

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Parallel Programming Concepts
WS 2013 / 2014

Assignment 5 (Submission deadline: Jan 27th 2014, 23:59 CET)

General Rules
The assignment solutions have to be submitted at:

https://www.dcl.hpi.uni-potsdam.de/submit/

Our automated submission system is intended to give you feedback about the validity of your file

upload. A submission is considered as accepted if the following rules are fulfilled:

 You did not miss the deadline.

 Your file upload can be decompressed with a zip / tar decompression tool.

 Your submitted solution contains only the source code files and a Makefile for Linux 2.6 64-bit.

Please leave out any Git / Mercurial repository clones or SVN / CVS meta-information.

 Your solution can be compiled using the “make” command, without entering a separate sub-

directory after decompression.

 You program runs without expecting any kind of keyboard input or GUI interaction.

 Our assignment-specific validation script accepts your program output / generated files.

If something is wrong, you will be informed via email (console output, error code). Re-uploads of

corrected solutions are possible until the deadline.

50% must be solved correctly in order to pass the assignment. Documentation should be done inside

the source code.

Students can submit solutions either alone or as team of max 2 persons.

Assignment 5
This assignment covers Programming for Shared Nothing systems with the Message Passing Interface
(MPI) and Scala Actors. For the MPI tasks, your Makefile has to compile your sources with „mpicc“. The
MPI stack on the test machine is OpenMPI 1.4.3.

Two out of four tasks must be solved correctly in order to pass the assignment. Documentation should

be done inside the source code.

https://www.dcl.hpi.uni-potsdam.de/submit/

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Task 5.1: Heat Map with MPI

Implement a program that simulates heat distribution on a two-dimensional field. The simulation is

executed in rounds. The field is divided into equal-sized blocks. Initially some of the blocks are cold

(value=0), some other blocks are active hot spots (value=1). The heat from the hot spots then transfers

to the neighbor blocks in each of the rounds, which changes their temperature value.

A round is computed as follows:

1. The value of the hot spot fields may be set to 1 again, depending on the live time of the hot

spot during a given number of rounds.

2. The new value for each block per round is computed by getting the values of the eight direct

neighbor blocks from the last round. The new block value is the average of these values and

the own block value from the last round. Blocks on the edges of the field have neighbor blocks

outside of the fields, which should be considered to have the value 0.

You have to develop a parallel application for this simulation in C / C++ using MPI. The goal is to

minimize the execution time of the complete simulation. Specific optimizations for the given test

hardware are not allowed, since we may have to opportunity to run your code on some larger system

for the performance comparison.

Input

Your application has to be named “heatmap” and needs to accept five parameters:

 The width of the field in number of blocks.

 The height of the field in number of blocks.

 The number of rounds to be simulated.

 The name of a file (in the same directory) describing the hotspots.

 The name of a file (in the same directory) containing coordinates. This is the only optional

parameter. If it is passed, only the values at the indicated coordinates (starting at (0, 0) in the

upper left corner) are to be written to the output file.

Example:

mpirun --cpus-per-proc 2 -np 16 heatmap 20 7 17 hotspots.csv

mpirun -np 32 heatmap 20 7 17 hotspots.csv coords.csv

The hotspots file has the following structure:

 The first line can be ignored.

 All following lines describe one hotspot per line. The first two values indicate the position in

the heat field (x, y). The hot spot is active from a start round (inclusive), which is indicated by

the third value, to an end round (exclusive!), that is indicated by the last value of the line.

Example content of hotspots.csv:

x,y,startround,endround

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

5,2,0,20

15,5,5,15

With such an input file, you have to run a simulation of 17 rounds on a 20x7 field with two hotspots.

The first one will be located at the coordinates (5, 2) and will be active from the first round to last

round (and beyond). The second hotspot will be located at the coordinates (15, 5) and will be active

starting from round 5. Starting from round 15, it will no longer be active. The starting round is inclusive,

the final round is exclusive. We start counting at 0. So the first hotspot will be active at round

0,1,2…18,19; the second hotspot will be active at round 5,6,7,…13,14.

Example content of coords.csv:

x,y

5,2

10,5

With such a coordinate file, you only have to provide the values at the coordinates (5, 2) and (10, 5)

as part of the output file.

Output

The program must terminate with exit code 0 and has to produce an output file with the name

“output.txt” in the same directory.

If your program was called without a coordinate file, then this file represents the resulting field after

simulation termination. The values in the field are encoded in the following way:

 A block with a value larger than 0.9 has to be represented as “X”.

 All other values must be increased by 0.09. From the resulting value, the first digit after the

decimal point is added to the output picture.

Example content of “output.txt” without coordinate file

11112221111111111100

11123432111111111110

11124X42211111111111

11124442111111222111

11122222111112222211

11111211111112232211

01111111111111222111

If your program was called with a coordinate file, then this file simply represents the list of exact values

requested through the coordinate file.

Example content of “output.txt” with coordinate file

1.0

0.03056341073335933

The student achieving the lowest average runtime will be announced in the lecture.

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Task 5.2: MPI Collective

Implement a parallel MPI program that computes the integer-precision average and the double-
precision average of a given set of double values at the same time.

The integer-precision average are to be calculated based on the integer versions of the input values.
They are to be computed by reading the double values from an input file, converting them with floor()
and casting them to int. The double-precision average can be computed directly using the input values.

Your program is only allowed to use collective MPI operations for the coordination of the parallel
computation. MPI_Send and MPI_Receive (and their variations) are disallowed.

Input

Your application has to be named „mpiavg“ and hast to accept three parameters:

 The file name of the data file that contains the input numbers.

 The number of MPI ranks to be used for the integer-precision average computation.

 The number of MPI ranks to be used for the double-precision average computation.

The data file is in the current working directory of the program. It contains one double value per line

(“4.84637”).

We will run your application as follows, with variations in the numerical parameters:

Example: mpirun --cpus-per-proc 2 -np 16 mpiavg data.txt 7 9

Example content of “data.txt”

5.666

4.3234

7.3434

2.434

1.0

Output

The program must terminate with exit code 0 and has to produce an output file with the name

“output.txt” in the same directory. That file has to contain two double numbers: first the integer-

precision average, and then the float-precision average.

Example content of “output.txt”

3.800000

4.153360

Validation

The solution is considered to be correct if all given MPI ranks are used and if the application produces

correct results. We will evaluate your solution with different data amounts and comm sizes.

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Task 5.3: Wator with Scala Actors

In this assignment, you should develop an implementation of the Wator1 simulation game in Scala. The
game rules should be implemented as described on the web page. The game field consists of n x n
grid of cells, modeling an ocean. Each cell can either contain water, a fish, or a shark. The initial
distribution of sharks and fish on the grid should be random. The simulation runs in rounds
(“generations”). The evaluation order per generation is implementation-specific.

Develop a command-line program in Scala, which implements the simulation. Start with a serial
version. The code should iterate over an ocean grid data structure and check each cell for its content
and the appropriate activity.

Test you code with fixed initial distributions, e.g. were 1/3 of the ocean space is filled with fish, 1/3
with sharks and 1/3 with water. Step through your simulation with very small sizes, to make sure that
the rules are implemented correctly. Measure the generation rate per second with different grid sizes
/ parameter constants (see “Rules of the Game”) and a random initial distribution.

Modify your code so that the simulation parallelizes with Scala2. The goal is to maximize the number
of generations being computed per second.

In order to coordinate the execution, implement a global barrier for all activities that marks the end of
the current simulation generation computation. Measure the generation rate per second with same
configurations as for your serial version. What is the performance difference to the serial version with
different parameters settings? Think about the way how the simulation semantics change by the
parallel implementation. Document you thoughts shorty using the web interface.

Rules of the Game

Fishes and sharks follow specific rules for their activity per simulation round. The grid should be

understood as a flattened torus, meaning that the upper border is connected to the lower border, and

the left border is connected to the right border. It is therefore not possible to leave the ocean alive.

A fish first checks the surrounding cells in random (!) order, and moves to the first identified free

neighbor cell. Every fish has an egg counter that increases by one each simulation round. If a pre-

defined number of eggs is reached, a new fish is born on the first identified free neighbor cell, and the

egg counter is reset. If no cell is free, no new fish is born, and the egg counter remains the same.

A shark first checks the surrounding cell in random order. If a fish is found on a neighbor cell, the shark

moves to this cell and eats the fish. If no food is available, the shark just moves to a free neighbor field.

Every shark has a starvation counter, which increases with each round. If a pre-defined constant limit

for the starvation counter is reached, the shark dies. New sharks appear under the same model as the

fishes.

Both, the fish and the shark egg time limit and the starvation counter limit should be parameters to

your application.

1 http://de.wikipedia.org/wiki/Wator
2 www.scala-lang.org/docu/files/ScalaByExample.pdf

http://de.wikipedia.org/wiki/Wator
http://www.scala-lang.org/docu/files/ScalaByExample.pdf

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Parallelization Strategies

There are different parallelization strategies, for example:

 Each fish, resp. shark is modeled by an actor.

 Each cell is modeled by an actor.

 Groups of cells/animals are modeled by an actor.

Visualization

If you want to, you can visualize your Wator simulation through the Java graphics API, which is directly

accessible form Scala code. An imperfect code skeleton with all the necessary Java Swing initialization

is provided at:

http://www.dcl.hpi.uni-potsdam.de/teaching/parProg/wator_fragment.scala

Experiment with the synchronization between display rendering loop and simulation computation

loop. Consider the problem that Java Swing component updates are only allowed from the original

AWT event dispatching thread.

Suggestions and improvements for the provided code skeleton are welcome.

Input

Your program has to be named as “Wator” and take five arguments, an input file indicating the initial

setup of the world, the number of rounds the simulation should run, the egg time limit for the fish, the

egg time limit for the sharks, and the starvation time for the sharks. The input file is a text file

containing only one of the three letters: w (for water), f (for fish), and s (for a shark. Each column of

the file represents a column in the world; each line in the file represents a row in the world. The

number of columns will always be equal to the number of rows. (As the game is played on a torus there

are no cells outside of the field.)

Example: scala -classpath . Wator world.txt 99 10 20 5

Content of world.txt:

wfww

wwsw

wffw

wfwf

Output

The program must terminate with exit code 0 and produce an output file with the name of “output.txt”

in the same directory. This file has to have the same format as the input file.

Example content of output.txt (actual result depends on chance):

wwww

wwww

wwww

wwww

http://www.dcl.hpi.uni-potsdam.de/teaching/parProg/wator_fragment.scala

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Task 5.4: NQueens with Scala

Implement an NQueens3 solver using Scala. You can use every parallelization strategy and every

parallel concept supported by Scala you like.

Your program has to calculate the number of ways to arrange N non-attacking queens on an N x N

board. In a valid solution, no two queens can occupy the same column, row or diagonal.

For a regular chessboard there are 92 distinct solutions. This is one of them:

Input

Your program has to be named “nqueens” and has to take one argument: the number of queens. This

number is equal to the number of rows and columns of the board the queens are to be placed on.

Example: ./nqueens 8

Output

Your program must terminate with exit code 0 and produce an output file with the name “output.txt”

in the same directory containing the number of valid distinct solutions to place the queens on an

according board.

Example content of “output.txt”:

92

3 http://jsomers.com/nqueen_demo/nqueens.html

http://jsomers.com/nqueen_demo/nqueens.html

