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Workloads 

■  Hardware / software execution environment are typically designed 
and optimized for specific workload 

■  „task parallel workload“  
□  Different tasks being performed at the same time 

□  Might originate from the same or different programs 

■  „data parallel workload“ 
□  Parallel execution of the same task on disjoint data sets 

■  Sometimes also „flow parallelism“ added 

◊ Overlapping work on data stream  

◊  Examples: Pipelines, assembly line model 

■  Task / data size can be coarse-grained or fine-grained 

□  Decision of algorithm design and / or configuration 

□  No common semantics for these terms 

 

2 



Workloads 



Workloads 
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Parallelization Methods Overview

� Data Parallelism

� Functional Parallelism

Lecture 2 – Parallelization Fundamentals

[4] 2013 SMU HPC Summer Workshop [5] Parallel Computing Tutorial
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Execution Environment Mapping 
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Execution Environment Mapping 

■  Task parallel workload is a MIMD problem 

■  Data parallel workload is a SIMD problem 

■  Execution environments are optimized for one kind of workload, 
event though they can also the other one  
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Data Parallel  SIMD
 Task Parallel  MIMD


Shared Memory 
(SM)


SM-SIMD systems: 
GPU, Cell, SSE, AltiVec 

Vector processor 
…


SM-MIMD systems: 
ManyCore/SMP system 

...


Shared Nothing / 
Distributed 

Memory (DM)


DM-SIMD systems: 
processor-array systems 

systolic arrays 
Hadoop 

...


DM-MIMD systems: 
cluster systems 
MPP systems 

 
...




The Parallel Programming Problem 

7 

Execution 
Environment Parallel Application Match ? 

C
onfiguration 

Flexible 

Type 



Designing Parallel Algorithms [Foster] 

■  Map workload problem on an execution environment 

□  Concurrency for speedup 

□  Data locality for speedup 

□  Scalability 

■  Best parallel solution typically  
differs massively from the  
sequential version of an algorithm 

■  Foster defines four distinct stages  
of a methodological approach 

■  We will use this as a guide in the 
upcoming discussions 

■  Note: Foster talks about communication,  
we use the term synchronization instead 

■  Example: Parallel Sum 
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Example: Parallel Reduction 

■  Reduce a set of elements into one, given an operation 

■  Example: Sum 
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Example: All Prefix Sums 

■  Input:  Ordered set [a0, a1, …, an] 

■  Output: Ordered set [a0, (a0 + a1), …, (a0 + a1 + … + an)] 

■  “+” is an arbitrary operation 

■  Multiple use cases 

□  Lexically comparison of strings 

□  Add multi-precision numbers that do not fit into one word 

□  Implementation of quick sort 

□  Delete marked elements from an array 

□  Search for regular expressions 

■  Serial version is trivial, and demands O(n) steps 
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Designing Parallel Algorithms [Foster] 

■  A) Search for concurrency and scalability 

□  Partitioning –  
Decompose computation and data into small tasks 

□  Communication –  
Define necessary coordination of task execution 

■  B) Search for locality and other performance-related issues 

□  Agglomeration –  
Consider performance and implementation costs 

□  Mapping –  
Maximize processor utilization, minimize communication 

■  Might require backtracking or parallel investigation of steps 
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Partitioning 

■  Expose opportunities for parallel execution –  
fine-grained decomposition 

■  Good partition keeps computation and data together 

□  Data partitioning leads to data parallelism 

□  Computation partitioning leads task parallelism 

□  Complementary approaches, can lead to different algorithms 

□  Reveal hidden structures of the algorithm that have potential 

□  Investigate complementary views on the problem 

■  Avoid replication of either computation or data, can be revised 
later to reduce communication overhead 

■  Step results in multiple candidate solutions 
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Partitioning - Decomposition Types 

■  Domain Decomposition 
□  Define small data fragments 

□  Specify computation for them 

□  Different phases of computation  
on the same data are handled separately 

□  Rule of thumb:  
First focus on large or frequently used data structures 

■  Functional Decomposition 

□  Split up computation into disjoint  
tasks, ignore the data accessed  
for the moment 

□  With significant data overlap,  
domain decomposition is more  
appropriate 
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Partitioning - Checklist 

■  Checklist for resulting partitioning scheme 

□  Order of magnitude more tasks than processors ?  
-> Keeps flexibility for next steps 

□  Avoidance of redundant computation and storage 
requirements ? 
-> Scalability for large problem sizes 

□  Tasks of comparable size ? 
-> Goal to allocate equal work to processors 

□  Does number of tasks scale with the problem size ? 
-> Algorithm should be able to solve larger tasks with more 
processors 

■  Resolve bad partitioning by estimating performance behavior,  
and eventually reformulating the problem 
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Communication Step 

■  Specify links between data consumers and data producers 

■  Specify kind and number of messages on these links 

■  Domain decomposition problems might have tricky communication 
infrastructures, due to data dependencies 

■  Communication in functional decomposition problems can easily 
be modeled from the data flow between the tasks 

■  Categorization of communication patterns 

□  Local communication (few neighbors) vs.  
global communication 

□  Structured communication (e.g. tree) vs.  
unstructured communication 

□  Static vs. dynamic communication structure 

□  Synchronous vs. asynchronous communication 
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Communication - Hints 

■  Distribute computation and communication,  
don‘t centralize algorithm 

□  Bad example: Central manager for parallel summation 

□  Divide-and-conquer helps as mental model to identify 
concurrency 

■  Unstructured communication is hard to agglomerate,  
better avoid it 

■  Checklist for communication design 

□  Do all tasks perform the same amount of communication ? 
-> Distribute or replicate communication hot spots 

□  Does each task performs only local communication ? 

□  Can communication happen concurrently ? 

□  Can computation happen concurrently ? 

16 



Ghost Cells 

■  Domain decomposition might lead to chunks that demand 
data from each other for their computation 

□  Solution 1: Copy necessary portion of data (,ghost 
cells‘) 

◊  Feasible if no synchronization is needed after 
update 

◊  Data amount and frequency of update influences  
resulting overhead and efficiency 

◊  Additional memory consumption 

□  Solution 2: Access relevant data ,remotely‘ as needed 

◊  Delays thread coordination until the data is really 
needed 

◊  Correctness („old“ data vs. „new“ data) must be 
considered on parallel progress 
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Agglomeration Step 

■  Algorithm so far is correct,  
but not specialized for some execution environment 

■  Check again partitioning and communication decisions  

□  Agglomerate tasks for efficient execution on some machine 

□  Replicate data and / or computation for efficiency reasons 

■  Resulting number of tasks can still be greater than the number of 
processors 

■  Three conflicting guiding decisions 

□  Reduce communication costs by coarser granularity of 
computation and communication  

□  Preserve flexibility with respect to later mapping decisions 

□  Reduce software engineering costs (serial -> parallel version) 
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Agglomeration [Foster] 
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Agglomeration –  
Granularity vs. Flexibility 

■  Reduce communication costs by coarser granularity 

□  Sending less data 

□  Sending fewer messages (per-message initialization costs) 

□  Agglomerate, especially if tasks cannot run concurrently 

◊  Reduces also task creation costs 

□  Replicate computation to avoid communication 
(helps also with reliability) 

■  Preserve flexibility 

□  Flexible large number of tasks still prerequisite for scalability 

■  Define granularity as compile-time or run-time parameter 
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Agglomeration - Checklist 

■  Communication costs reduced by increasing locality ? 

■  Does replicated computation outweighs its costs in all cases ? 

■  Does data replication restrict the range of problem sizes / 
processor counts ? 

■  Does the larger tasks still have similar computation / 
communication costs ? 

■  Does the larger tasks still act with sufficient concurrency ? 

■  Does the number of tasks still scale with the problem size ? 

■  How much can the task count decrease, without disturbing load 
balancing, scalability, or engineering costs ? 

■  Is the transition to parallel code worth the engineering costs ? 
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Mapping Step 

■  Only relevant for shared-nothing systems, since shared memory 
systems typically perform automatic task scheduling 

■  Minimize execution time by 

□  Place concurrent tasks on different nodes 

□  Place tasks with heavy communication on the same node  

■  Conflicting strategies, additionally restricted by resource limits 

□  In general, NP-complete bin packing problem 

■  Set of sophisticated (dynamic) heuristics for load balancing 

□  Preference for local algorithms that do not need global 
scheduling state 
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Partitioning Strategies [Breshears] 

■  Produce at least as many tasks as there will be threads / cores 

□  But: Might be more effective to use only fraction of the cores 
(granularity)   

□  Computation must pay-off with respect to overhead 

■  Avoid synchronization, since it adds up as overhead to serial 
execution time 

■  Patterns for data decomposition 

□  By element (one-dimensional) 

□  By row, by column group, by block (multi-dimensional) 

□  Influenced by ratio of computation and synchronization 
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Surface-To-Volume Effect  
[Foster, Breshears] 

■  Visualize the data to be processed (in parallel) as sliced 3D cube 

■  Synchronization requirements of a task 

□  Proportional to the surface of the data slice it operates upon 

□  Visualized by the amount of ,borders‘ of the slice 

■  Computation work of a task 

□  Proportional to the volume of the data slice it operates upon 

□  Represents the granularity of decomposition 

■  Ratio of synchronization and computation 

□  High synchronization, low computation, high ratio à bad 

□  Low synchronization, high computation, low ratio à good 

□  Ratio decreases for increasing data size per task 

■  Coarse granularity by agglomerating tasks in all dimensions 

□  For given volume, the surface then goes down à good 
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Surface-To-Volume Effect  
[Foster, Breshears] 
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Surface-to-Volume Effect [Foster] 

■  Computation on 8x8 grid 

■  (a): 64 tasks,  
one point each 

□  64x4=256  
synchronizations 

□  256 data values are  
transferred 

■  (b): 4 tasks,  
16 points each 

□  4x4=16  
synchronizations 

□  16x4=64 data values  
are transferred 
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Designing Parallel Algorithms 
[Breshears] 

■  Parallel solution must keep sequential consistency property 

■  „Mentally simulate“ the execution of parallel streams 

□  Check critical parts of the parallelized sequential application 

■  Amount of computation per parallel task  

■  Always introduced by moving from serial to parallel code 

■  Speedup must offset the parallelization overhead (Amdahl) 

■  Granularity: Amount of parallel computation done before 
synchronization is needed 

□  Fine-grained granularity overhead vs.  
coarse-grained granularity concurrency 

◊  Iterative approach of finding the right granularity 

◊ Decision might be only correct only for the execution host 
under test 
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