

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Parallel Programming Concepts
WS 2013 / 2014

Assignment 3 (Submission deadline: Dec 8th 2013, 23:59 CET)

General Rules
The assignment solutions have to be submitted at:

https://www.dcl.hpi.uni-potsdam.de/submit/

Our automated submission system is intended to give you feedback about the validity of your file

upload. A submission is considered as accepted if the following rules are fulfilled:

 You did not miss the deadline.

 Your file upload can be decompressed with a zip / tar decompression tool.

 Your submitted solution contains only the source code files and a Makefile for Linux 2.6 64-

bit. Please leave out any Git / Mercurial repository clones or SVN / CVS meta-information.

 Your solution can be compiled using the “make” command, without entering a separate sub-

directory after decompression.

 You program runs without expecting any kind of keyboard input or GUI interaction.

 Our assignment-specific validation script accepts your program output / generated files.

If something is wrong, you will be informed via email (console output, error code). Re-uploads of

corrected solutions are possible until the deadline.

50% must be solved correctly in order to pass the assignment. Documentation should be done inside

the source code.

Students can submit solutions either alone or as team of max 2 persons.

Assignment 3
The third assignment covers OpenMP in shared memory systems. OpenMP-enabled compilers should

be available in all modern development systems, such as with the default compiler under Linux and

MacOS X (gcc –fopenmp)

Two out of three tasks must be solved correctly in order to pass the assignment. Documentation

should be done inside the source code.

https://www.dcl.hpi.uni-potsdam.de/submit/

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Task 3.1: Heat Map with OpenMP

Implement a program that simulates heat distribution on a two-dimensional field. The simulation is

executed in rounds. The field is divided into equal-sized blocks. Initially some of the blocks are cold

(value=0), some other blocks are active hot spots (value=1). The heat from the hot spots then

transfers to the neighbor blocks in each of the rounds, which changes their temperature value.

A round is computed as follows:

1. The value of the hot spot fields may be set to 1 again, depending on the live time of the hot

spot during a given number of rounds.

2. The new value for each block per round is computed by getting the values of the eight direct

neighbor blocks from the last round. The new block value is the average of these values and

the own block value from the last round. Blocks on the edges of the field have neighbor

blocks outside of the fields, which should be considered to have the value 0.

You have to develop a parallel application for this simulation in C / C++ or Fortran, which only uses

OpenMP. The goal is to minimize the execution time of the complete simulation. Specific

optimizations for the given test machine (such as a fixed number of pinned threads) are not allowed,

since we may have to opportunity to run your code on some larger computer cluster for the

performance comparison.

Input

Your application has to be named “heatmap” and needs to accept five parameters:

 The width of the field in number of blocks.

 The height of the field in number of blocks.

 The number of rounds to be simulated.

 The name of a file (in the same directory) describing the hotspots.

 The name of a file (in the same directory) containing coordinates. This is the only optional

parameter. If it is passed, only the values at the indicated coordinates (starting at (0, 0) in the

upper left corner) are to be written to the output file.

Example: ./heatmap 20 7 17 hotspots.csv

 ./heatmap 20 7 17 hotspots.csv coords.csv

The hotspots file has the following structure:

 The first line can be ignored.

 All following lines describe one hotspot per line. The first two values indicate the position in

the heat field (x, y). The hot spot is active from a start round (inclusive), which is indicated by

the third value, to an end round (exclusive!), that is indicated by the last value of the line.

Example content of hotspots.csv:

x,y,startround,endround

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

5,2,0,20

15,5,5,15

With such an input file, you have to run a simulation of 17 rounds on a 20x7 field with two hotspots.

The first one will be located at the coordinates (5, 2) and will be active from the first round to last

round (and beyond). The second hotspot will be located at the coordinates (15, 5) and will be active

starting from round 5. Starting from round 15, it will no longer be active. The starting round is

inclusive, the final round is exclusive. We start counting at 0. So the first hotspot will be active at

round 0,1,2…18,19; the second hotspot will be active at round 5,6,7,…13,14.

Example content of coords.csv:

x,y

5,2

10,5

With such a coordinate file, you only have to provide the values at the coordinates (5, 2) and (10, 5)

as part of the output file.

Output

The program must terminate with exit code 0 and has to produce an output file with the name

“output.txt” in the same directory.

If your program was called without a coordinate file, then this file represents the resulting field after

simulation termination. The values in the field are encoded in the following way:

 A block with a value larger than 0.9 has to be represented as “X”.

 All other values must be increased by 0.09. From the resulting value, the first digit after the

decimal point is added to the output picture.

Example content of “output.txt” without coordinate file

11112221111111111100

11123432111111111110

11124X42211111111111

11124442111111222111

11122222111112222211

11111211111112232211

01111111111111222111

If your program was called with a coordinate file, then this file simply represents the list of exact

values requested through the coordinate file.

Example content of “output.txt” with coordinate file

1.0

0.03056341073335933

The student achieving the lowest average runtime will be announced in the lecture.

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Task 3.2: Decrypt with OpenMP

Develop an OpenMP-based command line tool that performs a brute-force dictionary attack on Unix

crypt(3) passwords. An example password file to be attacked is available at:

http://www.dcl.hpi.uni-potsdam.de/teaching/parProg/taskCryptPw.txt

Each line of the password file contains the username and the encrypted password, separated by the

character “:”. Your program can use the example dictionary file available at:

http://www.dcl.hpi.uni-potsdam.de/teaching/parProg/taskCryptDict.txt

One of the users has a password exactly matching one dictionary entry. A second user has a

password build from one of the dictionary entries plus a single number digit (0-9) attached, e.g.

“Abakus5”.

It is recommended to start with a serial version of your program, and add the OpenMP parallelization

as the last step.

Please note that the first two characters of the encrypted password string in taskCryptpw.txt are the

salt string used in the original encryption process. A correct solution therefore splits the encrypted

password string into salt and encryption payload, calls some crypt(3) implementation with the salt

and all of the dictionary entries, and checks if one of the crypt results matches with an entry from the

user list.

Input

Your program has to be named “decrypt” and has to take two arguments, the name of the password

file as the first and the name of the dictionary file as the second command line argument.

Example: ./decrypt ../../taskCryptPw.txt ./../taskCryptDict.txt

Output

The program must terminate with exit code 0 and produce an output file with the name “output.txt”

in the same directory. This file has to contain nothing but the users whose passwords could be

decrypted with the dictionary. Each line of the result file has to be a combination of username and

decrypted password, separated by semicolon:

User01;pass

User02;Abakus5

Submit a compressed archive with the OpenMP sources as a solution. Beside the source code, the

archive can also contain a file named “taskCryptSolution.txt” with the cracked users for the example

data. In this case the validation step will tell you if you found the right ones. Please do not let the

validation machine perform the cracking of the example data, since this may take several hours.

http://www.dcl.hpi.uni-potsdam.de/teaching/parProg/taskCryptPw.txt
http://www.dcl.hpi.uni-potsdam.de/teaching/parProg/taskCryptDict.txt

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Task 3.3: Worley Noise with OpenMP

Besides Perlin Noise and Simplex Noise, Worley Noise1 aka “Cell Noise” is one of the fundamental

ways to create beautiful realistic textures for games and simulations.

Your task is to use OpenMP to parallelize this Open Source Cell Noise implementation:

https://code.google.com/p/fractalterraingeneration/downloads/detail?name=CellNoise.1.0.cpp

Develop an OpenMP-based command line tool that performs a Worley Noise calculation and saves

the resulting picture to a Bitmap-File. (The code that can be found at the Url already produces such a

file. All you have to do is to parallelize it using OpenMP and use the parameters that we are passing

to your program.)

Input

Your program has to be named “worley” and has to take two arguments, the width and the height of

the image that is produced.

Example: ./worley 1000 1000

Output

The program must terminate with exit code 0 and produce an output file with the name

“output.bmp” in the same directory.

Further Remarks

In order to allow for larger picture sizes, you need to put the map on the heap instead of the stack:

float* map = (float*)malloc(sizeof(float)*hgrid*vgrid);

…

void fillMap(float* map, float &min, float &max)

…

map[x + y * hgrid] = total;

map[j + i * hgrid] -= min;

…

1 If you want to toy around with a noise generator, check out: http://aftbit.com/cell-noise-2/

https://code.google.com/p/fractalterraingeneration/downloads/detail?name=CellNoise.1.0.cpp&can=2&q=
http://aftbit.com/cell-noise-2/

