
PT2
Code-Review

Sven Köhler
Hasso-Plattner-Institut

2018-06-26

[https://xkcd.com/1833/]

https://xkcd.com/1833/

PT2
Code-Review

Sven Köhler
Hasso-Plattner-Institut

2018-06-26

1Hintergrund

FAGAN: ADVANCES IN SOFTWARE INSPECTIONS 747

THE INSPECTION PROCESS
The inspection process follows any development oper-

ation whose product must be verified. As shown below,
it consists of six operations, each with a specific objec-
tive:

SOFTWARE INSPECTION OVERVIEW

This paper will only give an overview description of
the inspection process that is sufficient to enable discus-
sion of updates and enhancements. The author's original
paper on the software inspections process [2] gives a brief
description of the inspection process and what goes on in
an inspection, and is the base to which the enhancements
are added. His forthcoming companion books on this sub-
ject and on building defect-free software will provide an
implementation level description and will include all the
points addressed in this paper and more.

To convey the principles of software inspections, it is
only really necessary to understand how they apply to de-
sign and code. A good grasp on this application allows
tailoring of the process to enable inspection of virtually
any operation in development or maintenance, and also
allows inspection for any desired quality attribute. With
this in mind, the main points of inspections will be ex-
posed through discussing how they apply in design and
code inspections.

There are three essential requirements for the imple-
mentation of inspections:

• definition of the DEVELOPMENT PROCESS in
terms of operations and their EXIT CRITERIA,

• proper DESCRIPTION of the INSPECTION PRO-
CESS, and

• CORRECT EXECUTION ofthe INSPECTION PRO-
CESS . (Yes, correct execution of the process is vital.)

Operation

PLANNING

OVERVIEW

PREPARATION

INSPECTION

REWORK
FOLLOW-UP

Objectives
Materials to be inspected must meet

inspection entry criteria.
Arrange the availability of the right

participants.
Arrange suitable meeting place and

time.
Group education of participants in

what is to be inspected.
Assign inspection roles to partici-

pants.
Participants learn the material and

prepare to fulfill their assigned
roles.

Find defects. (Solution hunting and
discussion of design alternatives
is discouraged.)

The author reworks all defects.
Verification by the inspection mod-

erator or the entire inspection
team to assure that all fixes are
effective and that no secondary
defects have been introduced.

Evaluation of hundreds of inspections involving thou-
sands of programmers in which alternatives to the above
steps have been tried has shown that all these operations
are really necessary. Omitting or combining operations
has led to degraded inspection efficiency that outweighs
the apparent short-term benefits. OVERVIEW is the only
operation that under certain conditions can be omitted with
slight risk. Even FOLLOW-UP is justified as study has
shown that approximately one of every six fixes are them-
selves incorrect, or create other defects.

From observing scores of inspections, it is evident that
participation in inspection teams is extremely taxing and
should be limited to periods of 2 hours. Continuing be-
yond 2 hours, the defect detection ability of the team
seems to diminish, but is restored after a break of 2 hours
or so during which other work may be done. Accordingly,
no more than two 2 hour sessions of inspection per day
are recommended.

To assist the' inspectors in finding defects, for not all
inspectors start off being good detectives, a checklist of
defect types is created to help them identify defects ap-
propriate to the exit criteria of each operation whose prod-
uct is to be inspected. It also serves as a guide to classi-
fication of defects found by inspection prior to their entry
to the inspection and test defect data base of the project.
(A database containing these and other data is necessary
for quality control of development.)

PEOPLE AND INSPECTIONS
Inspection participants are usually programmers who

are drawn from the project involved. The roles they play
for design and code inspections are those of the Author
(Designer or Coder), Reader (who paraphrases the design
or code as if they will implement it), Tester (who views
the product from the testing standpoint), and Moderator.
These roles are described more fully in [2], but that level
of detail is not required here. Some inspections types, for
instance those of system structure, may require more par-
ticipants, but it is advantageous to keep the number of
people to a minimum. Involving the end users in those
inspections in which they can truly participate is also very
helpful.

The Inspection Moderator is a key player and requires
special training to be able to conduct inspections that are
optimally effective. Ideally, to preserve objectivity, the
moderator should not be involved in development of the
product that is to be inspected, but should come-from an-
other similar project. The moderator functions as a
, 'player-coach" and is responsible for conducting the in-
spection so as to bring a peak of synergy from the group.
This is a quickly learned ability by those with some in-
terpersonal skill. In fact, when participants in the mod-
erator training classes are questioned about their case
studies, they invariably say that they sensed the presence
of the "Phantom Inspector," who materialized as a feel-
ing that there had been an additional presence contributed
by the way the inspection team worked together. The
moderator's task is to invite the Phantom Inspector.

Figure 1 Programming process

PROCESS
OPERATIONS

OUTPUT (+ OETAILED EXIT
CRITERIA)

IOENTIFIABLE LEVEL
OF FUNCTION

ORIGIN OF TEST
LEVELOBJECTIVES

D LEVEL 0 _ STATEMENT OF OBJECTIVES COMPONENT

LEVEL 1 _ ARCHITECTURE COMPONENT _

__ 2 _ EXTERNAL SPECIFICATIONS FUNCTION __

__3 _ INTERNAL SPECIFICATIONS MODULE

- IOINSPECTION

__4_ LOGIC SPECIFICATIONS COO,")

- I, DESIGNCOMPLETE INSPECTION

O
LEVEL 5 - CODING/IMPLEMENTATION ------ LOGICg - 12 CODEINSPECTION

U UNITTEST _

LEVEL6 _ FUNCTIONTEST FUNCTION+__

>- __ 7 _ COMPONENT TEST COMPONENT + _

__8_ SYSTEMTEST COMPONENT+_

NOTE, CONTROL OF THE PROCESSREQUIRESTHAT ALL REWORKTO MEET THE EXIT CRITERIA FORANY LEVEL BE
COMPLETEO BEFORETHAT LEVEL IS CLAIMED AS COMPLETE FORANY TRACKABLE UNIT.

inspected. A clear statement of the project rules and changes to
these rules along with faithful adherence to the rules go a long
way toward practicing the required project discipline.

A prerequisite of process management is a clearly defined series
of operations in the process (Figure 1). The miniprocess within
each operation must also be clearly described for closer manage-
ment. A clear statement of the criteria that must be satisfied to
exit each operation is mandatory. This statement and accurate
data collection, with the data clearly tied to trackable units of
known size and collected from specific points in the process, are
some essential constituents of the information required for pro-
cess management.

In order to move the form of process management from qualita-
tive to more quantitative, process terms must be more specific,
data collected must be appropriate, and the limits of accuracy of
the data must be known. The effect is to provide more precise
information in the correct process context for decision making
by the process manager.

In this paper, we first describe the programming process and
places at which inspections are important. Then we discuss fac-
tors that affect productivity and the operations involved with
inspections. Finally, we compare inspections and walk-throughs
on process control.

NO.3· 1976 DESIGN AND CODE INSPECTIONS 183

[Fagan, Michael E. Design and code inspections to reduce errors in program development.
IBM Systems Journal 15, 3 (September 1976), 182-211.]

Code-Durchsicht ::
Formalisierter Arbeitsschritt im Softwareentwicklungsprozess zur Aufdeckung
von Defekten in bereits geschriebenem Quelltext.

Softwaredefekt ::
"A defect is an instance in which a requirement is not satisfied." (Fagan)

Weiterführende Begriffe (variierender Formalisationsgrad):
formal technical review; (code) inspection (IEEE 1028); walk-through

fehlende Übereinstimmung mit Spezifikation

[Formalisierungsgrade variieren
in der Praxis. Was folgt sind Optionen]

(writer) Rollen
& PhasenAuthor Reader/ReviewerModerator

Spezifikation

Quelltext

Änderungen, Changelog 
(rework)

"Okay!" (follow-up)
("und keine neuen Fehler")

Liste mit Defekten (inspection) 
Änderungsvorschläge

preparation
overview

[https://github.com/systemd/systemd/issues/6237]

https://github.com/systemd/systemd/issues/6237

Fehlerkultur

Kritik muss konstruktiv und höflich sein …

… und dankend angenommen werden.

2Arbeitsweise
der Gutachter

Figure 2 A study of coding productivity

DESIGN

"--.122% IN POSTSTUDYSAMPLE FROMNORMAL
PRODUCTION (TO NORMAlIZE FOR HAWTHORNE EFFECT)

IjODETECTION

----------- 100%
• NET CODING PRODUCTIVITY

11+12 +X - 123% -- SAMPLE SHOWED 23% NET INCREASE

J1 +X+x- 112%

){+X+X- 100%

• NET SAVINGS (PROGRAMMER HOURS/K) DUE TO,

11:94,.12: 51, '3: - 20

• REWORK (PROGRAMMER/HOURS/K. LOC) FROM,

'I: 78, 12: 36,

• QUALITY

AN INSPECTION SAMPLE HAD 38% FEWERERRORS/K. LOC THAN A WALKTHROUGH SAMPLE DURING EQUIVALENT TEST-
1NGBETWEEN UNIT TEST AND SYSTEM TEST IN THIS STUDY.

quality (error content) in the early levels, where error rework
can be most economically accomplished. Naturally, the benefi-
cial effect on quality is also felt in later operations of the de-
velopment process and at the end user's site.

An improvement in productivity is the most immediate effect of
purging errors from the product by the 10' II' and 12 inspections.
This purging allows rework of these errors very near their ori-
gin, early in the process. Rework done at these levels is 10 to
100 times less expensive than if it is done in the last half of the
process. Since rework detracts from productive effort, it reduces
productivity in proportion to the time taken to accomplish the
rework. It follows, then, that finding errors by inspection and
reworking them earlier in the process reduces the overall rework
time and increases productivity even within the early operations
and even more over the total process. Since less errors ship with
the product, the time taken for the user to install programs is
less, and his productivity is also increased.

The quality of documentation that describes the program is of as
much importance as the program itself for poor quality can mis-
lead the user, causing him to make errors quite as important as
errors in the program. For this reason, the quality of program
documentation is verified by publications inspections (PIo' PI!,
and PI 2) . Through a reduction of user-encountered errors, these
inspections also have the effect of improving user productivity
by reducing his rework time.

186 FAGAN IBM SYST J

commencing
inspections

Figure 5 Examples of what to examine when looking for errors at "

I, Logic
Missinu
1. Are All Constants Defined?
2. Are All Unique Values Explicitly Tested on Input Parameters?
3. Are Values Stored after They Are Calculated?
4. Are All Defaults Checked Explicitly Tested on Input Parameters?
5. If Character Strings Are Created Are They Complete, Are All Delimiters
Shown?

6. If a Keyword Has Many Unique Values. Are They All Checked?
7. If a Queue Is Being Manipulated, Can the Execution Be Interrupted; If
So. Is Queue Protected by a Locking Structure; Can Queue Be Destroyed
Over an Interrupt?

8. Are Registers Being Restored on Exits?
9. In Queuing/Dequeuing Should Any Value Be Decremented/Incremented?
10. Are All Keywords Tested in Macro?
11. Are All Keyword Related Parameters Tested in Service Routine?
12. Are Queues Being Held in Isolation So That Subsequent Interrupting

Requestors Are Receiving Spurious Returns Regarding the Held Queue?
13. Should any Registers Be Saved on Entry?
14. Are All Increment Counts Properly Initialized (0 or I)?
WronR
I. Are Absolutes Shown Where There Should Be Symbolics?
2. On Comparison of Two Bytes, Shou1d All Bits Be Compared?
3. On Built Data Strings, Should They Be Character or Hex?
4. Are Internal Variables Unique or Confusing If Concatenated?
Extra
1. Are All Blocks Shown in Design Necessary or Are They Extraneous?

4. Rework-All errors or problems noted in the inspection re-
port are resolved by the designer or coder/implementor.

5. Follow-Up- It is imperative that every issue, concern, and
error be entirely resolved at this level, or errors that result
can be 10 to 100 times more expensive to fix if found later in
the process (programmer time only, machine time not
included). It is the responsibility of the moderator to see that
all issues, problems, and concerns discovered in the inspec-
tion operation have been resolved by the designer in the case
of II' or the coder/implementor for 12 inspections. If more
than five percent of the material has been reworked, the team
should reconvene and carry out a 100 percent reinspection.
Where less than five percent of the material has been re-
worked, the moderator at his discretion may verify the qual-
ity of the rework himself or reconvene the team to reinspect
either the complete work or just the rework.

In Operation 3 above, it is one thing to direct people to find er-
rors in design or code. It is quite another problem for them to
find errors. Numerous experiences have shown that people have
to be taught or prompted to find errors effectively. Therefore, it

194 FAGAN IBM SYST J

[Fagan, Michael, 1976]

Oft: Zurückgreifen auf Wissen um typische Fehler.
Ziel ist: Defekte finden.

Ändern sich mit der Zeit
(Sprachen, Werkzeuge, Prozesse, Modultests, …)

Code-Completion, Linter, IDEs und
z.B. Pair-Programming dienen als
kontinuierliches Code-Review

Beispiel Lesetechnik

– Lässt sich der Code übersetzen? Besteht er die definierten Testfälle?
– Hat der Gutachter den Code verstanden?
– Folgt der Code den etablierten Codekonventionen?
– Ist er verständlich kommentiert?
– Wird die Spezifikation erfüllt? Auch in Randfällen?
– Trifft der Code nicht-verallgemeinerbare Annahmen?

(z.B. Verwendung von Pfadnamen auf der Autorenmaschine)
– Werden Fehlerfälle korrekt berücksichtigt?
– Gibt es redundanten/unverständlichen Code?

^Dende

