
 

Hasso Plattner Institute  Operating Systems and Middleware Group 

Dr. Peter Tröger, Frank Feinbube 

Parallel Programming Concepts  
WS 2013 / 2014 

Assignment 6 (Submission deadline: Feb 17th 2014, 23:59 CET) 

 

General Rules 
The assignment solutions have to be submitted at: 

https://www.dcl.hpi.uni-potsdam.de/submit/ 

Our automated submission system is intended to give you feedback about the validity of your file 

upload. A submission is considered as accepted if the following rules are fulfilled: 

 You did not miss the deadline. 

 Your file upload can be decompressed with a zip / tar decompression tool. 

 Your submitted solution contains only the source code files and a Makefile for Linux 2.6 64-bit. 

Please leave out any Git / Mercurial repository clones or SVN / CVS meta-information. 

 Your solution can be compiled using the “make” command, without entering a separate sub-

directory after decompression. 

 You program runs without expecting any kind of keyboard input or GUI interaction. 

 Our assignment-specific validation script accepts your program output / generated files. 

If something is wrong, you will be informed via email (console output, error code). Re-uploads of 

corrected solutions are possible until the deadline.  

Every task that you solve correctly in this assignment compensates for a full assignment that you 

missed / failed. Documentation should be done inside the source code. 

Students can submit solutions either alone or as team of max 2 persons. 

Assignment 6 
This assignment covers a variety of challenging parallel problems. It fulfills two purposes: 

1. To challenge your parallel programing skills and demonstrate your deep understanding. 
2. To compensate for assignments that were missed / failed at. 

 

Documentation should be done inside the source code.  

https://www.dcl.hpi.uni-potsdam.de/submit/


 

Hasso Plattner Institute  Operating Systems and Middleware Group 

Dr. Peter Tröger, Frank Feinbube 

Task 6.1: Heat Map with everything available 

Implement the heat map example using all available hardware resources (CPUs and GPUs). The goal is 

to minimize the execution time of the complete simulation. You are free to use any programming 

language / model. 

Input 

As always your application has to be named “heatmap” and needs to accept five parameters:  

Example:  

./heatmap 20 7 17 hotspots.csv 

./heatmap 20 7 17 hotspots.csv coords.csv 

The student achieving the lowest average runtime will be announced in the lecture. 

 

Task 6.2: Petri Net Simulation with Erlang 

Implement an Erlang module which simulates the following Petri Net1 using Erlang’s parallelization 

features. It represents a simple producer-consumer setup. 

 

The firings of transitions should be atomic events. All transitions in the model depicted above have the 

same priority. Make sure your implementation is starvation-free. Although for this task you only have 

to implement this petri-net, please design your solution in a way that supports arbitrary petri nets. 

You can compile and run it from the command line as follows: 

>> erlc petrinet.erl 

>> erl –run petrinet simulate 180 marking.csv 

erlc creates Erlang bytecode, producing a .beam file. Make sure to keep this .beam file up to date 

when testing your program. 

Input 

Your module must be named "petrinet" with a function named "simulate" of arity 1 (i.e., accepting a 

                                                           
1 http://embedded.eecs.berkeley.edu/Research/hsc/class.F03/ee249/discussionpapers/PetriNets.pdf 

http://embedded.eecs.berkeley.edu/Research/hsc/class.F03/ee249/discussionpapers/PetriNets.pdf


 

Hasso Plattner Institute  Operating Systems and Middleware Group 

Dr. Peter Tröger, Frank Feinbube 

list of command line arguments). It must accept two command line parameters: The simulation time 

in seconds and the path to a file containing the initial marking. 

Example:  

erl –run petrinet simulate 3 marking.csv 

The marking file contains a comma-separated list of natural numbers defining the markings of the 
places, e.g. (as shown in the picture): 

Example content of marking.csv: 

1,0,0,1,0,0 

Output 

After running for the requested number of seconds, your program must produce a file named 

output.csv which contains the comma-separated markings of all places after the simulation. 

Example content of output.csv: 

0,1,0,0,1,271828 

 

Task 6.3: Wator with Scala Actors – No Global Barrier Edition 

Modify your parallel solution of the Wator example of Assignment 5 so that no global barrier is needed, 

while the concept of simulation rounds is kept. This should be realized by letting each cell keep a 

history of states from earlier simulation time stamps. 

 

Task 6.4: Cooperative Hybrid Computing of Tensor Products 
In Quantum Mechanics as well as Quantum Computing, the state of a system is described as a vector 

of complex values. When two or more quantum systems are to be combined, a special mathematical 

operation is performed to combine the corresponding state vectors. This operation is known as the 

Tensor Product of Vectors2 (or Kronecker Product). Other applications include systems theory, matrix 

calculus, matrix equations, etc. 

Given two vectors, 

𝐴 = [

𝑎0

𝑎1

𝑎2

𝑎3

]  𝑎𝑛𝑑 𝐵 = [

𝑏0

𝑏1

𝑏2

𝑏3

], 

The tensor product of 𝐴 and 𝐵 is defined as: 

                                                           
2 Tensor Product of Vectors 

http://en.wikipedia.org/wiki/Kronecker_product
http://en.wikipedia.org/wiki/Tensor_product#Tensor_product_of_linear_maps


 

Hasso Plattner Institute  Operating Systems and Middleware Group 

Dr. Peter Tröger, Frank Feinbube 

𝐴⨂𝐵 = [

𝑎0

𝑎1

𝑎2

𝑎3

]⨂ [

𝑏0

𝑏1

𝑏2

𝑏3

] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑎0 ⋅ [

𝑏0

𝑏1

𝑏2

𝑏3

]

𝑎1 ⋅ [

𝑏0

𝑏1

𝑏2

𝑏3

]

𝑎2 ⋅ [

𝑏0

𝑏1

𝑏2

𝑏3

]

𝑎3 ⋅ [

𝑏0

𝑏1

𝑏2

𝑏3

]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑎0𝑏0

𝑎0𝑏1

𝑎0𝑏2

𝑎0𝑏3

𝑎1𝑏0

𝑎1𝑏1

𝑎1𝑏2

𝑎1𝑏3

𝑎2𝑏0

𝑎2𝑏1

𝑎2𝑏2

𝑎2𝑏3

𝑎3𝑏0

𝑎3𝑏1

𝑎3𝑏2

𝑎3𝑏3]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If 𝐴 is of size 𝑚, and 𝐵 is size 𝑛, the vector resulting from the tensor product is of size 𝑚𝑛. Therefore, 

the size of the output vector grows very fast, even for moderately sized input vectors. 

In this exercise you’ll implement a CUDA kernel that computes a tensor product of two vectors (for the 

purpose of this exercise, the vectors will be real valued – represented by double precision floating 

point data type). The primary objective of the exercise is to introduce asynchronous Device to Host 

memory transfer using CUDA streams. For a dataset that is too big to fit into the Device memory, it 

must be divided into partitions. Partitions are then processed one at a time. Once a partition has been 

processed, the corresponding output vector must be transferred to the Host, and the Device memory 

for the output must be de-allocated to make room for the next partition. The default D2H memory 

transfer in CUDA is synchronous, i.e., the memory transfer must complete before the next partition 

can be processed. In this exercise, however, you must use asynchronous D2H memcpy. 

Once the output vector of a partition has been copied to the Host, it must extract the maximum value 

of the data. The asynchronous D2H memcpy can be used to overlap the memcpy and maximum 

acquisition. 

Note: Partitions will be required for the result of the tensor product. 

Input 

Your program has to be named “tensorproduct” and needs to accept one parameter indicating the 

input file with two input matrixes. 

Example:  

./tensorproduct input.txt 

The first column belongs to the first vector; the second column belongs to the second vector. 

Example content of the input.txt: 

-2.6186146828319088e+000 -2.8832025844288403e+000 

-2.6622582608791072e+000 -2.8262222961990213e+000 



 

Hasso Plattner Institute  Operating Systems and Middleware Group 

Dr. Peter Tröger, Frank Feinbube 

Output 

The program must terminate with exit code 0 and has to produce an output file with the name 

“output.txt” in the same directory. The “output.txt” has to contain the maximum value in the result 

vector. 

Example content of the output.txt: 

-7.5499966211642673e+000 

 

Task 6.5: Cycles of War with Scala 

The Operating Systems and Middleware Group features a simulation of artificial intelligences 

competing over the restricted resources of a small sandbox universe. 

 

The full implementation can be accessed here:  

svn://code.hpi.uni-potsdam.de/cyclesofwar 

The README file describes the whole game and how new bots can be contributed. Your mission, 

should you accept it, is to implement the core of the simulation (rules, training bots, tournaments, NO 

GUI) on Scala. 

 

 


