

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Parallel Programming Concepts
WS 2013 / 2014

Assignment 2 (Submission deadline: Nov 25th 2013, 23:59 CET)

General Rules
The assignment solutions have to be submitted at:

https://www.dcl.hpi.uni-potsdam.de/submit/

Our automated submission system is intended to give you feedback about the validity of your file

upload. A submission is considered as accepted if the following rules are fulfilled:

 You did not miss the deadline.

 Your file upload can be decompressed with a zip / tar decompression tool.

 Your submitted solution contains only the source code files and a Makefile for Linux 2.6 64-

bit. Please leave out any Git / Mercurial repository clones or SVN / CVS meta-information.

 Your solution can be compiled using the “make” command, without entering a separate sub-

directory after decompression.

 You program runs without expecting any kind of keyboard input or GUI interaction.

 Our assignment-specific validation script accepts your program output / generated files.

If something is wrong, you will be informed via email (console output, error code). Re-uploads of

corrected solutions are possible until the deadline.

50% must be solved correctly in order to pass the assignment. Documentation should be done inside

the source code.

Students can submit solutions either alone or as team of max 2 persons.

Assignment 2
The second assignment introduces our heat map example. We will re-use the same scenario also in

future assignments about shared memory programming, distributed memory programming and

accelerator programming.

https://www.dcl.hpi.uni-potsdam.de/submit/

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Task 2.1: Heat Map with Threads

Implement a program that simulates heat distribution on a two-dimensional field. The simulation is

executed in rounds. The field is divided into equal-sized blocks. Initially some of the blocks are cold

(value=0), some other blocks are active hot spots (value=1). The heat from the hot spots then

transfers to the neighbor blocks in each of the rounds, which changes their temperature value.

The new value for each block per round is computed by getting the values of the eight direct

neighbor blocks from the last round. The new block value is the average of these values and the own

block value from the last round. Blocks on the edges of the field have neighbor blocks outside of the

fields, which should be considered to have the value 0. When all block values are computed in a

round, the value of the hot spot fields may be set to 1 again, depending on the live time of the hot

spot during a given number of rounds.

You have to develop a parallel application for this simulation in C or C++, which only uses the POSIX

pthread API1. Additional threading libraries, such as OpenMP, or the C++ 11 concurrency features are

not allowed. The goal is to minimize the execution time of the complete simulation. Specific

optimizations for the given test machine (such as a fixed number of pinned threads) are not allowed

and will lead to a fail grade in the assignment.

Input

Your application has to be named “heatmap” and needs to accept five parameters:

 The width of the field in number of blocks.

 The height of the field in number of blocks.

 The number of rounds to be simulated.

 The name of a file (in the same directory) describing the hotspots.

 The name of a file (in the same directory) containing coordinates. This is the only optional

parameter. If it is passed, only the values at the indicated coordinates (starting at (0, 0) in the

upper left corner) are to be written to the output file.

Example: ./heatmap 20 7 17 hotspots.csv

 ./heatmap 20 7 17 hotspots.csv coords.csv

The hotspots file has the following structure:

 The first line can be ignored.

 All following lines describe one hotspot per line. The first two values indicate the position in

the heat field (x, y). The hot spot is active from a start round (inclusive), which is indicated by

the third value, to an end round (exclusive!), that is indicated by the last value of the line.

Example content of hotspots.csv:

x,y,startround,endround

1
 man pthread

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

5,2,0,20

15,5,5,15

With such an input file, you have to run a simulation of 17 rounds on a 20x7 field with two hotspots.

The first one will be located at the coordinates (5, 2) and will be active from the first round to last

round (and beyond). The second hotspot will be located at the coordinates (15, 5) and will be active

starting from round 5. Starting from round 15, it will no longer be active. The starting round is

inclusive, the final round is exclusive. We start counting at 0. So the first hotspot will be active at

round 0,1,2…18,19; the second hotspot will be active at round 5,6,7,…13,14.

Example content of coords.csv:

x,y

5,2

10,5

With such a coordinate file, you only have to provide the values at the coordinates (5, 2) and (10, 5)

as part of the output file.

Output

The program must terminate with exit code 0 and has to produce an output file with the name

“output.txt” in the same directory.

If your program was called without a coordinate file, then this file represents the resulting field after

simulation termination. The values in the field are encoded in the following way:

 A block with a value larger than 0.9 has to be represented as “X”.

 All other values must be increased by 0.09. From the resulting value, the first digit after the

decimal point is added to the output picture.

Example content of “output.txt” without coordinate file

11112221111111111100

11123432111111111110

11124X42211111111111

11124442111111222111

11122222111112222211

11111211111112232211

01111111111111222111

If your program was called with a coordinate file, then this file simply represents the list of exact

values requested through the coordinate file.

Example content of “output.txt” with coordinate file

1.0

0.03056341073335933

The student achieving the lowest average runtime will be announced in the lecture.

Hasso Plattner Institute Operating Systems and Middleware Group

Dr. Peter Tröger, Frank Feinbube

Task 2.2: Parallel Grep with Java Monitors

Develop a Java-based command line tool that searches a file for given strings. The program gets two

files as command-line arguments. The first file contains the list of search strings, the second file

contains the data to be analyzed.

The first step is to read both files completely into memory (yes, normally you wouldn‘t do that). After

that, the program spawns a number of threads. These threads count the number of occurrences of

the given strings in the text. The result is then written to a shared data structure, the output list.

Use the Monitor concept and condition variables in order to realize this solution. The idea is that

there is a central class with a critical method that looks like this, executed by each thread:

void lookforit() {

 // get string to search for

 // look for the string in buffer

 // write string to result list

}

Input

Your program has to be named “pargrepmon” and has to take two arguments, a search string file

path and a input data file path:

java –jar pargrepmon.jar /tmp/strings.txt /tmp/input.txt

The search strings file contains one search string per line.

Output

The program must terminate with exit code 0 and produce an output file with the name “output.txt”

in the same directory. This file has to contain nothing but the search strings and number of their

occurrences in the input document as semicolon separated values:

abc;3

def;10

