
Workloads
Programmierung Paralleler und Verteilter Systeme (PPV)

Sommer 2015

Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc.,
Prof. Dr. Andreas Polze

Workloads

■  Hardware / software execution environment are typically designed
and optimized for specific workload

■  „task parallel workload“
□  Different tasks being performed at the same time

□  Might originate from the same or different programs

■  „data parallel workload“
□  Parallel execution of the same task on disjoint data sets

■  Sometimes also „flow parallelism“ added

◊ Overlapping work on data stream

◊  Examples: Pipelines, assembly line model

■  Task / data size can be coarse-grained or fine-grained

□  Decision of algorithm design and / or configuration

□  No common semantics for these terms

2

Workloads

Workloads

4

Parallelization Methods Overview

� Data Parallelism

� Functional Parallelism

Lecture 2 – Parallelization Fundamentals

[4] 2013 SMU HPC Summer Workshop [5] Parallel Computing Tutorial

8 / 31

Execution Environment Mapping

5

Si
ng

le
 In

st
ru

ct
io

n,
 

M
ul

tip
le

 D
at

a
(S
IM

D
)

M
ul

tip
le

 In
st

ru
ct

io
n,
 

M
ul

tip
le

 D
at

a
(M

IM
D

)

Execution Environment Mapping

■  Task parallel workload is a MIMD problem

■  Data parallel workload is a SIMD problem

■  Execution environments are optimized for one kind of workload,
event though they can also the other one

6
Data Parallel  SIMD
 Task Parallel  MIMD

Shared Memory
(SM)

SM-SIMD systems:
GPU, Cell, SSE, AltiVec

Vector processor
…

SM-MIMD systems:
ManyCore/SMP system

...

Shared Nothing /
Distributed

Memory (DM)

DM-SIMD systems:
processor-array systems

systolic arrays
Hadoop

...

DM-MIMD systems:
cluster systems
MPP systems

...

The Parallel Programming Problem

7

Execution
Environment Parallel Application Match ?

C
onfiguration

Flexible

Type

Designing Parallel Algorithms [Foster]

■  Map workload problem on an execution environment

□  Concurrency for speedup

□  Data locality for speedup

□  Scalability

■  Best parallel solution typically
differs massively from the
sequential version of an algorithm

■  Foster defines four distinct stages
of a methodological approach

■  We will use this as a guide in the
upcoming discussions

■  Note: Foster talks about communication,
we use the term synchronization instead

■  Example: Parallel Sum

8

Example: Parallel Reduction

■  Reduce a set of elements into one, given an operation

■  Example: Sum

9

Example: All Prefix Sums

■  Input: Ordered set [a0, a1, …, an]

■  Output: Ordered set [a0, (a0 + a1), …, (a0 + a1 + … + an)]

■  “+” is an arbitrary operation

■  Multiple use cases

□  Lexically comparison of strings

□  Add multi-precision numbers that do not fit into one word

□  Implementation of quick sort

□  Delete marked elements from an array

□  Search for regular expressions

■  Serial version is trivial, and demands O(n) steps

10

Designing Parallel Algorithms [Foster]

■  A) Search for concurrency and scalability

□  Partitioning –
Decompose computation and data into small tasks

□  Communication –
Define necessary coordination of task execution

■  B) Search for locality and other performance-related issues

□  Agglomeration –
Consider performance and implementation costs

□  Mapping –
Maximize processor utilization, minimize communication

■  Might require backtracking or parallel investigation of steps

11

Partitioning

■  Expose opportunities for parallel execution –
fine-grained decomposition

■  Good partition keeps computation and data together

□  Data partitioning leads to data parallelism

□  Computation partitioning leads task parallelism

□  Complementary approaches, can lead to different algorithms

□  Reveal hidden structures of the algorithm that have potential

□  Investigate complementary views on the problem

■  Avoid replication of either computation or data, can be revised
later to reduce communication overhead

■  Step results in multiple candidate solutions

12

Partitioning - Decomposition Types

■  Domain Decomposition
□  Define small data fragments

□  Specify computation for them

□  Different phases of computation
on the same data are handled separately

□  Rule of thumb:
First focus on large or frequently used data structures

■  Functional Decomposition

□  Split up computation into disjoint
tasks, ignore the data accessed
for the moment

□  With significant data overlap,
domain decomposition is more
appropriate

13

Partitioning - Checklist

■  Checklist for resulting partitioning scheme

□  Order of magnitude more tasks than processors ?
-> Keeps flexibility for next steps

□  Avoidance of redundant computation and storage
requirements ?
-> Scalability for large problem sizes

□  Tasks of comparable size ?
-> Goal to allocate equal work to processors

□  Does number of tasks scale with the problem size ?
-> Algorithm should be able to solve larger tasks with more
processors

■  Resolve bad partitioning by estimating performance behavior,
and eventually reformulating the problem

14

Communication Step

■  Specify links between data consumers and data producers

■  Specify kind and number of messages on these links

■  Domain decomposition problems might have tricky communication
infrastructures, due to data dependencies

■  Communication in functional decomposition problems can easily
be modeled from the data flow between the tasks

■  Categorization of communication patterns

□  Local communication (few neighbors) vs.
global communication

□  Structured communication (e.g. tree) vs.
unstructured communication

□  Static vs. dynamic communication structure

□  Synchronous vs. asynchronous communication

15

Communication - Hints

■  Distribute computation and communication,
don‘t centralize algorithm

□  Bad example: Central manager for parallel summation

□  Divide-and-conquer helps as mental model to identify
concurrency

■  Unstructured communication is hard to agglomerate,
better avoid it

■  Checklist for communication design

□  Do all tasks perform the same amount of communication ?
-> Distribute or replicate communication hot spots

□  Does each task performs only local communication ?

□  Can communication happen concurrently ?

□  Can computation happen concurrently ?

16

Ghost Cells

■  Domain decomposition might lead to chunks that demand
data from each other for their computation

□  Solution 1: Copy necessary portion of data (,ghost
cells‘)

◊  Feasible if no synchronization is needed after
update

◊  Data amount and frequency of update influences
resulting overhead and efficiency

◊  Additional memory consumption

□  Solution 2: Access relevant data ,remotely‘ as needed

◊  Delays thread coordination until the data is really
needed

◊  Correctness („old“ data vs. „new“ data) must be
considered on parallel progress

17

Agglomeration Step

■  Algorithm so far is correct,
but not specialized for some execution environment

■  Check again partitioning and communication decisions

□  Agglomerate tasks for efficient execution on some machine

□  Replicate data and / or computation for efficiency reasons

■  Resulting number of tasks can still be greater than the number of
processors

■  Three conflicting guiding decisions

□  Reduce communication costs by coarser granularity of
computation and communication

□  Preserve flexibility with respect to later mapping decisions

□  Reduce software engineering costs (serial -> parallel version)

18

Agglomeration [Foster]

19

Agglomeration –
Granularity vs. Flexibility

■  Reduce communication costs by coarser granularity

□  Sending less data

□  Sending fewer messages (per-message initialization costs)

□  Agglomerate, especially if tasks cannot run concurrently

◊  Reduces also task creation costs

□  Replicate computation to avoid communication
(helps also with reliability)

■  Preserve flexibility

□  Flexible large number of tasks still prerequisite for scalability

■  Define granularity as compile-time or run-time parameter

20

Agglomeration - Checklist

■  Communication costs reduced by increasing locality ?

■  Does replicated computation outweighs its costs in all cases ?

■  Does data replication restrict the range of problem sizes /
processor counts ?

■  Does the larger tasks still have similar computation /
communication costs ?

■  Does the larger tasks still act with sufficient concurrency ?

■  Does the number of tasks still scale with the problem size ?

■  How much can the task count decrease, without disturbing load
balancing, scalability, or engineering costs ?

■  Is the transition to parallel code worth the engineering costs ?

21

Mapping Step

■  Only relevant for shared-nothing systems, since shared memory
systems typically perform automatic task scheduling

■  Minimize execution time by

□  Place concurrent tasks on different nodes

□  Place tasks with heavy communication on the same node

■  Conflicting strategies, additionally restricted by resource limits

□  In general, NP-complete bin packing problem

■  Set of sophisticated (dynamic) heuristics for load balancing

□  Preference for local algorithms that do not need global
scheduling state

22

Partitioning Strategies [Breshears]

■  Produce at least as many tasks as there will be threads / cores

□  But: Might be more effective to use only fraction of the cores
(granularity)

□  Computation must pay-off with respect to overhead

■  Avoid synchronization, since it adds up as overhead to serial
execution time

■  Patterns for data decomposition

□  By element (one-dimensional)

□  By row, by column group, by block (multi-dimensional)

□  Influenced by ratio of computation and synchronization

23

Surface-To-Volume Effect
[Foster, Breshears]

■  Visualize the data to be processed (in parallel) as sliced 3D cube

■  Synchronization requirements of a task

□  Proportional to the surface of the data slice it operates upon

□  Visualized by the amount of ,borders‘ of the slice

■  Computation work of a task

□  Proportional to the volume of the data slice it operates upon

□  Represents the granularity of decomposition

■  Ratio of synchronization and computation

□  High synchronization, low computation, high ratio à bad

□  Low synchronization, high computation, low ratio à good

□  Ratio decreases for increasing data size per task

■  Coarse granularity by agglomerating tasks in all dimensions

□  For given volume, the surface then goes down à good

24

Surface-To-Volume Effect
[Foster, Breshears]

25

(C
)

ni
ce

rw
eb

.c
om

Surface-to-Volume Effect [Foster]

■  Computation on 8x8 grid

■  (a): 64 tasks,
one point each

□  64x4=256
synchronizations

□  256 data values are
transferred

■  (b): 4 tasks,
16 points each

□  4x4=16
synchronizations

□  16x4=64 data values
are transferred

26

Designing Parallel Algorithms
[Breshears]

■  Parallel solution must keep sequential consistency property

■  „Mentally simulate“ the execution of parallel streams

□  Check critical parts of the parallelized sequential application

■  Amount of computation per parallel task

■  Always introduced by moving from serial to parallel code

■  Speedup must offset the parallelization overhead (Amdahl)

■  Granularity: Amount of parallel computation done before
synchronization is needed

□  Fine-grained granularity overhead vs.
coarse-grained granularity concurrency

◊  Iterative approach of finding the right granularity

◊ Decision might be only correct only for the execution host
under test

27

