Parallel Programming Concepts
WS 2013 / 2014

General Rules

The assignment solutions have to be submitted at:

Our automated submission system is intended to give you feedback about the validity of your file
upload. A submission is considered as accepted if the following rules are fulfilled:

*  You did not miss the deadline.

* Your file upload can be decompressed with a zip / tar decompression tool.

*  Your submitted solution contains only the source code files and a Makefile for Linux 2.6 64-
bit. Please leave out any Git / Mercurial repository clones or SVN / CVS meta-information.

*  Your solution can be compiled using the “make” command, without entering a separate sub-
directory after decompression.

*  You program runs without expecting any kind of keyboard input or GUl interaction.

*  QOur assignment-specific validation script accepts your program output / generated files.

If something is wrong, you will be informed via email (console output, error code). Re-uploads of
corrected solutions are possible until the deadline.

50% must be solved correctly in order to pass the assignment. Documentation should be done inside
the source code.

Students can submit solutions either alone or as team of max 2 persons.

Assignment 1

The first assignment covers the usage of basic synchronization primitives in a thread-based shared
memory system. You have to solve the given programming exercises in C / C++ with the POSIX
PThread API. Additional threading libraries are not allowed for this assignment.

1
man pthread

Hasso Plattner Institute Operating Systems and Middleware Group
Dr. Peter Troger, Frank Feinbube



Implement a program that sums up a range of numbers in parallel. The general algorithmic problem
is called “parallel reduction”.

Your application has to be named “parsum” and accept three parameters: The number of threads to
use, the start index and the end index (64bit numbers) of the range to compute. For example, the
command line

Example: ./parsum 30 1 10000000000

has to result in a parallel summation of the numbers 1,2,...,10.000.000.000, based on 30 threads
running in parallel.

Your program has to produce an output file with the name “output.txt” in the same directory. This
file has to contain only the computed sum.

The solution is considered correct if a true parallelized computation takes place (no Gauss please), if
the solution scales based on the number of threads, and if the application produces correct results
for all inputs. We will evaluate your solution with different thread counts / summation ranges.

Implement the dining philosophers with a freely chosen deadlock-free solution strategy.

Each philosopher has to be represented by a thread. You are free to map also other stake holders
(e.g. waiters) or resources (e.g. forks) to threads if necessary.

Your application has to be named “dinner” and accept two parameters, the number of philosophers
resp. forks (min. 3) and the maximum run time in seconds.

Example: ./dinner 3 10

After the given run time is exceeded, the program must terminate with exit code 0 and produce an
output file with the name of “output.txt” in the same directory. This file has to contain nothing but
the number of “feedings” per philosopher as semicolon separated values.

Example: 5000;5000;5000

2 http://en.wikipedia.org/wiki/Dining_philosophers_problem

Hasso Plattner Institute Operating Systems and Middleware Group
Dr. Peter Troger, Frank Feinbube



