

IT Systems Engineering | Universität Potsdam

Workloads

Programmierung Paralleler und Verteilter Systeme (PPV)

Sommer 2015

Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze

2

 Hardware / software execution environment are typically designed and optimized for specific workload

"task parallel workload"

Different tasks being performed at the same time

Might originate from the same or different programs

"data parallel workload"

Parallel execution of the same task on disjoint data sets

Sometimes also **"flow parallelism**" added

Overlapping work on data stream

Examples: Pipelines, assembly line model

- Task / data size can be coarse-grained or fine-grained
 - Decision of algorithm design and / or configuration
 - No common semantics for these terms

Workloads

Workloads

4

P2

time

P3

P4

[4] 2013 SMU HPC Summer Workshop

[5] Parallel Computing Tutorial

P1

Execution Environment Mapping

Execution Environment Mapping

	Data Parallel \rightarrow SIMD	Task Parallel → MIMD
Shared Memory (SM)	SM-SIMD systems: GPU, Cell, SSE, AltiVec Vector processor 	SM-MIMD systems: ManyCore/SMP system
Shared Nothing / Distributed Memory (DM)	DM-SIMD systems: processor-array systems systolic arrays Hadoop 	DM-MIMD systems: cluster systems MPP systems

- Task parallel workload is a MIMD problem
- Data parallel workload is a SIMD problem
- Execution environments are optimized for one kind of workload, event though they can also the other one

Designing Parallel Algorithms [Foster]

Map workload problem on an execution environment

- Concurrency for speedup
- Data locality for speedup
- Scalability

- Best parallel solution typically differs massively from the sequential version of an algorithm
- Foster defines four distinct stages of a methodological approach
- We will use this as a guide in the upcoming discussions
- Note: Foster talks about communication, we use the term synchronization instead
- Example: Parallel Sum

Example: All Prefix Sums

- Input: Ordered set [a₀, a₁, ..., a_n]
- Output: Ordered set [a₀, (a₀ + a₁), ..., (a₀ + a₁ + ... + a_n)]
- "+" is an arbitrary operation
- Multiple use cases
 - Lexically comparison of strings
 - Add multi-precision numbers that do not fit into one word
 - Implementation of quick sort
 - Delete marked elements from an array
 - Search for regular expressions
- Serial version is trivial, and demands O(n) steps

A) Search for concurrency and scalability

Partitioning –

11

Decompose computation and data into small tasks

Communication –

Define necessary coordination of task execution

B) Search for locality and other performance-related issues

□ Agglomeration –

Consider performance and implementation costs

Mapping –

Maximize processor utilization, minimize communication

Might require backtracking or parallel investigation of steps

Partitioning

- Expose opportunities for parallel execution fine-grained decomposition
- Good partition keeps computation and data together
 - **Data partitioning** leads to data parallelism
 - Computation partitioning leads task parallelism
 - Complementary approaches, can lead to different algorithms
 - Reveal hidden structures of the algorithm that have potential
 - □ Investigate complementary views on the problem
- Avoid replication of either computation or data, can be revised later to reduce communication overhead
- Step results in multiple candidate solutions

Partitioning - Decomposition Types

Domain Decomposition

13

- Define small data fragments
- Specify computation for them
- Different phases of computation on the same data are handled separately
- Rule of thumb:

First focus on large or frequently used data structures

Functional Decomposition

- Split up computation into disjoint tasks, ignore the data accessed for the moment
- With significant data overlap, domain decomposition is more appropriate

Partitioning - Checklist

- Checklist for resulting partitioning scheme
 - Order of magnitude more tasks than processors ?
 - -> Keeps flexibility for next steps
 - Avoidance of redundant computation and storage requirements ?
 - -> Scalability for large problem sizes
 - □ Tasks of comparable size ?
 - -> Goal to allocate equal work to processors
 - Does number of tasks scale with the problem size ?
 - -> Algorithm should be able to solve larger tasks with more processors
- Resolve bad partitioning by estimating performance behavior, and eventually reformulating the problem

- Specify links between data consumers and data producers
- Specify kind and number of messages on these links
- Domain decomposition problems might have tricky communication infrastructures, due to data dependencies
- Communication in functional decomposition problems can easily be modeled from the data flow between the tasks
- Categorization of communication patterns
 - Local communication (few neighbors) vs.
 global communication
 - Structured communication (e.g. tree) vs.
 unstructured communication
 - Static vs. dynamic communication structure
 - Synchronous vs. asynchronous communication

Communication - Hints

 Distribute computation and communication, don't centralize algorithm

- Bad example: Central manager for parallel summation
- Divide-and-conquer helps as mental model to identify concurrency
- Unstructured communication is hard to agglomerate, better avoid it
- Checklist for communication design
 - Do all tasks perform the same amount of communication ?
 - -> Distribute or replicate communication hot spots
 - Does each task performs only local communication ?
 - Can communication happen concurrently ?
 - Can computation happen concurrently ?

Ghost Cells

- Domain decomposition might lead to chunks that demand data from each other for their computation
 - Solution 1: Copy necessary portion of data (,ghost cells')
 - Feasible if no synchronization is needed after update
 - Data amount and frequency of update influences resulting overhead and efficiency
 - Additional memory consumption
 - Solution 2: Access relevant data ,remotely' as needed
 - Delays thread coordination until the data is really needed
 - Correctness ("old" data vs. "new" data) must be considered on parallel progress

Agglomeration Step

- Algorithm so far is correct, but not specialized for some execution environment
- Check again partitioning and communication decisions
 - □ Agglomerate tasks for efficient execution on some machine
 - Replicate data and / or computation for efficiency reasons
- Resulting number of tasks can still be greater than the number of processors
- Three conflicting guiding decisions
 - Reduce communication costs by coarser granularity of computation and communication
 - Preserve flexibility with respect to later mapping decisions
 - Reduce software engineering costs (serial -> parallel version)

Agglomeration [Foster]

Agglomeration – Granularity vs. Flexibility

Reduce communication costs by coarser granularity

- Sending less data
- Sending fewer messages (per-message initialization costs)
- □ Agglomerate, especially if tasks cannot run concurrently

Reduces also task creation costs

- Replicate computation to avoid communication (helps also with reliability)
- Preserve flexibility
 - □ Flexible large number of tasks still prerequisite for scalability
- Define granularity as compile-time or run-time parameter

- Communication costs reduced by increasing locality ?
- Does replicated computation outweighs its costs in all cases ?
- Does data replication restrict the range of problem sizes / processor counts ?
- Does the larger tasks still have similar computation / communication costs ?
- Does the larger tasks still act with sufficient concurrency ?
- Does the number of tasks still scale with the problem size ?
- How much can the task count decrease, without disturbing load balancing, scalability, or engineering costs ?
- Is the transition to parallel code worth the engineering costs ?

Mapping Step

- Only relevant for shared-nothing systems, since shared memory systems typically perform automatic task scheduling
- Minimize execution time by
 - Place concurrent tasks on different nodes
 - Place tasks with heavy communication on the same node
- Conflicting strategies, additionally restricted by resource limits
 - In general, NP-complete bin packing problem
- Set of sophisticated (dynamic) heuristics for load balancing
 - Preference for local algorithms that do not need global scheduling state

Partitioning Strategies [Breshears]

Produce at least as many tasks as there will be threads / cores

- But: Might be more effective to use only fraction of the cores (granularity)
- Computation must pay-off with respect to overhead
- Avoid synchronization, since it adds up as overhead to serial execution time
- Patterns for data decomposition
 - □ By element (one-dimensional)
 - □ By row, by column group, by block (multi-dimensional)
 - Influenced by ratio of computation and synchronization

Surface-To-Volume Effect [Foster, Breshears]

- Visualize the data to be processed (in parallel) as sliced 3D cube
 - **Synchronization** requirements of a task
 - Proportional to the **surface** of the data slice it operates upon
 - Visualized by the amount of ,borders' of the slice
 - Computation work of a task
 - Proportional to the **volume** of the data slice it operates upon
 - Represents the granularity of decomposition
 - Ratio of synchronization and computation
 - $\hfill\square$ High synchronization, low computation, high ratio \rightarrow bad
 - $\hfill\square$ Low synchronization, high computation, low ratio \rightarrow good
 - Ratio decreases for increasing data size per task
 - Coarse granularity by agglomerating tasks in all dimensions
 □ For given volume, the surface then goes down → good

Surface-To-Volume Effect [Foster, Breshears]

	Surface area increases while total volume remains constant			
	1 ∑			
Total surface area (height × width × number of sides × number of boxes)	6	150	750	
Total volume (height × width × length × number of boxes)	1	125	125	
Surface-to-volume ratio (surface area / volume)	6	1.2	6	(C) nicerweb.com

Surface-to-Volume Effect [Foster]

- Computation on 8x8 grid
- (a): 64 tasks,one point each
 - 64x4=256synchronizations
 - 256 data values are transferred
- (b): 4 tasks,16 points each
 - 4x4=16
 synchronizations
 - 16x4=64 data values are transferred

Designing Parallel Algorithms [Breshears]

- Parallel solution must keep sequential consistency property
- "Mentally simulate" the execution of parallel streams
 - Check critical parts of the parallelized sequential application
- Amount of computation per parallel task
 - Always introduced by moving from serial to parallel code
 - Speedup must offset the parallelization overhead (Amdahl)
 - Granularity: Amount of parallel computation done before synchronization is needed
- Fine-grained granularity overhead vs.
 coarse-grained granularity concurrency
 - Iterative approach of finding the right granularity
 - Decision might be only correct only for the execution host under test