
Parallel Programming Concepts

Theory of Concurrency - Multicomputer

Peter Tröger

ParProg | Theory PT 2010

Von Neumann Model

2

• Processor executes a sequence of
instructions, which specify

• Arithmetic operation

• Memory to be read / written

• Address of next instruction

• Software layering tackles
complexity of instruction stream

• Parallelism adds coordination
problem between multiple
instruction streams being
executed

ProcessProcessProcessProcessProcess

Processor

ProcessProcessProcessProcessProcess

Processor

Processor

Processor

Memory

• Pipelining
• Super-scalar
• VLIW
• Branch

prediction
• ...

ParProg | Theory PT 2010

Terminology

• Concurrency

• Supported to have two or more actions in progress at the same time

• Classical operating system responsibility
(resource sharing for better utilization of CPU, memory, network, ...)

• Demands scheduling and synchronization

• Parallelism

• Supported to have two or more actions executing simultaneously

• Demands parallel hardware, concurrency support, (and communication)

• Programming model relates to chosen hardware / communication approach

• Examples: Windows 3.1, threads, signal handlers, shared memory

3

ParProg | Theory PT 2010

History

• 1963: Co-Routines concept by Melvin Conway

• Foundation for message-based concurrency concepts

• Late 1970‘s

• Parallel computing moved from shared memory towards multicomputers

• Dijkstra / Hoare / Hansen worked on different according abstractions

• 1975, Concept of „recursive non-deterministic processes“ by Dijkstra

• Generator concept, foundation for Hoare‘s work on
Communicating Sequential Processes (CSP)

• 1978, Distributed Processes: A Concurrent Programming Concept, B. Hansen

• Synchronized procedure called by one process and executed by another

• Foundation for RPC variations in Ada and other languages

4

ParProg | Theory PT 2010

Co-Routines

• Conway, Melvin E. (1963). "Design of a Separable Transition-Diagram
Compiler". Communications of the ACM (New York, NY, USA: ACM) 6 (7): 396–
408. doi:10.1145/366663.366704.

• Routines can suspend (yield)
and resume in their execution

• Co-routines that always yield
new results are also called
generators

• Good for concurrent, not for
parallel programming

• Foundation for theoretical and
practical message passing concepts

• Broad language support today

5

var q := new queue

coroutine produce

 loop

 while q is not full

 create some new items

 add the items to q

 yield to consume

coroutine consume

 loop

 while q is not empty

 remove some items from q

 use the items

 yield to produce

http://en.wikipedia.org/wiki/Digital_object_identifier
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F366663.366704
http://dx.doi.org/10.1145%2F366663.366704

ParProg | Theory PT 2010

Co-Routines

• Explicit language primitive to indicate transfer of control flow - resume primitive

• Example: Chess game - classical approach demands master procedure

• detach primitive: Return to control point that initially activated the co-routine

• Co-routines allow caller / callee model to be expressed in code

6

coroutine PLAYER1;
initialize local variables
detach
while TRUE do

make a move
if game won then

print message
detach

else
resume(PLAYER2)

coroutine PLAYER2;
initialize local variables
detach
while TRUE do

make a move
if game won then

print message
detach

else
resume(PLAYER1)

ParProg | Theory PT 20107

Communicating Sequential Processes

• Developed by Tony Hoare at University of Oxford from 1977

• Formal process algebra to describe concurrent systems

• Book: T. Hoare, Communicating Sequential Processes, 1985

• Basic idea

• Computer systems act and interact with the environment continuously

• Decomposition in subsystems (processes) which operate concurrently

• Interact with other processes - subsystems or the environment

• Modular approach

• Based on mathematical theory, described with algebraic laws

• Direct mapping to Occam programming language

ParProg | Theory PT 20108

CSP: Processes

• Behavior of real-world objects can be described through their interaction with
other objects, leaving out internal implementation details

• Interface of a process is described as set of atomic events

• Event examples for an ATM:

• card – insertion of a credit card in an ATM card slot

• money – extraction of money from the ATM dispenser

• Alphabet - set of relevant (!) events for the description of an object

• Event may never happen in the interaction

• Interaction is restricted to this set of events

• αATM = {card, money}

• A CSP process is the behavior of an object, described with its alphabet

ParProg | Theory PT 20109

CSP: Processes

• Event is an atomic action without duration

• Time is expressed with start/stop events, can overlap

• Timing of events is not relevant for logical correctness, but ordering

• Makes reasoning independent of execution speed and performance

• No concept of simultaneous events

• May be represented as single event, if synchronization is modeled

• STOPA

• Process with alphabet A which never engages in any of the events of A

• Expresses a non-working part of the system

ParProg | Theory PT 201010

CSP: Process Description through Prefix Notation

• (x -> P) „x then P“

• x: event, P: process

• Behavioral description of an object which first engages in x and than
behaves as described with P

• Prefix expression itself is a process (== behavior), chainable approach

• α(x -> P) = αP - Processes must have the same alphabet

• Example 1:
 (card -> STOPαATM)
 „ATM which takes a credit card before breaking“

• Quiz:
 „ATM which serves one customer and breaks while serving the second
customer“ - αATMQ={card, money}

ParProg | Theory PT 201011

CSP: Recursion

• Prefix notation may lead to long chains of repetitive behavior for the complete
lifetime of the object (until STOP)

• Solution: Self-referential recursive definition for the object

• Example: An everlasting clock object
 αCLOCK = {tick}
 CLOCK = (tick -> CLOCK)

• Enables description of an object with one single stream of behavior through
prefixing and recursion

ParProg | Theory PT 201012

CSP Process Description - Choice

• Object behavior may be influenced by the environment

• Support for multiple ‘behavior streams’ triggered by the environment

• Externally-triggered choice between two ore more events, leads to different
subsequent behavior (== processes), forms a process by itself
(x -> P | y -> Q)

• Example: Vending machine offers choice of slots for 1€ coin or 2€ coin
VM = (in1eur -> (cookie -> VM) |
 in2eur -> (cake -> VM) | crowncap -> STOP)

• | is an operator on prefix expression, not on the processes itself

ParProg | Theory PT 201013

Process Description: Pictures

• Single processes as circles, events as arrows

• Pictures may lead to problems - difficult to express equality, hard with large
or infinite number of behaviors

VM =

(in1eur -> (cookie -> VM) |

 in2eur -> (cake -> VM) |

 crowncap -> STOP)

in1eur in2eur

cookie cake

crowncap

ParProg | Theory PT 201014

Concurrency in CSP

• Process = Description of possible behavior

• Set of occurring events depends on the environment, which may also be
described as a process

• Allows to investigate a complete system, were the description is again a process

• Formal modelling of interacting processes

• Formulate events that trigger simultaneous participation of multiple processes

• Parallel combination: Process which describes a system composed of the
processes P and Q:

 P || Q α(P || Q) = αP U αQ

• Interleaving: Parallel activity with different events

ParProg | Theory PT 201015

Graphical Representation

P Q
a b

c

b d

c

P Q
a

b

c

d

(P || Q)

ParProg | Theory PT 201016

Communication in CSP

• Special class of event: communication

• Modeled as uni-directional channel, only between two processes

• Channel name is a member of the alphabets of both processes

• Described by the events c.v which are part of the processes alphabet
c: name of a channel on which communication takes place
v: value of the message being passed

• Set of all messages which P can communicate on channel c:
 α c(P) = {v | c.v ε αP}

• channel(c.v) = c, message(c.v) = v

• Input choice: (c?x -> P(x) | d?y -> Q(y))

ParProg | Theory PT 201017

Communication (contd.)

• Process which first outputs v on the channel c and then behaves like P:
(c!v -> P) = (c.v -> P)

• Process which is initially prepared to input any value x from the channel c and
then behave like P(x):
(c?x -> P(x)) = (y: {y | channel(y) = c} -> P(message(y)))

P
input channel output channel

ParProg | Theory PT 201018

Communication (contd.)

• Channel approach assumes rendezvous behavior

• Sender and receiver block on the channel operation until the message was
transmitted

• Meanwhile common concept in messaging-based concurrency approaches

• When two concurrent processes communicate with each other only over a
single channel, they cannot deadlock (see book)

• Network of non-stopping processes which is free of cycles cannot deadlock

• Acyclic graph can be decomposed into subgraphs connected only by a
single arrow

• Pipes: Processes with only one input and one output channel

• Join of two pipes P and Q : P>>Q

ParProg | Theory PT 201019

The Dining Philosophers (E.W.Dijkstra)

• Five philosophers work in a college, each philosopher has a room for thinking

• Common dining room, furnished with a circular table, surrounded by five
labeled chairs

• In the center stood a large bowl of spaghetti, which was constantly replenished

• When a philosopher gets hungry:

• Sits on his chair

• Picks up his own fork on the left and plunges
it in the spaghetti, then picks up the right fork

• When finished he put down both forks
and gets up

• May wait for the availability of the second fork

ParProg | Theory PT 201020

Mathematical Model

• Philosophers: PHIL0 … PHIL4

• αPHILi = { i.sits down, i.gets up,
 i.picks up fork.i, i.picks up fork.(i⊕1),
 i.puts down fork.i, i.puts down fork.(i⊕1) }

• ⊕: Addition modulo 5 == i⊕1 is the right-hand neighbor of PHILi

• Alphabets of the philosophers are mutually disjoint, no interaction between
them

• αFORKi = { i.picks up fork.i,
 (iΘ1).picks up fork.i,
 i.puts down fork.i,
 (iΘ1).puts down fork.i }

ParProg | Theory PT 201021

ParProg | Theory PT 201022

Behavior of the Philosophers

• PHILi = (i.sits down ->
 i.picks up fork.i ->
 i.picks up fork.(i⊕1) ->
 i.puts down fork.i ->
 i.puts down fork.(i⊕1) ->
 i.gets up -> PHILi)

• FORKi = (i.picks up fork.i ->
 i.puts down fork.i -> FORKi |
 (iΘ1).picks up fork.i ->
 (iΘ1).puts down fork.i -> FORKi)

• PHILOS=(PHIL0||PHIL1||PHIL2||PHIL3||PHIL4)

• FORKS=(FORK0||FORK1||FORK2||FORK3||FORK4)

• COLLEGE=(PHILOS||FORKS)

We leave out the proof here ;-) ...

ParProg | Theory PT 2010

What‘s the Deal ?

• Any possible system can be modeled through event chains

• Enables mathematical proofs for deadlock freedom, based on the basic
assumptions of the formalism (e.g. channel assumption)

• Some tools available (look at the CSP archive)

• CSP was the formal base for the Occam language

• Language constructs follow the formalism, to keep proven properties

• Mathematical reasoning about behavior of written code

• Still active research topics, channel concept adopted at several places

• CSP channel implementation for Java, MPI design

• Other formalism, e.g. Task / Channel model

23

ParProg | Theory PT 2010

Occam Example

24

 PROC producer (CHAN INT out!)
 INT x:
 SEQ
 x := 0
 WHILE TRUE
 SEQ
 out ! x
 x := x + 1
 :

 PROC consumer (CHAN INT in?)
 WHILE TRUE
 INT v:
 SEQ
 in ? v
 .. do something with `v'
 :

 PROC network ()
 CHAN INT c:
 PAR
 producer (c!)
 consumer (c?)
 :

ParProg | Theory PT 2010

Task-Channel Model [Foster]

• Computational model for multi-computer case

• Parallel computation consists of one or more tasks

• Tasks execute concurrently

• Number of tasks can vary during execution

• Task encapsulates sequential program with
local memory

• A task has in-ports and outports as interface to
the environment

• Basic actions: read / write local memory, send
message on outport, receive message on in-
port, create new task, terminate

25

ProcessProcessProcessProcessProcess

Node

N
et

w
or

k

ParProg | Theory PT 2010

Task-Channel Model [Foster]

• Outport / in-port pairs are connect by message queues called channels

• Channels can be created and deleted

• Channels can be referenced as ports, which can be part of a message

• Send operation is asynchronous

• Receive operation is synchronous

• Messages in a channel stay in order

• Tasks are mapped to physical processors

• Multiple tasks can be mapped to one processor

• Data locality is explicit part of the model

• Channels can model control and data dependencies

26

ParProg | Theory PT 2010

Task-Channel Model [Foster]

• Effects from channel-only interaction model

• Performance optimization does not influence semantics

• Example: Shared-memory channels for multiple tasks on one machine

• Task mapping does not influence semantics

• Align number of tasks to problem, not to execution environment

• Improves scalability of implementation

• Modular design with well-defined interfaces

• Determinism made easy

• Verify that each channel has a single sender and receiver

27

ParProg | Theory PT 2010

Task-Channel Model [Foster]

• Model results in some algorithmic style

• Task graph algorithms, data-parallel algorithms, master-slave algorithms

• Theoretical performance assessment

• Execution time: Period of time where at least one task is active

• Number of communications / messages per task

• Rules of thumb

• Communication operations should be balanced between tasks

• Each task should only communicate with a small group of neighbors

• Task should perform computations concurrently (task parallelism)

• Task should perform communication concurrently

28

ParProg | Theory PT 2010

Actor Model

• Carl Hewitt, Peter Bishop and Richard Steiger. A Universal Modular Actor
Formalism for Artificial Intelligence IJCAI 1973.

• Another mathematical model for concurrent computation

• No global system state concept (relationship to physics)

• Actor as computation primitive, which can make local decisions,
concurrently creates more actors, or concurrently sends / receives messages

• Asynchronous one-way messaging with changing topology
(CSP communication graph is fixed), no order guarantees

• CSP relies on hierarchy of combined parallel processes, while actors rely
only on message passing paradigm only

• Recipient is identified by mailing address, can be part of a message

• „Everything is an actor“

29

ParProg | Theory PT 2010

Actor Model

• Influenced the development of the Pi-Calculus

• Serves as theoretical base to reason about concurrency, and as underlying
theory for some programming languages (Erlang, Scala)

• Influences by Lisp, Simula, and Smalltalk

• Behavior as mathematical function - describes activity on message processing

30

ParProg | Theory PT 2010

Other Formalisms

31

• Lambda calculus by Alonzo Church (1930s)

• Concept of procedural abstraction, originally via variable substitution

• Functions as first-class citizen

• Inspiration for concurrency through functional programming languages

• Petri Nets by Carl Adam Petri (since 1960s)

• Mathematical model for concurrent systems

• Directed bipartite graph with places and transitions

• Huge vibrant research community

• Process algebra, trace theory, ...

