Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Workloads

Programmierung Paralleler und Verteilter Systeme (PPV)

Sommer 2015

Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc.,
Prof. Dr. Andreas Polze

ﬂ Hasso
Workloads Institut

m Hardware / software execution environment are typically designed
and optimized for specific workload

= ,task parallel workload”

o Different tasks being performed at the same time

o Might originate from the same or different programs
m ,data parallel workload*“

o Parallel execution of the same task on disjoint data sets
m Sometimes also ,,flow parallelism*“ added

¢ Overlapping work on data stream

¢ Examples: Pipelines, assembly line model

m Task / data size can be coarse-grained or fine-grained

o Decision of algorithm design and / or configuration
o No common semantics for these terms

Workloads

Data Parallelism

NN

1

b4

Tasleasleask Task TaskJ Task
1 1 1 1 1

Input Data

Parallel
Processing

Result Data

Hasso
Plattner
Institut

Task Parallelism

@y (=) G

N

Aggregation
Task

'

ﬂs.aii°
Workloads Institut

= Data Parallelism 1D e uRALS

. » | —[ot[oz[ms] - [op

: I/(; I/f = i 2 (| BLOCK, * *, BLOCK BLOCK, BLOCK
B e (1 1 I R O Ay A

. Dp 5 7 i i i ek e o j [. ‘ t [| I . l. .l. - ’

E ; . . | - - .- .-

D - s |z |1 $ i j¢ ‘ l: — ‘ lﬂ :. l:..-:..-l
. | | |] e i | Il I cycLic, * *,CYCLIC CYCLIC, CYCLIC

H) : N
D1 |D2 | e Overall Domain R . Processor Urmll‘lpvsiliun

[4] 2013 SMU HPC Summer Workshop [5] Parallel Computing Tutorial

= Functional Parallelism

= —_
—
AR R o
data l
| - .
P1 P2 P3 P4
»

Land/Surface Model

time

Hasso
Plattner
Institut

Execution Environment Mapping

Data Parallelism

. ' — . prev instruct prev instruct prev instruct)

| 1 ! 1 I C"
load A(1) load A(2) load A(n) =
Y VY Y Y Y Y -'6@
Tagh | g Tk | e | T load B(1) load B(2) load B(n) - oo
3 [ZBS
_ —A (D) B « £n0
A v v v C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)} |® o O
A R R i o el
- store C(1) store C(2) store C(n) 8’ =
N3
next instruct next instruct next instruct =

e — e — e —
P1 P2 Pn
L — T

Task Parallelism prev instruct prev instruct prev instruct -a

c
load A(1) call funcD do 10 i=1,N o2
(5?7 +
load B(1) xX=y*z alpha=w**3 ~ s ©
Task 1 Task 2 @ - g -Esl
| | C(1)=A(1)*B(1) sum=x*2 zeta=C(i) ® 08
Q_ —
store C(1) call sub1(i,j) 10 continue % (El
S 3
next instruct next instruct next instruct =

e — e — e —
P1 P2 Pn
— T

Hasso
- . . Plattner
Execution Environment Mapping H Institut

Data Parallel > SIMD Task Parallel > MIMD
SM-SIMD systems: SM-MIMD systems:
Shared Memory GPL\J/, Cell, SSE, AltiVec ManyCore/SMP system
(SM) ector processor
DM-SIMD systems: DM-MIMD systems:
] processor-array systems cluster systems
Shared Nothing / systolic arrays MPP systems
Distributed Hadoop
Memory (DM)

m Task parallel workload is a MIMD problem
m Data parallel workload is a SIMD problem

m Execution environments are optimized for one kind of workload,
event though they can also the other one

7
. attner
The Parallel Programming Problem Institut

SICINCIE

Parallel Application

odA|
uoneinbiyuo)

Execution

Match ? .
Environment

Hasso
Designing Parallel Algorithms [Foster] "

m Map workload problem on an execution environment
o Concurrency for speedup
o Data locality for speedup

N DESIGNING ana BUILDING
0 Scalability PARALLEL PROGRAMS
m Best parallel solution typically Concepts and Tools for

Parallel Software Engineering

differs massively from the
sequential version of an algorithm

m Foster defines four distinct stages
of a methodological approach

m We will use this as a guide in the

Ian Foster

upcoming discussions

m Note: Foster talks about communication,
we use the term synchronization instead

m Example: Parallel Sum

Example: Parallel Reduction

m Reduce a set of elements into one, given an operation

0 1 2 3 4 5 6 7
m Example: Sum
0 3 4 6 7

22

28

Hasso
Plattner
Institut

. attner
Example: All Prefix Sums Institut

10
m Input: Ordered set [a,, a4, ..., a,,]
m Output: Ordered set [a,, (a5 + @), ..., (g + @1 + ... + a,)]
m "+" is an arbitrary operation
m Multiple use cases
o Lexically comparison of strings
o Add multi-precision numbers that do not fit into one word
o Implementation of quick sort
0 Delete marked elements from an array
o Search for regular expressions
m Serial version is trivial, and demands O(n) steps

P R
Designing Parallel Algorithms [Foster] Institut

m A) Search for concurrency and scalability
o Partitioning -
Decompose computation and data into small tasks
o Communication -
Define necessary coordination of task execution
m B) Search for locality and other performance-related issues

o Agglomeration -
Consider performance and implementation costs
o Mapping -
Maximize processor utilization, minimize communication
m Might require backtracking or parallel investigation of steps

12

ﬂ Hasso
“y s . Plattner
Partitioning Institut

Expose opportunities for parallel execution -
fine-grained decomposition

Good partition keeps computation and data together
o Data partitioning leads to data parallelism
o Computation partitioning leads task parallelism
o Complementary approaches, can lead to different algorithms
o Reveal hidden structures of the algorithm that have potential
o Investigate complementary views on the problem

Avoid replication of either computation or data, can be revised
later to reduce communication overhead

Step results in multiple candidate solutions

Hasso
“y s .) Plattner
Partitioning - Decomposition Types ﬂ Institut

13 = Domain Decomposition ==

o Define small data fragments

o Specify computation for them e P D

o Different phases of computation
on the same data are handled separately

o Rule of thumb:
First focus on large or frequently used data structures

m Functional Decomposition

o Split up computation into disjoint

) Atmospheric Model
tasks, ignore the data accessed

4 h
for the moment r !
. . . Hydrologyﬂ
o With significant data overlap, Model Ocenn
- - - - ‘
domain decomposition is more ¥ , Model

Land Surface Model (e

appropriate

. . . attner
Partitioning - Checklist Institut

14
m Checklist for resulting partitioning scheme

o Order of magnitude more tasks than processors ?
-> Keeps flexibility for next steps

o Avoidance of redundant computation and storage
requirements ?
-> Scalability for large problem sizes

o Tasks of comparable size ?
-> Goal to allocate equal work to processors

o Does number of tasks scale with the problem size ?
-> Algorithm should be able to solve larger tasks with more
processors

m Resolve bad partitioning by estimating performance behavior,
and eventually reformulating the problem

15

. P R
Communication Step Institut

m Specify links between data consumers and data producers
m Specify kind and number of messages on these links

m Domain decomposition problems might have tricky communication
infrastructures, due to data dependencies

m Communication in functional decomposition problems can easily
be modeled from the data flow between the tasks

m Categorization of communication patterns

0 Local communication (few neighbors) vs.
global communication

o Structured communication (e.g. tree) vs.
unstructured communication

o Static vs. dynamic communication structure
o Synchronous vs. asynchronous communication

16

ﬂ Hasso
. - . attner
Communication - Hints Institut

m Distribute computation and communication,
don't centralize algorithm

0 Bad example: Central manager for parallel summation

o Divide-and-conquer helps as mental model to identify
concurrency

m Unstructured communication is hard to agglomerate,
better avoid it

m Checklist for communication design

o Do all tasks perform the same amount of communication ?
-> Distribute or replicate communication hot spots

o Does each task performs only local communication ?
o Can communication happen concurrently ?
o Can computation happen concurrently ?

ﬂ Hasso
Ghost Cells Institut

17

m Domain decomposition might lead to chunks that demand
data from each other for their computation

o Solution 1: Copy necessary portion of data (,ghost

cells')
¢ Feasible if no synchronization is needed after
update
¢ Data amount and frequency of update influences
resulting overhead and efficiency I I

¢ Additional memory consumption
o Solution 2: Access relevant data ,remotely' as needed

¢ Delays thread coordination until the data is really
needed

¢ Correctness (,,old" data vs. ,new" data) must be
considered on parallel progress

18

. P R
Agglomeration Step Institut

Algorithm so far is correct,
but not specialized for some execution environment

Check again partitioning and communication decisions
o Agglomerate tasks for efficient execution on some machine
o Replicate data and / or computation for efficiency reasons

Resulting number of tasks can still be greater than the number of
processors

Three conflicting guiding decisions

0 Reduce communication costs by coarser granularity of
computation and communication

o0 Preserve flexibility with respect to later mapping decisions
0 Reduce software engineering costs (serial -> parallel version)

19

Agglomeration [Foster]

(@ —
(b —_—
O
/g\ —
E
Q
e

@ 3o &

/\

g 8

A0 OO

Hasso
Plattner
Institut

Agglomeration - Hasso
Granularity vs. Flexibility ﬂ inst

Institut

20
m Reduce communication costs by coarser granularity
o Sending less data
o Sending fewer messages (per-message initialization costs)
o Agglomerate, especially if tasks cannot run concurrently
¢ Reduces also task creation costs

o Replicate computation to avoid communication
(helps also with reliability)

m Preserve flexibility
o Flexible large number of tasks still prerequisite for scalability
m Define granularity as compile-time or run-time parameter

21

. . attner
Agglomeration - Checklist Institut

m Communication costs reduced by increasing locality ?
m Does replicated computation outweighs its costs in all cases ?

m Does data replication restrict the range of problem sizes /
processor counts ?

m Does the larger tasks still have similar computation /
communication costs ?

m Does the larger tasks still act with sufficient concurrency ?
m Does the number of tasks still scale with the problem size ?

m How much can the task count decrease, without disturbing load
balancing, scalability, or engineering costs ?

m Is the transition to parallel code worth the engineering costs ?

ﬂ Hasso
. Plattner
Mapp|ng Step Institut

22

m Only relevant for shared-nothing systems, since shared memory
systems typically perform automatic task scheduling

m Minimize execution time by
o Place concurrent tasks on different nodes
0 Place tasks with heavy communication on the same node
m Conflicting strategies, additionally restricted by resource limits
o In general, NP-complete bin packing problem
m Set of sophisticated (dynamic) heuristics for load balancing

o Preference for local algorithms that do not need global
scheduling state

- . P R
Partitioning Strategies [Breshears] Institut
23

m Produce at least as many tasks as there will be threads / cores

o But: Might be more effective to use only fraction of the cores
(granularity)

o Computation must pay-off with respect to overhead

m Avoid synchronization, since it adds up as overhead to serial
execution time

m Patterns for data decomposition
o By element (one-dimensional)
o By row, by column group, by block (multi-dimensional)
o Influenced by ratio of computation and synchronization

Surface-To-Volume Effect ﬂ Hasso
[Foster, Breshears]

Institut

24
m Visualize the data to be processed (in parallel) as sliced 3D cube

m Synchronization requirements of a task
o Proportional to the surface of the data slice it operates upon
o Visualized by the amount of ,borders' of the slice
m Computation work of a task
o Proportional to the volume of the data slice it operates upon
0 Represents the granularity of decomposition
= Ratio of synchronization and computation
o High synchronization, low computation, high ratio - bad
o Low synchronization, high computation, low ratio - good
0 Ratio decreases for increasing data size per task
m Coarse granularity by agglomerating tasks in all dimensions
o For given volume, the surface then goes down - good

Surface-To-Volume Effect Hasso
[Foster, Breshears] Institut

25 Surface area increases while
total volume remains constant

(C) nicerweb.com

Hasso
Surface-to-Volume Effect [Foster] " b

26
m Computation on 8x8 grid
m (a): 64 tasks,
one point each

0 64x4=256
synchronizations

o 256 data values are
transferred

m (b): 4 tasks, I —T l:m:
16 points each {L\ ,@ 1=
0 4x4=16 =N -1 - (L

synchronizations (b)

o 16x4=64 data values =\ e
are transferred <‘/ \T}

Designing Parallel Algorithms Hasso
[Breshears] ﬂ Inst

Institut

27 m Parallel solution must keep sequential consistency property

m ,Mentally simulate® the execution of parallel streams

o Check critical parts of the parallelized sequential application
m Amount of computation per parallel task

m Always introduced by moving from serial to parallel code

m Speedup must offset the parallelization overhead (Amdahl)

m Granularity: Amount of parallel computation done before
synchronization is needed

o Fine-grained granularity overhead vs.
coarse-grained granularity concurrency

¢ Iterative approach of finding the right granularity

¢ Decision might be only correct only for the execution host
under test

