Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam

Software Profiling Seminar, 2013

#### Statistics 101

## **Descriptive Statistics**



# Statistics = Uncertainty

- \* Estimate characteristics of a population, based on samples
- Characterize natural variation that is out of statistical control
- Control and minimize
  - \* Sampling variation statistics depend on chosen subset
  - \* Measurement variation same population object, different results
  - \* Environmental variation influence of population environment

#### Measurement Variables

- Categorical: No reasonable way for numerical measurement
  - Nominal scale: Order has no meaning, values are mutually exclusive, examples: gender, names, yes or no, pass or fail, process states
  - Ordinal scale: Order has meaning, distance not, examples: school grades, satisfaction level, movie ratings
- Quantitative: Discrete or continuous numerical values
  - Interval scale: Order and distance have meaning, zero is just a value, examples: temperature in Celsius, dates
  - Ratio scale: Order and distance have meaning, has a data-independent zero as natural origin, example: height, weight, temperature in Kelvin

#### Measurement Variables

- Applying statistical tests on ordinal data is meanwhile common
  - Example: Average grade
- Helps to think about the feasibility of claims
  - \* Example: Interval and ratio claims about ordinal data
    - \* "Average grade in group 1 is B, average grade in group 2 is D."
    - \* Is group 1 twice as good as group 2?

## What Is Allowed

|                          | Nominal  | Ordinal | Interval           | Ratio                            |
|--------------------------|----------|---------|--------------------|----------------------------------|
| has                      | no order | order   | order,<br>distance | order, distance,<br>natural zero |
| Coefficient of variation | -        | -       | -                  | ok                               |
| Mean, standard deviation | _        | -       | ok                 | ok                               |
| Add or subtract          | _        | -       | ok                 | ok                               |
| Median, percentiles      | -        | ok ?    | ok                 | ok                               |
| Frequency distribution   | ok       | ok      | ok                 | ok                               |

# Frequency Distribution

- Count of occurrences per value
- \* Visualized with histograms, bar chars, pie charts, ...



- Feasible for both categorical and numerical data
- Median, mean, standard deviation and others can be easily computed from such an overview
- \* Relative frequency distribution: Information given in percentage

### Mean, Median, Mode

- \* Mode: Value that appears most often
  - May be not unique (bimodal, multimodal)
- Arithmetic mean / average: Sum divided by number of values
- \* Median: Value separating the higher from the lower half of data
  - \* For even number of samples, the **mean** of the middle values
- Median is more robust than mean with extreme outliers
  - \* mean(1,2,4,6,7,9,10)=5,57 vs. mean(1,2,4,6,7,9,44)=10,43

## Percentiles

- 75th percentile: The value that has 75% of the values below it
- \* The 50th percentile is the median
- \* Examples:
  - Assess growth of children in comparison to national standards
  - Taking rare bursts away from some average calculation
- Four equal quadrants: quartiles



# Range, Standard Deviation

- Range: Difference between minimum and maximum value
  - Looks at the most extreme values
- Standard Deviation: Better to have a ,typical distance' from the mean
  - \* Describes variation from the mean or expected value
  - \* Expressed in the same units as the data, unlike **variance**
  - \* A sampled standard deviation has some **confidence interval** 
    - \* With low number of samples, it may vary during multiple runs

#### **Standard Deviation**

- Three sigma rule: For normal distribution, nearly all values lie within 3 standard deviations
  - Identify impossible outliers
- \* Reported to be applicable in most cases of statistical analysis



## Standard Deviation, CV

- \* If values are the same, the standard deviation is zero
- \* Mean and (!) standard deviation are heavily influenced by outliers
- \* If the data is spread out, you have a higher standard deviation
- \* Coefficient of variation: Ratio of standard deviation to the mean
  - Results in dimensionless number
  - Expresses relative variability, much easier to interpret
  - \* The secret weapon for cool statistics ...

#### Coefficient of Variation

- Easier for comparison between data sets with widely different means
- \* When the mean is close to zero, the coefficient will approach infinity
  - Becomes sensitive to small changes
  - Typically indicator for a non-ratio scale
- Distributions with CV<1 are considered low variance</li>
- Distributions with CV>1 are considered high variance
- Sensors need to deliver a CV close to zero (constant absolute error)

#### **Confidence** Interval

- If you would repeat the same experiment endlessly, what is the confidence interval that would include the real value of some sample estimate (e.g. mean) in X% of the cases?
- \* X is the **confidence level**, typical value is 95%
  - \* Decided by the researcher who wants to prove a hypothesis
- \* Margin of error to the left and right builds confidence interval
- Helps to deal with sampling variation, direct relation to sample size
- Can be used to check the quality of mean, median, or percentages



(from Wikipedia)

# Hypothesis

- Hypothesis: Assumption being proved with empirical data
- Null hypothesis: Assuming no relation between cause and effect
  - If the probability for it becomes low enough, then the alternative hypothesis becomes true ,without any doubt'
  - Statistical tests only target the falsification aspect, so the null hypothesis is never intended to get verified by them
    - Decision about falsification based on some some test result
  - Example: Innocence in jury trial

# Statistical Significance

- You are very sure that your falsification of the null hypothesis is reliable
- \* **One-tailed test**: When the null hypothesis states a direction
  - \* Example: "Females will not score higher on IQ tests than males."
- \* Two-tailed test: No direction is given
  - Example: "There is no significant gender-related difference in IQ test results."
- Test typically relates to the acceptance of a maximum error rate

# Chi-Square Test

- Mostly means Pearson's chi-square test
- Supports two types of comparison, based on frequency distribution
  - Goodness of fit: Does the observed frequency distribution differ from an assumed theoretical distribution?
  - Test of independence: Are paired frequency distribution investigations independent from each other?
- Many other statistical tests that help to verify / falsify a hypothesis

# Summary

- Know your variable type
- Never claim averages without standard deviation
- Coefficient of variation is your friend
- A hypothesis is helpful
- \* Use some existing software for calculations (e.g. R)
- Graphs are ok

#### Sources

- http://www.graphpad.com/support/faqid/1089/
- http://statswithcats.wordpress.com/
- http://www.psychstat.missouristate.edu/introbook/sbk06m.htm
- http://www.usablestats.com
- http://www.statcan.gc.ca/edu/
- http://wikipedia.org
- http://www.statpac.com