines 
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def generator():!
!n=range(5)!
!for i in n:!
! !yield i!

!
for item in generator():!

!print item!

var q := new queue!
coroutine produce!
    loop!
        while q is not full!
            create some new items!
            add the items to q!
        yield to consume!
coroutine consume!
    loop!
        while q is not empty!
            remove some items from q!
            use the items!
        yield to produce!



Coroutines 
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Dining Philosophers [Dijkstra] 

■  Five philosophers work in a college, each philosopher has a room 
for thinking 

■  Common dining room, furnished with a circular table,  
surrounded by five labeled chairs 

■  In the center stood a large bowl of spaghetti, which was 
constantly replenished 

■  When a philosopher gets hungry: 

□  Sits on his chair 

□  Picks up his own fork on the left 
and plunges it in the spaghetti,  
then picks up the right fork 

□  When finished he put down both forks  
and gets up  

□  May wait for the availability of the second fork 
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Dining Philosophers [Dijkstra] 

■  Idea: Shared memory synchronization has different standard issues 

■  Philosophers as tasks, forks as shared resource 

■  Explanation of the deadly embrace (deadlock) and starvation 

■  How can a deadlock happen ? 

□  All pick the left fork first and wait for the right 

■  How can a live-lock (starvation) happen ? 

□  Two fast eaters, sitting in front of each other 

■  Ideas for solutions 

□  Waiter solution (central arbitration) 

□  Lefty-righty approach 
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One Solution: Lefty-Righty-Approach 

■  PHILn is a righty (is the only one starting with the right fork) 

□  Case 1: Has right fork, but left fork is held by left neighbor 

◊  Left neighbor will put down both forks when finished, so there 
is a chance 

◊  PHILn might always be interrupted before eating (starvation), 
but no deadlock of all participants occurs 

□  Case 2: Has no fork 

◊  Right fork is captured by right neighbor 

◊  In worst case, lock spreads to all but  
one righty 

□  ... 
■  Proof by Dijkstra shows deadlock freedom,  

but still starvation problem 
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■  1970. E.G. Coffman and A. Shoshani.  
Sequencing tasks in multiprocess systems to avoid deadlocks.  

□  All conditions must be fulfilled to allow a deadlock to happen 

□  Mutual exclusion condition - Individual resources are available 
or held by no more than one thread at a time 

□  Hold and wait condition – Threads already holding resources 
may attempt to hold new resources 

□  No preemption condition – Once a thread holds a resource, it 
must voluntarily release it on its own 

□  Circular wait condition – Possible for a thread to wait for a 
resource held by the next thread in the chain 

■  Avoiding circular wait turned out to be the easiest solution for 
deadlock avoidance 

■  Avoiding mutual exclusion leads to non-blocking synchronization 

□  These algorithms no longer have a critical section 
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Coffman Conditions 



Monitors 

■  1974, Monitors: An Operating System Structuring Concept,  
C.A.R. Hoare 

□  First formal description of monitor concept, originally invented 
by Brinch Hansen in 1972 as part of an OS project 

□  Operating system has to schedule requests for various 
resources, separate schedulers per resource necessary 

□  Each contains local administrative data, and functions used by 
requestors 

□  Collection of associated data and functionality: monitor 

◊ Note: The paper mentions Simula 67 classes (1972) 

◊  Functions are the same for all instances, but invocations 
should be mutually exclusive 

◊  Function execution is the occupation of the monitor 

◊  Easily implementable with semaphores 
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Condition Variables 

■  Function implementation itself might need to wait at some point 

□  Monitor wait() operation: Issued inside the monitor,  
causes the caller to wait and temporarily release the monitor 
while waiting for some assertion 

□  Monitor signal() operation:  
Resume one of the waiting callers 

■  Might be more than one reason for waiting inside the function 

□  Variable of type condition in the monitor, one for each 
waiting reason 

□  Delay operations relate to some specific condition variable:  
condvar.wait(), condvar.signal() 

□  Programs are signaled for the condition they are waiting for 

□  Hidden implementation as queue of waiting processes 
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Single Resource Monitor 
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Implementing a Semaphore with a 
Monitor 



Monitors - Example 

■  Monitors are part of the Java programming language 

■  Each class can be as monitor 

□  Mutual exclusion of method calls by synchronized keyword 

□  Object base class provides condition variable functionality – 
Object.wait(), Object.notify(), and a wait queue 

□  Both functions are only callable from synchronized methods 
(otherwise IllegalMonitorStateException) 

□  Monitor code can use arbitrary objects as condition variables 

■  At runtime 

□  By calling XXX.wait(), a thread gives up ownership of the 
monitor and blocks in the call 

□  Monitor is also given up by leaving the synchronized method 

□  Other threads call XXX.notify() to signal waiters, but still must 
give up the ownership of the monitor 
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Java Example 

class Queue {  
  int n;  
  boolean valueSet = false;  
  synchronized int get() {  
    while(!valueSet)  
      try { this.wait(); }  
      catch(InterruptedException e) { ... }  
    valueSet = false;  
    this.notify();  
    return n;  
  }  
  synchronized void put(int n) {  
    while(valueSet)  
      try { this.wait(); }  
      catch(InterruptedException e) { ... }  
    this.n = n;  
    valueSet = true;  
    this.notify();  
  } 
} 

 

class Producer implements Runnable {  
  Queue q;  
  Producer(Queue q) {  
    this.q = q;  
    new Thread(this, "Producer").start(); }  
  public void run() {  
    int i = 0;  
    while(true) { q.put(i++); }  
}} 

class Consumer implements Runnable { ... } 

class App {  
  public static void main(String args[]) {  
    Queue q = new Q();  
    new Producer(q);  
    new Consumer(q);  
  }  
} 






Monitors - Java 

■  Since the operating system gives boost for threads being waked 
up, the signaled thread is likely to be scheduled as next 

■  Also adopted in other languages 
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Notify Semantics 
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High-Level Primitives 

■  Today: Multitude of high-level synchronization primitives 

■  Spinlock 

□  Perform busy waiting, lowest overhead for short locks 

■  Reader / Writer Lock  

□  Special case of mutual exclusion through semaphores 

□  Multiple „Reader“ processes can enter the critical section at the 
same time, but „Writer“ process should gain exclusive access 

□  Different optimizations possible:  
minimum reader delay, minimum writer delay, throughput, … 

■  Mutex 

□  Semaphore that works amongst operating system processes 

■  Concurrent Collections 

□  Blocking queues and key-value maps with concurrency support  
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Conccurent Collections 

42 
Microsoft Parallel Patterns Library 
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High-Level Primitives 

■  Reentrant Lock 
□  Lock can be obtained several times without locking on itself 

□  Useful for cyclic algorithms (e.g. graph traversal) and 
problems were lock bookkeeping is very expensive 

□  Reentrant mutex needs to remember the locking thread(s), 
which increases the overhead 

■  Barriers  

□  All concurrent activities stop there and continue together 

□  Participants statically defined at compile- or start-time 

□  Newer dynamic barrier concept allows late binding of 
participants (e.g. X10 clocks, Java phasers) 

□  Memory barrier or memory fence enforce separation of 
memory operations before and after the barrier 

◊ Needed for low-level synchronization implementation 
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Barrier 
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Lock-Free Programming 

■  Lock-free programming as a way of sharing data without 
maintaining locks 

□  Prevents deadlock and live-lock conditions 

□  Goal:  
Suspension of one thread never prevents another thread from 
making progress (e.g. synchronized shared queue) 

□  Blocking by design does not disqualify the lock-free realization 

■  Algorithms rely on hardware support for atomic operations 

□  Read-Modify-Write (RMW) operations 

□  Compare-And-Swap (CAS) operations 

■  These operations are typically mapped in operating system API 
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Lock-Free Programming 
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void LockFreeQueue::push(Node* newHead)  
{  
    for (;;)  
    {  
        // Copy a shared variable (m_Head) to a local.  
        Node* oldHead = m_Head;  
        // Do some speculative work, not yet visible to other threads.  
        newHead->next = oldHead;  
        // Next, attempt to publish our changes to the shared variable.  
        // If the shared variable hasn't changed, the CAS succeeds and we return.  
        // Otherwise, repeat.  
        if (_InterlockedCompareExchange(&m_Head, newHead, oldHead) == oldHead)  
            return;  
    }  
}!



Sequential Consistency 

■  Consistency model where the order of  
memory operations is consistent with  
the source code 

□  Important for lock-free algorithm  
semantic 

□  Not guaranteed by some processor  
architectures (e.g. PowerPC) 

■  Java and C++ support the enforcement  
of sequential consistency 

□  Compiler generates additional memory fences and RMW 
operations 

□  Still does not prevent from memory re-ordering due to 
instruction re-ordering by the compiler itself 
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std::atomic<int> X(0), Y(0);  
int r1, r2; void thread1()  
{  
    X.store(1);  
    r1 = Y.load();  
} void thread2()  
{  
    Y.store(1);  
    r2 = X.load();  
}!

r1 and r2 never become 
zero at the same time 



Example: Modern Operating Systems 

■  Mutual exclusion of access necessary whenever a resource … 

□  ... does not support shared access by itself 

□  ... sharing could lead to unpredictable outcome 

■  Examples: Memory locations, stateful devices 

■  Traditional OS architecture approaches 

□  Disable all interrupts before entering a critical section 

□  Mask interrupts that have handlers accessing the same 
resource (e.g. Windows dispatcher database) 

□  Both do not work for true SMP systems 

■  Hardware-supported synchronization primitives are now part of 
every modern OS kernel – semaphores, spinlocks, … 

■  Also exported to user space, since it faces the same problem 
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Windows Synchronization Objects 
[Stallings] 



Example: Modern Operating Systems 

■  Linux 

□  Kernel disables interrupts for synchronizing access to global 
data on uniprocessor systems 

□  Uses spin-locks for multiprocessor synchronization 

□  Uses semaphores and readers-writers locks when longer 
sections of code need access to data  

□  Implements POSIX synchronization primitives to support 
multitasking, multithreading (including real-time threads),  
and multiprocessing. 
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8 Simple Rules For Concurrency 
[Breshears] 

■  „Concurrency is still more art than science“ 

□  Identify truly independent computations 

□  Implement concurrency at the highest level possible 

□  Plan early for scalability 

□  Code re-use through libraries 

□  Use the right threading model 

□  Never assume a particular order of execution 

□  Use thread-local storage if possible, apply locks to specific data 

□  Don‘t change the algorithm for better concurrency 
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Example: Eve Online 

■  MMORPG space game, client applications, server cluster 

■  Single shard server instance 

■  120.000 active players, > 24.000 concurrent users 

■  Relies on Stackless Python 

□  Thread of execution is a tasklet (no preemption, no OS thread) 

□  Channels as task rendevous and context switch point 

□  No C stack per tasklet, on small Python datastructure 

□  Leads to support for co-operative multitasking 

□  Almost no race condition 
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