

IT Systems Engineering | Universität Potsdam

Interconnection Networks Programmierung Paralleler und Verteilter Systeme (PPV)

Sommer 2015

Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze

Interconnection Networks

- SIMD systems demand structured connectivity
 - Processor-to-processor interaction
 - Processor-to-memory interaction
- Static network
 - Point-to-point links, fixed route
- Dynamic network
 - Consists of links and switching elements
 - Flexible
 configuration of
 processor
 interaction

Optimization criteria

Connectivity – ideally direct links between any two stations High number of parallel connections

Cost model Production cost - # connections operational cost - distance among PEs

Bus networks, switching networks, point-to-point interconnects

Interconnection Networks

- Dynamic networks are built from a graph of configurable switching elements
- General packet switching network counts as *irregular* static network

Interconnection Networks

Network Interfaces

- Processors talk to the network via a network interface connector (NIC) hardware
- Network interfaces attached to the interconnect
 - Cluster vs. tightly-coupled multi-computer
- □ SIMD hardware bundles NIC with the processor
- Switching elements map a fixed number of inputs to outputs
 - □ Total number of ports is the **degree** of the switch
 - □ The **cost** of a switch grows as square of the degree
 - □ The **peripheral hardware** grows linearly as the degree

- A variety of network topologies proposed and implemented
- Each topology has a performance / cost tradeoff
- Commercial machines often implement hybrids
 - Optimize packaging and costs
- Metrics for an interconnection network graph
 - **Diameter**: Maximum distance between any two nodes
 - Connectivity: Minimum number of edges that must be removed to get two independent graphs
 - Link width / weight: Transfer capacity of an edge
 - Bisection width: Minimum transfer capacity given between any two halves of the graph
 - **Costs**: Number of edges in the network
- Often optimization for connectivity metric

Bus Systems

- Static interconnect technology
- Shared communication path, broadcasting of information
 - Diameter: O(1)
 - □ Connectivity: O(1)
 - □ Bisection width: O(1)
 - Costs: O(p)

Bus network

Optimal #connection per PE: 1 Constant distance among any two PEs

Crossbar switch (Kreuzschienenverteiler)

Arbitrary number of permutations

Collision-free data exchange

High cost, quadratic growth

n * (n-1) connection points

Crossbar Switch

Connection by switching elements

- Typical solution to connect processing and memory elements
- Can implement sorting or shuffling in the network routing

Inputs are crossed or not, depending on routing logic
 Destination-tag routing: Use positional bit for switch decision
 XOR-tag routing: Use positional bit of XOR result for decision
 For N PE's, N/2 switches per stage, log₂N stages
 Decrease bottleneck probability on parallel communication

Delta networks

Only n/2 log n deltaswitches Limited cost Not all possible permutations operational in parallel

Delta Networks operation

- Stage n checks bit k of the destination tag
- Possible effect of ,output port contention` and ,path contention`

Fat-Tree networks

PEs arranged as leafs on a binary tree Capacity of tree (links) doubles on each layer

Point-to-point networks: ring and fully connected graph

Ring has only two connections per PE (almost optimal) Fully connected graph – optimal connectivity (but high cost)

vollständiger Graph

Mesh and Torus

Compromise between cost and connectivity

Quadratisches Gitter (4-way)

Quadratischer Torus (4-way)

Quadratisches Gitter (8-way)

Cubic Mesh

PEs are arranged in a cubic fashion Each PE has 6 links to neighbors

HPI Hasso Plattner Institut

Hypercube

Dimensions 0-4, recursive definition

Binary tree, quadtree

Logarithmic cost Problem of bottleneck at root node

Shuffle-Exchange network

Logarithmic cost

Uni-directional shuffle network + bi-directional exchange network

Plus-Minus-Network

PM 2i – 2*m-1 separate unidirectional interconnection networks

Systolic Arrays

- Data flow architecture
- Common clock
- Maximum signal path restricted by frequency
- Single faulty element breaks the complete array

Comparison

Network	Diameter	Bisection Width	Arc Connectivity	Cost (No. of links)
Completely-connected	1	$p^{2}/4$	p-1	p(p-1)/2
Star	2	1	1	p-1
Complete binary tree	$2\log((p+1)/2)$	1	1	p-1
Linear array	p-1	1	1	p-1
2-D mesh, no wraparound	$2(\sqrt{p}-1)$	\sqrt{p}	2	$2(p-\sqrt{p})$
2-D wraparound mesh	$2\lfloor \sqrt{p}/2 \rfloor$	$2\sqrt{p}$	4	2p
Hypercube	$\log p$	p/2	$\log p$	$(p\log p)/2$
Wraparound k-ary d-cube	$d\lfloor k/2 floor$	$2k^{d-1}$	2d	dp

Comparison

Network	Diameter	Bisection Width	Arc Connectivity	Cost (No. of links)
Crossbar	1	p	1	p^2
Omega Network	$\log p$	p/2	2	p/2
Dynamic Tree	$2\log p$	1	2	p-1

Comparison of networks

Netz1 simuliert Netz2 ->	Gitter(2D)	PM 2i	Shuffle-Exchange	Hypercube
Gitter(2D)	_	$\frac{\text{sqrt}(2)}{2}$	sqrt(n)	sqrt(n)
PM 2i	1	_	log ₂ n	2
Shuffle-Exchange	2*log ₂ n	2*log ₂ n	_	$\log_2 n + 1$
Hypercube	log ₂ n	log ₂ n	$\log_2 n$	—