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Course Design Institut

m Lectures covering theoretical and practical
aspects of distribution, concurrency and
parallelism in hardware and software

m This is a course about concepts,
not a programming tutorial !

m Practical assignments

- P -
. Nt vl >

0 Earn extra 3 ETCS credits TAnofConcurrency :

A Mg WUomten s Quite B W aag Parsie Acyic onm

o Implementation of parallel algorithms
with various programming models

o Presentation at OSM research seminar
The Art of Concurrency:

A Thread Monkey's Guide to
_ Writing Parallel Applications
m 30 minutes oral exam / September
. . Clay Breshears
m Literature list on course home page O'Reilly Media, Inc.

2009
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Course Topics Institut

m Motivation

m Terminology

m Workload & Metriken

m Konzepte der Parallelverarbeitung

o Coroutinen, Fork & Join, ParBegin/ParEnd, expl. vs. impl.
Parallelitat

0 Shared Address Space vs. Message Passing
o Datenparallelitat vs. Kontrollparallelitat
o idealisierte Parallelrechner: PRAM, LogP, BSP
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Course Topics (contd.) Institut

m Synchrone Parallelitat

o SIMD-Rechner: Aufbau, Datenparallelitat, Virtuelle
Prozessoren

o CM-2, MasPar, DAP 610
s Kommunikation
o Verbindungsstrukturen
o Datenaustausch, Vektorreduktion
m Probleme bei synchroner Parallelitat
o virtuelle vs. physische Prozessoren
o I/O-Problem, Netzwerk-Bandbreite
o Mehrbenutzerbetrieb, Fehlertoleranz
m High Performance Fortran
m Parallaxis - Beispiel flir datenparallele Programmierung
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Course Topics (contd.) Institut

m Asynchrone Parallelitat
m MIMD-Rechner, SPMD-Ansatz
o Synchronisation und Kommunikation in MIMD-Systemen

o Softwarelbésung, Hardwarelésung, Semaphore, Monitore,
Nachrichten, RPC

m Probleme bei asynchroner Parallelitat:
0 inkonsistente Daten, Verklemmungen, Lastbalanzierung
m Shared Memory Programmierung
m Advanced Shared Memory Programmierung
m GPU Computing mit OpenCL
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Course Topics (contd.) Institut

m Parallelitit in verteilten Systemen - Uberblick

m Modelle fir Shared Nothing Computing

m Parallelitat in verteilten Systemen
o MPI / PVM
0 Object Space / Linda / Koordinationssprachen
0 Responsive Cluster Computing

m Trends / Ausblick
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Computer Markets institut

m Embedded Computing
0 Real-time systems, nearly everywhere
0 Power consumption and price as major issue
m Desktop Computing
o Home computers
o Performance / price ratio as major issue
m Servers
o Performance and availability is key
0 Business service provisioning as major goal
0 Web servers, banking back-end, order processing, ...
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Awesome Applications Institut

m Some problems always benefit from faster processing

O

Simulation and modeling (climate, earthquakes,
airplane design, car design, vehicle traffic patterns, ...)

Data mining (big data), transaction processing
Web search

Social networks

Modern computer games

Next-generation medicine
(DNA sequencing, simulation of drug effects)

Business data processing
Graphic effects on consumer devices
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Laws of this Universe: 7T Institut

In 2011, pi was computed out to
10,000,000,000,000 decimal places. It only
takes 39 digits of pi to draw a circle the size of the
universe down to the accuracy of a hydrogen atom.
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STORE ALL
OF THE WORLD'S

LANDSCAPE OF \ iim it

T0 ACEBOOK &
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USING SOCIAL
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INJUST THE PAST TWO YEARS pEn M““TH
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Cities pulse via Foursquare check-ins

http://flowingdata.com/2013/09/30/cities-pulse-via-foursquare-check-ins/
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Real-World Simulations
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several areas of London experienced episodes of

4

large-scale disorder, comprising looting, rioting and violence. In this article,
we present a mathematical model of the spatial development of the

disorder, which can be used to examine the effect of varying policing

arrangements...” [Davies et al.]

“In August 2011
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Numerical Weather Prediction Institut

Calculation of all physical factors driving the atmosphere
1959: UK Met Office had state-of-the-art hardware (3000 FLOPS)

1980: European Centre for
Medium Range Weather LT wmm e GeR TR
Forecasts installed a Cray 1 | S R
(250 million FLOPS)

2014: New Cray XC30

systems for German weather '
service with 17.500 cores
and 85 TB of main memory

Today 6-16 days of prediction
into the future

b 4 B
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10 20 A0 40 AE RO 0 HO 90 100 11D 120 1AL 40 18D TBQ 1T 0 100 22D



ﬂ Hasso
. . . attner
Climate Simulation Institut
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m Simulation of abrupt climate change
m From 14.000 years ago to 200 years in the future
m 4 Million processor hours in 3 years on Cray XT (,Jaguar™)
o 200 cabinets
0 224.256 cores Air Temperature Anomaly, Units: °C

o 2.3 Petaflops

http://www.olcf.ornl.gov

Ice Sheet, Units: m

0.000 1306. 2612 3917 5223
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DNA Sequencing

1,000,000,000-

Kilobases per day per machine

100,000,000
10,000,000
1,000,000+
100,0000
10,000+
1,000

1004

10~

Single
molecule?

Massively parallel

sequencing
Short-read
sequencers
z . Microwell
I Capillary sequencing SRR
Gel-based systems I
Second-generation
Automnated capillary sequencer
Manual siab gel First-generation
slab gel capillary
I 1 I 1 l 1 I 1
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Moore's Law
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Computer Games

!
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SkyRim with texture mods
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Running Applications

Instructions

Hasso
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19 m First computers had fixed programs (electronic calculator)
= von Neumann architecture (1945, for EDVAC project)
o Instruction set for control flows stored in memory

o Program is treated as data, which allows the exchange of code
during runtime and self-modification

o Introduced the von Neumann bottleneck
m CPUs are built from logic gates, which are built from transistors
m Multiple CPUs (SMP) were always possible, but exotic

HISTEIN J(_) Control Unit J |

S

Output J d:J’ «> Central Unit I

Input J W\

Arithmetic Logic Unit J
o




Three ways of doing anything faster

[ Pfister]
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Application

I Instructions

Hasso
Plattner
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 Work Harder
(clock speed)

 Work Smarter
(optimization, caching)

- Get Help
(parallelization)
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21 m ,...the number of transistors that can be inexpensively placed on

an integrated circuit is increasing exponentially, doubling
approximately every two years. ...“ (Gordon Moore, 1965)

o Rule of exponential growth
o Applied to many IT hardware developments

0 Sometimes misinterpreted as
performance indication

0 Meanwhile a self-fulfilling prophecy

o May still hold for the next 10-20 years
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Moore’s Law

2,600,000,000
1,000,000,000

100,000,000

10,000,000 -

1,000,000

Transistor count

100,000

10,000

2,300 -

curve shows transistor
count doubling every
two years

Hasso
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1980 1990
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16-Core SPARC T3
Six-Core Core i7
Six-Core Xeon 7400 @10-Core Xeon Westmere-EX

Dual-Core Itanium 2@ @ (8-core POWER7

AMD K10 <—Quad-core 2196 .
\ —Quad-Core Itanium Tukwila
POWER6 @ 8-Core Xeon Nehalem-EX
Itanium 2 with 9MB cache ® "\ Six-Core Opteron 2400
AMD K10 Core i7 (Quad)
Core 2 Duo
Itanium 2 @ Cell
AMD K8
@Barton
Pentium 4 ® Atom
AMD K7
® AMD Keé-lll
AMD K6
@ Pentium Il
Pentium 11
@ AMD K5
Pentium
| |

[Wikimedia]
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atther
Moore’s Law vs. Software Institut

Gate’s law: "The speed of software halves every 18 months.”

Wirth’s law: "Software is getting slower more rapidly than
hardware becomes faster.”

May’s law: "Software efficiency halves every 18 months,
compensating Moore's Law.”

Jevons paradox:
"Technological progress that increases the efficiency with which a

resource is used tends to increase (rather than decrease) the rate
of consumption of that resource.”

Zawinski's Law of Software Envelopment:

"Every program attempts to expand until it can read mail.
Those programs which cannot so expand are replaced by ones
which can.”
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24 10,000,000

MIE ore Ita o /
1,000,000

Intel CPU Trends '

(sources: Intel, Wikipedia, K. OFukotun)

100000 Work harder"
10,000
1,000 ,Work smarter"

100

10
v_/g °° | W Transistors #

1 ) ) ! ® m Transistors (000) | . CIOCk Speed (MhZ)
° o 0 ee® S o (1 A Power (W)
perfok ® Perf/Clock (ILP)
0

1970 1975 1980 1985 1990 1995 2000 2005 2010

[Herb Sutter, 2009]
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A Physics Problem Institut
25 m Power: Energy needed per time unit
o Power density: Watt/mm2 - Cooling
m Static power: Leakage of transistors while being inactive
m Dynamic power: Energy needed to switch a gate
Dynamic Power ~
Number of Transistors (N) x Capacity (C) x
Voltage2 (V2) x Frequency (F)
m Moore’s law: N goes up exponentially, C goes down with the size
m The trick
o Bringing down V reduces energy consumption, quadratically
o Don't use all the N for gates (e.g. caches)
0 Keeps the dynamic power increase moderate
o We can happily increase F with N for faster computation
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Processor Supply Voltage

1
1970 1980

1990

2000
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[Moore, ISSCC]

2010
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Transistor Usage Institut
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http://arstechnica.com/gadgets/2009/09/ibms-8-core-power7-twice-the-muscle-half-the-transistors/
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28 SIZZLING SEMICONDUCTORS
growth of watts per square centimeter
in microprocessors 120W/em?*

120

100 ——~ :

80 | 70W/cm?

60

40

20

1992 1995 1997 2000 2002 2005

*Could be higher, depends on level of integration.
SOURCE: HEWLETT-PACKARD LABS
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[source: Devgan’095]

thermal profile during runtime
cache
Higher temperature leads to

o Increased transistor leakage
0 Decreased transistor speed
o Higher failure probability
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Power Density

[Kevin Skadron, 2007]
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1000 —Rocket Nozzle Z
Nuclear Reactor

100

N
& .
2 | ¢ Pentium® 4 processor
; Pentium® Il processor o 60 ium® i1 processor
10
Pentium® Pro processor
Pentium® processor
1 7
10 1 0.1 0.01

CD (um)

[Taylor, 2009]
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Est. Clock Frequency (GHz)

Power Density Projection

-~
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Constant performance
improvement of 20% per
generation

11nm (750W/cm2)
10.00
B 15 nm (260W/cm2) B 200W/ent
=]
8.00 100W/en?
B 22nm (110W/cm2) B 50Wen?
B 32 nm (65W/cm2) | 25Went
6.00
B 45 nm (65W/cm2)
[ |
65nm (50W/crh)  H 32nm 29
4.00 . R— ___ Constant power
R 5nm :
= oonm M 650 ® 11nm density 25 W/cm?
2.00
0.00 T 1 1 T T T L} T
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Source: D. Frank, C. Tyberg, IBM Research
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A Physics Problem Institut

34 Dynamic Power = N x C x V2 x F

m Even if we would keep F constant
0 N continues to increase exponentially > dynamic power
o Increasing N sums up to more leakage - static power
m Cooling performance is constant (100-125 Celsius)
0 Static and dynamic power consumption has a limit
m Further reducing V for compensating an additionally increased F
o Also makes the transistors slower
o We can’t do that endlessly, 0V is the limit
o Strange physical effects

m Increasing the frequency is no longer possible
- “"Power Wall”

m Ok, so let’s use the additional N for smarter processors
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35

m Increasing transistor count was also used for more gate logic in
instruction level parallelism (ILP)

o Instruction pipelining
¢ Overlapped execution of serial instructions
0 Superscalar execution
¢ Multiple execution units are used in parallel
o Out-of-order execution
¢ Reorder instructions that have no data dependency
0 Speculative execution

¢ Control flow speculation, memory dependence prediction,
branch prediction

m Today’s processors are packed with ILP logic
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The ILP Wall Inetitut

No longer cost-effective to dedicate . 3C'°Z'< C;/C'ee o
new transistors to ILP mechanisms
Deeper pipelines make the Waiting ]
power problem worse Instructions ]
High ILP complexity effectively - L]
reduces the processing w [T =
. = Stage 2: Decode

speed for a given frequency d< stg 3: Execut [ ]

. . . & age 3. execute
(e'g' mlSprEdICtlonS) o- Stage 4: Write-back

More aggressive ILP
technologies too risky for Completed
products due to unknown Instructions

real-world workloads

[Wikipedia]

-> “ILP wall”
Ok, so let’s use the additional N for more caches






Memory Wall
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tiny bandwidth == HUGE BOTTLENECK
1000 ¢ T T T 7

CPU Speed
100 | Bandwidth — -

19

Performance

2.1 1 1 1
1980 1990 ceoo ce1e

Year

http://www.dba-oracle.com/
oracle tips hardware oracle performance.htm

http://en.community.dell.com/techcenter/high-
performance-computing/w/wiki/2284.aspx
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The Real Moore’s Law:
CPU

Fas®r cPuU fpe ed
0 lpaoex
RA&M speed
“‘.“-‘IIIIIIIIIIIIIIII EmEEmEns [T RA
..
Hardware —— — Disk
Speed /
SIOWET | s ™™
1970 1560 1980 0@
Time
PowerEdge CPU vs RAM
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~—8— GFLOP/s
70.0
Y 600
5
E 50.0
gaw
[
a 300
20.0 r——_—_””’f‘///
10.0
—— — S ——
0.0
2x3.6GHz 4x2.8GHz 4x3.73GHz 4x 3 GHz 8x 3 GHz 8x 3 GHz
Irwindale Paxville Dempsey Woodcrest Clovertown Harpertown
PE1850 PE1950 M600
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39
m Sandia National Labs investigated the speedup achievable by

increasing parallelism (ILP, multiple processors) in 2009
m Example: Number of clerks behind a supermarket counter
o Two clerks can serve more customers than one
04?8?7167 327?7647...1000°7
m The problem: Shared memory is ,shared’
o Memory bandwidth
¢ Memory transfer speed is limited by the power wall
¢ Memory transfer size is limited by the power wall
¢ Putting memory into the processor is too costly
o Bus contention
m Another problem: Memory need kept the pace of CPU speedup
x > "Memory wall”
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The Free Lunch Is Over

Clock speed curve
flattened in 2003

0 Heat
o Power consumption
0 Leakage

2-3 GHz since 2001 (!)

Speeding up the serial
instruction execution
through clock speed
improvements no
longer works

We stumbled into the
Many-Core Era

10,000,000
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1,000,000

100,000

./
Intel CPU Trends Vel

{sources: Intel, Wikipedia, K. Olukotun)
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100

10
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0
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APower (W)
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1990 1995 2000 2005 2010

L ee—

T

[Herb Sutter, 2009]
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41
Old Wisdom New Wisdom
Power is free, transistors are expensive ~Power wall“
Only dynamic power counts Static leakage makes 40% of power
Multiply is slow, load-and-store is fast ~Memory wall”

Instruction-level parallelism gets
constantly better via compilers and ~ILP wall®
architectures

Parallelization is not worth the effort, Performance doubling might now take 5
wait for the faster uniprocessor years due to physical limits

Processor performance improvement Processor performance improvement
by increased clock frequency by increased parallelism

[Asanovic et al., 2006]



Memory Hierarchy
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Processor
Register L e
Processor s ol e
L2-L3: 4-16
Cache
ms
RAM ~150 ns
Disk ~6 mSs
Tape Robot ~10 s
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(C) Chevance, approx. values in 2005

0.1s

16 s

~ 25 min

~700 days

~3200 years

64x64 Bits = part of CPU
kB - MB part of CPU
>=1GB  ~0.1 $/MB
> 7d0iS<EB /" ~0.005 $/MB
~100GB/ 4 001 ¢/MB

tape
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Dark Silicon = Power Wall 2.0

Multicore Speedup

Dark Silicon

Gap
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m Power consumption increases with Moore's law,
even under constant frequencies

m Cooling is a constant factor
0 Maximum temperature of 100-125 C
0 Hot spots make it worse
m Next-generation processors need to use less power
o Lower the frequencies
o Dynamic frequencies scaling (see latest Intel products)
o Minimize ,power per bit of I/O' [Skadron 2007]
o Better cache locality, stop moving stuff around
0 Start to use specialized co-processors and accelerators
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Power Wall 2.0 = Dark Silicon

Optimal Number of Cores

512
64}

8_

/|

45 32 22 16 11 8
“Dark Silicon and the End
of Multicore Scaling”

by Hadi Esmaeilzadeh, Emily
Blem, Renée St. Amant,
Karthikeyan Sankaralingam,
Doug Burger

32

24
16|
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Speedup

Symmetric

45 32 22 16 11 8
Percentage Dark Silicon

100%
75%
50% |
25% |

f T A A b |
45 32 22 16 11 8

® Dblackscholes O canneal + facesim B fluidanimate O streamcluster *  Vips

A bodytrack ¥ dedup v ferret X  fregmine ¢ swaptions O x264
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46 m Hardware people
o Number of transistors N is still increasing
o Building larger caches no longer helps (memory wall)
o ILP is out of options (ILP wall)
o Voltage / power consumption is at the limit (power wall)
¢ Some help with dynamic scaling approaches
o Frequency is stalled (power wall)
o Only possible offer is to use increasing N for more cores
m For faster software in the future ...

o Speedup must come from the utilization of an increasing core
count, since F is now fixed

o Software must participate in the power wall handling,
to keep F fixed

o Software must tackle the memory wall



Three ways of doing anything faster ﬂ Hasso
[ Pfister]
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« Work Harder

Application
) (clock speed)
l  Work Smarter
Instructions (optimization, caching)

- Get Help
(parallelization)
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48 @ Parallelization not only in

computer science — Problem——

o Building construction, car
manufacturing, large companies ‘v

m The basic idea is easy to understand 44399997+ - _

m Meanwhile tons of options for
parallel processing TTTTITITTT 17 3

o Languages, execution BN | ] _
environments, patterns e < - -

m Parallelism is a hardware property I | | |
that must be exploited by software - 4499999 B

o A parallel computer is a set of
processors that are able to work

cooperatively to solve a computational
problem.” (Foster 1995)




