
Parallel Programming and Heterogeneous Computing
Non-Uniform Memory Access

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel and Andreas Polze
Operating Systems and Middleware Group

■ Decrease Latency – process a single workload faster (= speedup)

■ Increase Throughput – process more workloads in the same time
Ø Both are Performance metrics

■ Scalability: make best use of additional resources

□ Scale Up: Utilize additional resources on a machine

□ Scale Out: Utilize resources on additional machines

■ Cost/Energy Efficiency:
□ minimize cost/energy requirements for given performance objectives
□ alternatively: maximize performance for given cost/energy budget

■ Utilization: minimize idle time (=waste) of available resources

■ Precision-Tradeoffs: trade performance for precision of results

Felix Eberhardt

Chart 2

Recap
Optimization Goals

ParProg 2020 B4
Non-Uniform
Memory Access

■ Two basic approaches to scaling computing hardware:
□ Scale-Up: combine more resources (memory or cores) in a tightly

coupled system
Ø User perceives a single large shared-memory system

Non-Uniform Memory Access
Context: Scalability

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Chart 3

Machine

■ Two basic approaches to scaling computing hardware:
□ Scale-Out: connect more machines in a loosely coupled network

Ø User perceives multiple communicating machines in a shared-
nothing system

Non-Uniform Memory Access
Context: Scalability

Felix Eberhardt

Chart 4

Machine

ParProg 2020 B4
Non-Uniform
Memory Access

■ Recent coherent interconnect technologies enable hybrid systems with
both scale-up and scale-out characteristics:
□ Example: Gen-Z strives to connect an entire datacenter of machines

coherently
Ø User perceives a shared-memory system, but with the performance

characteristics (communication latency and bandwidth) of a shared-
nothing system

Non-Uniform Memory Access
Context: Scalability

Felix Eberhardt

Chart 5

Machine

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Context: Uniform Memory Access Machines

Felix Eberhardt

Chart 6.1

Socket0

Interconnect

Memory Controller

MemoryMemory

Socket1 Socket2 Socket3

Multiple sockets access main memory through a shared interconnect.

Latency and bandwidth
characteristic is equal for any
pair of socket and memory

location.

Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Context: Uniform Memory Access Machines

Felix Eberhardt

Chart 6.2

Socket0

Interconnect

Memory Controller

MemoryMemory

Socket1 Socket2 Socket3

Multiple sockets access main memory through a shared interconnect.

Latency and bandwidth
characteristic is equal for any
pair of socket and memory

location.

Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Context: Uniform Memory Access Machines

Felix Eberhardt

Chart 6.3

Socket0

Interconnect

Memory Controller

MemoryMemory

Socket1 Socket2 Socket3

Multiple sockets access main memory through a shared interconnect.

Latency and bandwidth
characteristic is equal for any
pair of socket and memory

location.

Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Context: Uniform Memory Access Machines

Felix Eberhardt

Chart 6.4

Socket0

Interconnect

Memory Controller

MemoryMemory

Socket1 Socket2 Socket3

Multiple sockets access main memory through a shared interconnect.

Latency and bandwidth
characteristic is equal for any
pair of socket and memory

location.

Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Context: Uniform Memory Access Machines

Felix Eberhardt

Chart 6.5

Socket0

Interconnect

Memory Controller

MemoryMemory

Socket1 Socket2 Socket3

Multiple sockets access main memory through a shared interconnect.

Latency and bandwidth
characteristic is equal for any
pair of socket and memory

location.

Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

Contention
ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Concept

Felix Eberhardt

Chart 7

Socket

Socket Socket

Socket
Memory

Memory
Memory

Memory
Memory

Memory

Memory
Memory
Memory

Memory
Memory
Memory

Interconnect

Core Core Core Core

Memory Controller

■ Part of the main memory is directly attached to a socket (local memory)

■ Memory attached to a different socket can be accessed indirectly via the other
socket‘s memory controller and interconnect (remote memory)

■ Socket + local memory form a NUMA node

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Characteristics

Felix Eberhardt

Chart 8

Socket0

Socket3 Socket2

Socket1
Memory

Memory
Memory

Memory
Memory

Memory

Memory
Memory
Memory

Memory
Memory
Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

■ Local memory access does not involve
inter-socket links, but they are shared
for remote requests

Ø Local performance can suffer from
remote activity

■ Remote memory access involves one or
more inter-socket links, as they need
not form a complete graph

Ø Access to different remote memory
regions is non-uniform as well

ParProg 2020 B4
Non-Uniform
Memory Access

■ Multiple point to point links between sockets scale better than a shared
interconnect

■ Multiple memory controllers partition address space and provide a higher
total memory bandwidth
(though the bandwidth to a single local region remains the same)

■ Access to local memory behaves exactly like UMA system
■ Access to remote memory traverses more hops (local interconnect → inter-

socket link → remote interconnect → remote memory controller)
Ø Certainly higher access latency

Ø Probably lower bandwidth, as inter-socket link is likely not as wide as on
chip connections

Ø Predominant architecture for current multi-socket machines

Felix Eberhardt

Chart 9

Non-Uniform Memory Access
Concept

ParProg 2020 B4
Non-Uniform
Memory Access

Physical Perspective
1. Hardware Thread
2. Core
3. Chip, Die
4. Multichip Module
5. Socket, Package, Processor, CPU
6. Mainboard
7. Machine, System

Felix Eberhardt

Chart 10

Non-Uniform Memory Access
Terminology

Logical Perspective
■ Core, CPU, Processing Unit,

Processing Element

■ NUMA Node/Region

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Example: SGI UV 300H

■ 240 Cores

■ 12 TB RAM
■ 16 Sockets

What is a Killer Application for such a
machine?

Ø In-Memory Databases!

Felix Eberhardt

Chart 11

[Workload Taxonomy by Pfister]
Data Traffic Volume

Synchroni-

zation

Traffic

Frequency
LSLD
“Parallel
Nirvana”

LSHD

HSHD
“Parallel Hell”

HSLD

NUMA

UMA

Cluster

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Example: SGI UV 300H

Felix Eberhardt

Chart 12

Experiment: NUMA behavior when scaling a workload
■ Machine has 16 sockets x 15 cores x 2-way SMT (allocated in locality order)
Ø Performance degrades when using more than two sockets!

ParProg 2020 B4
Non-Uniform
Memory Access

Felix Eberhardt

Non-Uniform Memory Access
Characteristics

Chart 13

high

low

local bandwidth
utilization

interconnect
utilizationlow

high

■ Unsuitable access patterns can severely degrade
performance:
□ Inter-socket link contention on excessive

remote memory accesses
□ Local memory controller contention on

excessive combined local and remote
memory accesses

□ Local interconnect contention also on
excessive multi-hop forward traffic

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Data Access Patterns

Felix Eberhardt

Chart 14

Node0

Node3 Node2

Node1
Memory

Memory
Memory

Memory
Memory

Memory

Memory
Memory
Memory

Memory
Memory
Memory

Single task accesses private buffer
on a different node
A. Relocate remote buffer to local

memory
B. Relocate task to remote node

Ø Reduce inter-socket contention

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

A.

B.

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Data Access Patterns

Felix Eberhardt

Chart 15

Node0

Node3 Node2

Node1
Memory

Memory
Memory

Memory
Memory

Memory

Memory
Memory
Memory

Memory
Memory
Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

Multiple tasks on multiple nodes
access private buffers on single
node
A. Relocate remote buffers to local

memory

Ø Reduce memory controller
contention

ParProg 2020 B4
Non-Uniform
Memory Access

A.

A.
A.

Non-Uniform Memory Access
Data Access Patterns

Felix Eberhardt

Chart 16

Node0

Node3 Node2

Node1
Memory

Memory
Memory

Memory
Memory

Memory

Memory
Memory
Memory

Memory
Memory
Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

Multiple tasks on a single node
access private buffers on the same
node
A. Distribute tasks and buffers to

different nodes

Ø Balance memory controller
utilization

ParProg 2020 B4
Non-Uniform
Memory Access

A.

A.

A.

Non-Uniform Memory Access
Data Access Patterns

Felix Eberhardt

Chart 17

Node0

Node3 Node2

Node1
Memory

Memory
Memory

Memory
Memory

Memory

Memory
Memory
Memory

Memory
Memory
Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

Tasks on multiple nodes access a
shared buffer on single node
A. Distribute shared buffer among all

nodes

Ø Reduce memory controller
contention

Ø Balance inter-node traffic

ParProg 2020 B4
Non-Uniform
Memory Access

A.

A.
A.

Non-Uniform Memory Access
Data Access Patterns

Felix Eberhardt

Chart 18.1

Node0

Node3 Node2

Node1
Memory

Memory
Memory

Memory
Memory

Memory

Memory
Memory
Memory

Memory
Memory
Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

R R

Tasks on multiple nodes read a
shared buffer on single node
A. Read only: Duplicate buffer on

every node

Ø Avoid inter node traffic entirely

R R

ParProg 2020 B4
Non-Uniform
Memory Access

A.

A.
A.

Non-Uniform Memory Access
Data Access Patterns

Felix Eberhardt

Chart 18.2

Node0

Node3 Node2

Node1
Memory

Memory
Memory

Memory
Memory

Memory

Memory
Memory
Memory

Memory
Memory
Memory

C10 C11

C13 C12

C20 C21

C23 C22

C00 C01

C03 C02

C30 C31

C33 C32

R R

Tasks on multiple nodes read a
shared buffer on single node
A. Read only: Duplicate buffer on

every node

Ø Avoid inter node traffic entirely

R R

R R R R R R R R

R R R R

ParProg 2020 B4
Non-Uniform
Memory Access

ParProg 2020 B4
Non-Uniform
Memory Access
Felix Eberhardt

Non-Uniform Memory Access
Local Bandwidth Characteristics

, GB/s

10, GB/s

20, GB/s

30, GB/s

40, GB/s

50, GB/s

60, GB/s

70, GB/s

80, GB/s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
an

d
w

id
th

Threads

All Reads 3:1 Reads-Writes
2:1 Reads-Writes 1:1 Reads-Writes
Stream-triad like Ideal

Chart 19

Experiment on SGI UV 300H:
Threads on a single socket generate
independent memory traffic

■ Significant flattening of the curve after
6~8 active threads

Ø Local memory bandwidth exhausted,
scaling beyond 8 threads has no
benefits

ParProg 2020 B4
Non-Uniform
Memory Access
Felix Eberhardt

Non-Uniform Memory Access
System Bandwidth Characteristics

Chart 20

Experiments on SGI UV 300 H:

memory on single node accessed by
threads on local node

51.1 GB/s

memory on single node accessed by
threads on local and one remote node

56.5 GB/s

memory on all 16 nodes accessed by
threads on local nodes

816.0 GB/s

memory on all 16 nodes accessed by
threads on local and remote nodes (random pattern)

185.0 GB/s

110.6%

1597.5% ~ ×16

22.7%

Ø Huge performance potential,
provided thread and memory placement
is chosen adequately

Avoid data movement
■ Remote memory accesses across long distances take time → high latency →

wasted cycles
■ High volume will cause contention → high latency for accessing threads →

wasted cycles

Avoid contention
■ Balance utilization of resources (memory controllers, interconnect, ...)
Analzye data access patterns
■ Decompose loosely coupled tasks → increase flexibility of placement
■ Agglomerate tightly coupled tasks → reduce communication overhead

■ Identify shared and private data chunks and place accordingly

■ Identify read-only, read-write, write-only access patterns
■ Consider benefits of dynamic adaption during runtime

Ø Maximize data locality

Felix Eberhardt

Chart 21

Non-Uniform Memory Access
Placement Decisions

ParProg 2020 B4
Non-Uniform
Memory Access

Tradeoff:
computational load balancing ◊ data locality

■ Possible on different granularities (Process ● Thread ● Task)

■ Realized in the OS through an Affinity Mask:

A bitmask to specify on which logical cpu the process or threads in a process can
be scheduled

□ Pinning (= only a single bit set)

■ Affinity mask can be adjusted at runtime:

Ø Computation follows data

Felix Eberhardt

Chart 22

Non-Uniform Memory Access
Thread Placement

ParProg 2020 B4
Non-Uniform
Memory Access

■ Placement granularity is a page (4k, 64k, ... 64GB)

■ Static at allocation time:
Placement policies or specific requests govern page location for every allocation

□ First-touch – defacto standard policy
□ Allocate on fixed node(s)

□ Interleaving

□ (Page replication on multiple nodes, consistency!)
■ Dynamic at runtime:

Pages can migrate between different nodes after allocation

Ø Data follows computation
Felix Eberhardt

Chart 23

Non-Uniform Memory Access
Data placement

ParProg 2020 B4
Non-Uniform
Memory Access

numactl wraps application and enforces specific placement policies

■ Thread Placement set default affinity mask for a given process
□ numactl --physcpubind=<cpus>

□ numactl --cpunodebind=<nodes>

<cpus> is a comma delimited list of cpu numbers or A-B ranges or all

□ taskset is another tool to control the affinity mask, able to modify affinity
masks of running processes

■ Data Placement
□ numactl --interleave=<nodes>

□ numactl --membind=<nodes>

<nodes> is a comma delimited list of node numbers or A-B ranges or all Felix Eberhardt

Chart 24

Non-Uniform Memory Access - Toolbox
External Placement Control

ParProg 2020 B4
Non-Uniform
Memory Access

Thread Placement
Systemcall
□ sched_setaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask)

Pthread
□ pthread_setaffinity_np(pthread_t thread, size_t cpusetsize, const

cpu_set_t *cpuset)

libnuma
□ numa_run_on_node(int node)

Data Placement
libnuma
□ void *numa_alloc_onnode(size_t size, int node)

□ void *numa_alloc_interleaved(size_t size)

□ int numa_move_pages(int pid, unsigned long count, void **pages, const int
*nodes, int *status, int flags);

Felix Eberhardt

Chart 25

Non-Uniform Memory Access - Toolbox
Internal Placement Control

libnuma
>man 3 numa

ParProg 2020 B4
Non-Uniform
Memory Access

■ Thread visits all NUMA nodes in the system

■ Allocates memory on current node and touches the memory on next node
■ To determine location of memory page we use:

move_pages(pid, count, **pages, *nodes, *status, flags);

Felix Eberhardt

Chart 26

Non-Uniform Memory Access - Toolbox
Experiment: First-Touch Placement Policy

int main(void) {
...
int n = numa_max_node();
for (int i = 1; i <= n; i++){

...
while(

numa_node_of_cpu(sched_getcpu()) != i){
sleep(1);

}
...
check_address(array[0]);

}

void check_address(void* addr){
int status[1] = { -1 };

int ret = move_pages(0, 1, &addr, NULL, status, 0);
...

}

ParProg 2020 B4
Non-Uniform
Memory Access

Felix Eberhardt

Chart 27

Non-Uniform Memory Access - Toolbox
Experiment: First-Touch Placement Policy

ParProg 2020 B4
Non-Uniform
Memory Access

ParProg 2020 B4
Non-Uniform
Memory Access

Tools for topology discovery:
■ ACPI distance values

■ Linux sysfs
■ Libnuma: numactl

■ Hwloc lstopo
■ MLC (Memory Latency Checker)
■ …

Tools for analyzing the runtime behaviour:

■ Intel Performance Counter Monitor
■ numatop
■ … numatop: top focused on NUMA-related

information Felix Eberhardt

Non-Uniform Memory Access - Toolbox
Topology Discovery

Chart 28

ParProg 2020 B4
Non-Uniform
Memory Access

Information provided:
■ NUMA nodes

■ ACPI distance values
of nodes and cores

■ Mapping of cores
to nodes

■ Cache sizes, levels,
associativity, cache line size

■ Cache sharing of CPUs

■ Restrictions:
□ Linux only

Felix Eberhardt

Non-Uniform Memory Access - Toolbox
Topology Discovery: Linux sysfs

Chart 29

■ numa_max_node() get the number of the highest node in the system
■ numa_num_configured_nodes() get the total number of NUMA nodes in the

system
■ numa_num_configured_cpus() get the total number of cores in the system
■ numa_distance(int node1, int node2) get the distance between two

nodes as reported by ACPI
■ numa_node_to_cpus(int node, struct bitmask *mask) get a bitmask of all

cores associated with the given NUMA node
■ numa_node_of_cpu(int cpu) get the node associated with the given core

id

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Chart 30

Non-Uniform Memory Access - Toolbox
Topology Discovery: libnuma

Information provided:
■ NUMA Nodes

■ ACPI distance values
of nodes and cores

■ Mapping of cores
to nodes

■ Restrictions:
■ Linux only

■ Available as library to
be used in applications
to query system devices

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access - Toolbox
Topology Discovery: numactl

Chart 31

Information provided:
■ NUMA Nodes

■ ACPI distance values
of nodes and cores

■ Mapping of cores
to nodes

■ Grouping of nodes according
to distance values

■ Memory hierarchy (Caches)

Restrictions:
■ Several platforms:

Windows, Linux, BSD, ...
■ Available as library to

be used in applications to
query system devices

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access - Toolbox
Topology Discovery: hwloc / lstopo

Chart 32

Empirical information provided:
■ Latencies to local memory hierarchy

■ Bandwidth to local memory hierachy
■ Latencies between NUMA nodes

■ Bandwidth between NUMA nodes
■ Latencies of Cache-to-Cache transfers
■ Latencies under load

Restrictions:

■ Only on Intel Processors
■ No source code available

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access - Toolbox
Topology Discovery: Memory Latency Checker

Chart 33

Felix Eberhardt

Non-Uniform Memory Access
Topology Examples: SGI UV-300H

ParProg 2020 B4
Non-Uniform
Memory Access

Chart 34

ACPI Distance Values
■ Can be acquired with

numactl --hardware
■ Clusters relate to blades in

the system
■ Seem to be related to

latency and bandwidth
characteristics
(see next slide)

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Topology Examples: SGI UV300H

Chart 35

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Topology Examples: SGI UV-300H

Chart 36

Measured Latency
■ Intel MLC used

■ Clusters relate to blades in
the system

■ 3 classes of latencies:
□ Local: ~110 ns
□ Neighbor: ~200 ns

□ Blade: ~230 ns
□ Far remote: ~480 ns

Factor of ~4x between local
and far remote!

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access
Topology Examples: SGI UV-300H

Chart 37

Measured Bandwidth
■ Intel MLC used

■ Clusters relate to blades in
the system

■ 3 classes of distances:
□ Local: ~51 GB/s
□ Neighbour: ~12.5 GB/s

□ Blade: ~11.5 GB/s
□ Far remote: 11.3 GB/s

Difference between remote
nodes and far remote nodes
not that big. However local
and remote have a factor of
~4x in between!

Non-Uniform Memory Access
Topology Examples: NUMA on Chip (Single Socket)

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Chart 38

https://www.servethehome.com/wp-content/uploads/2017/08/AMD-EPYC-Infinity-Fabric-Topology-Mapping.jpg

https://www.servethehome.com/wp-content/uploads/2017/08/AMD-EPYC-Infinity-Fabric-Topology-Mapping.jpg

Information provided:
■ Similar to top tool

■ Shows NUMA specific metrics
■ Uses instruction sampling

■ Memory view to find out
which memory addresses
are accessed frequently
by remote nodes

■ Ability to collect
stack traces

Restrictions:

■ Linux only, Kernel 3.9
or later

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access - Toolbox
System Performance: numatop

Chart 39

Information provided:
■ API for Intel specific

performance counters
■ Core and Uncore events

■ QPI links and memory
controller utilization

■ Many other tools available

□ PCIe
□ Cache allocation

□ …
■ https://github.com/opcm/pcm

Restrictions:
■ Available on Windows and Linux

■ Intel processors only

Felix Eberhardt

ParProg 2020 B4
Non-Uniform
Memory Access

Non-Uniform Memory Access - Toolbox
System Performance: Intel Processor Counter Monitor

Chart 40

https://github.com/opcm/pcm

