NFSVersion 4

17/06/05

Thimo Langbehn

Operating System Services and Administration Seminar 2005
Hasso-Plattner-Institute for Software Systems Engineering

thimo.langbehn@student.hpi.uni-potsdam.de

Abstract

The Network File System Version 4 (NFSv4) is an operating-system-independent file
sharing protocol, defined in April 2003. The Main Task of it is to integrate remote
resources in local file systems, while covering performance, portability and protection
issues.

This document describes the NFSv4 from a technical and an administrator's point of
view. It compares NFSv4 to other file sharing methods and explains the core concepts.
Furthermore, an installation manual for Linux-based operating systemsis provided and
severa configuration options are explained.

Contents:

3.

The NFS Version 4 protocol
History

Overview

Basic Structure
Procedures and operations
Delegation

. Filehandles

A Linux NFS Version 4 implementation
1. Description

2. Installation

3. Configuration

4. Problems

Resources

OUAWN R

1. TheNFS Version 4 protocol

1.1. History

The Network File System (NFS) was initially developed by Sun Microsystems in 1984
to provide distributed and transparent file access in a heterogeneous network In 1998
Sun ceded change control to the Internet Engineering Task Force (IETF). Later in
1998 Sun published several improvements which advanced the development of NFS
Version 4.

1.2 Overview

The task of NFS is to specify a protocol enabling users at one system (called client) to
access files on another (called server). The Version 4 was developed to achieve several
design goals and to correct some of the known problems of prior versions. In
particular, the requirements of NFS Version 4 are specified as:

- Improved access and performance on the Internet

- Extensible security models

- Cross-platform interoperability

- Extensibility of protocol-functionality
NFS Version 4 is designed to be operated system independent. To archive this, it has
to support several options and procedures required by one Operating Systems and not
supported by another. It has to be able to operate through firewalls and between
systems with different users and architecture. Furthermore, it has to address
performance issues to operate properly in the Internet environment.

1.3 Basic Structure
A NFS Version 4 client (in the following called client) communicates with a
corresponding NFS Version 4 Server (called server) via remote procedure calls (
RPC's). The client sends a request and gets a reply from the server. It is not necessary
(but desirable) that the server is able to send a request to one of its clients. This, and
the fact that NFS Version 4 uses a fix and well known port number (2049), enables
NFS Version 4 to work through firewalls.

To ensure that send Messages arrive correctly, IETF-approved congestion control
transport protocols have to be used for transport. Furthermore, NFS Version 4
implementations must support the Transmission Control Protocol (TCP) to enhance
the possibilities for interoperability.

A NFS Version 4 server can only provide (export) a single, hierarchical file system
tree . If a server has to share more then one logical file system tree, the single trees are
integrated in a new virtual root directory. This construction, called pseudo-file-system,
is the one which is provided (exported) to clients.

To access an exported file or directory, a client has to get a identifying structure called
filehandle. When a client establishes a connection to a server the client gets the root
filehandle which is a handle to the root of the exported file system tree.

A client which mounts this pseudo file system will only see those parts it is authorized
to read. To check this authorization the server and his clients have to use a unique
global user name space. This is achieved by connecting the user or group name with
the full qualified name of the server, creating a string like user@server.domain.com .

To improve performance, to enable efficient locking and to skip repeated
authentication, client and server have to store several information about each other and
their current connection. This makes NFS Version 4 a stateful protocol.

Different platforms need to store various information corresponding to a file or
directory. NFS Version 4 provides those information and the information needed by
the protocol itself in key-value pairs called named attributes. There are three groups of
attributes, mandatory, required and optional. This describes the priority to support an
attribute by any NFS Version 4 implementation. Since a client can ask what attributes
are supported by a server implementation, that attributes are extensible and therefore
capable to support the needs of future platforms and programs.

1.4 Procedures and oper ations:

The NFS Version 4 protocol uses only two different RPC procedures, COMPOUND and
NULL. While NULL is only used for error-handling purpose, COMPOUND is a
container-like message listing several operations a client wants to perform on a server
(and, if possible, the other way around). Whenever one of those operations fails, the
server will cancel the remaining operations and return the results of the already
executed operations plus the error.

In NFS Version 4, the stateful operations OPEN and CLOSE are introduced. While this
allows the use of NFS Version 4 in a windows environment, it additionally provides
the server the ability to delegate authority to a client (see 1.5 Delegation for details).

Another change to prior versions is the simplicity of a single operation. The L OOKUP
operations for example only sets the current filehandle to the resolved location. To get
this filehandle, a client may use the GETFH operation.

1.5 Delegation
Delegation is a new concept allowing servers to temporally transfer full authority over
a file or directory tree to a client (using a state id to remember the client and the used
connection). In particular, the server guarantees that no further requests to that file or
directory will be granted without revoking the delegation first. At this point, the server
has to be able to callback to the client. For this reason, delegations can only be granted
to those clients reachable by the server.

On the other hand, a client-machine which received a delegation of a file or directory
is able to fully cache all operations on those files and to grant locks to different
processes on his own without having to consult the server first. This may increase
performance of several applications while strongly reducing the network-traffic
needed.

1.6 Filehandles
A filehandle is a per server unique data structure to identify a single file system object.
Two filehandles which are identical (on the same server) refer to the same object, but
the reverseis not granted, two different filehandles on the same server do not
necessarily identify two different file system objects.

The NFS Version 4 Protocol specifies two types of filehandles, VOLATI LE and
PERSI STANT. While PERSI STANT filehandles always point to their target,
VOLATI LE filehandles may expire. In consequence, a client has to store path
information for regenerating an expired VOLATI LE filehandle.

2. A Linux NFSVersion 4 implementation
The following tries to explain how to set up a Debian Linux NFS Version 4 server and
client using the CITI (citi.umich.edu) reference implementation. I assume that
Kerberos is already working.

2.1 Description
The CITI NFS to set up consists of the Kernel Modules nfs, auth_rpcsec_gss,
rpcsec_gss(_krb5) and nfsd (on the server). The nfs Module provide user-transparent
access to the file systems mounted via NFS while auth_rpcsec and rpesec_gss_krb5
are used to handle secure communication. The nfsd module finally provides the
exported file systems to other clients.

The programs rpc.idmapd, rpc.mountd, rpc.gssd or rpc.svegssd and rpc.nfsd are used
for communication.

® rpcsec_gss(_krb5): This module provides security for protocols using RPC.
Before exchanging any RPC requests, the RPC client must first establish a
security context with the RPC server. rpcsec_gss krb5 in particular uses
Kerberos to establish this security context.

® rpc.idmapd: Thisdaemon isused by the NFS Version 4 kernel client and
server to trandate user and group IDsto names and vice versa. It reads the
configuration file in /etc/idmapd.conf .

e rpc.nfsd: The main functionality is handled by the nfsd kernel module. This
program is merely used to start a specified number of kernel threads.

e rpc.mountd: The rpc.mountd daemon implements the NFS mount protocol. It
checks MOUNT requests received from a client against the list of exported file
systems and decides whether the client is permitted to mount or not. If the
client is permitted to mount the requested file system, rpc.mountd obtains a
filehandle, returnsit to the client and creates an entry in the rmtab.

® rpc.gssd: This daemon is used by the client's rpcsec_gss module to establish
security contexts. It usesthe rpc_pipefs file system to communicate with the
kernel. Ordinarily, it uses a cached ticked for the user. The -m option is used to
map the root user to the principal nfs/host

® rpc.svegssd: Thisdaemon is used by the server's rpcsec_gss module to
establish security contexts. It uses the proc file system to communicate with the
kernel.

2.2 Installation

This section aims to explain how to set up a NFS Version 4 client and server on
Debian-Linux Systems. If Kerberos authentication shall be used, an additional
Kerberos infrastructure is required.

What is needed first is a NFS Version 4 capable kernel, which is the case with the
Debian kernel in Version 2.6.

To access the Debian packets provided by citi.umich.edu, the following line has to be
added to /etc/apt/sources.list of all systems (the second one is optional) :

deb http://ww. citi.um ch.edu/ projects/nfsv4/ debian unstable nmain
deb-src http://ww. citi.um ch. edu/ projects/nfsv4/debi an unstabl e nain

The packets needed on the server are:
nf s- conmon
nf s- ker nel - server
I i bnfsidmapl
l'i br pcsecgssl
[acl, |ibacl 1]
If Access Control Lists are needed, these packets are required. Note that these are
CITI-modified versions. So, they should be upgraded to the CITI version if they are
already installed.

After installing them, the communication pipe for the svcgssd subsystem has to be
created with

nkdir /var/lib/nfs/rpc_pipefs

and, together with the nfsd file system, has to be entered in /etc/fstab as:
rpc_pipefs /var/lib/nfs/rpc_pipefs rpc_pipefs defaults 0 O
nf sd [proc/fs/nfsd nf sd defaults 0 O

After that, the modules are loaded with modprobe for testing purpose. Later, they can
be added to /etc/modules.

nodpr obe aut h_rpcgss rpcsec_gss_krb5

Before the server can be started, the file system points to be provided should be
inserted in /etc/exports (see section 3.3.1) and the settings in /etc/idmapd.conf should
be adapted.

Finally, the server tools are started with:
rpc. nountd

rpc. i dmapd

rpc. svcgssd

rpc. nf sd 6 to start 6 nfs server threads in the kernel.

On theclient:
nf s- common

I'i bnfsidmapl
l'i br pcsecgssl
mount (CITI version with NFS Version 4 support)

[acl, libacl1]

After installing this packets, in the same way as on the server, the communication pipe
for the gssd subsystem has to be created with:

nkdir /var/lib/nfs/rpc_pipefs

and has to be entered in/ et ¢/ f st ab as:

rpc_pipefs /var/lib/nfs/rpc_pipefs rpc_pipefs defaults 0 O

Then, the modules are loaded with modprobe for testing purpose. Later they can be
added to/ et ¢/ nodul es.

nodpr obe aut h_rpcgss rpcsec_gss_krb5

After that the configuration files (/ et ¢/ i dmapd. conf) should be edited and then the
daemons can be started with:

rpc. i dmapd
rpc.gssd -m

The client may now mount exported file systems using nf s4 as file system type. To
mount an exported file system with Kerberos the option sec=kr b5 has to be used.

nmount -t nfs4 server.donmain.com/ /target/path/
nmount -t nfs4 -o sec=krb5 server.domin.com/ /target/path/

Note that Kerberos has to be set up correctly and configured for NFS Version 4 (for an
explanation how to do this, refer to the next section).

Kerberos:
To use CITI's NFS Version 4 implementation together with the Kerberos
authentication, an nfs machine principal must be created and its key stored in the local
keytab. This can be done by using kadmin:

kadm n: addprinc -randkey nfs/hostnane. domai nnane

kadm n: ktadd -e des-cbc-crc:normal -k /etc/keytab \
nf s/ host nane. domai nname

Furthermore, the/ et ¢/ host s file must list the fully-qualified domain name as the
first entry on the line with the machine's | P address, and the machine's name must not
be included in the localhost line.

2.3 Configuration

exports:
This is the configuration file read by the exportfs tool to configure the kernel NFS
server.

A Line in exports consists of a file system point to share followed by a list of client-
(options) pairs to which this point shall be accessible with the given options.

A host may be an IP-address/net, a NIS group or a DNS-name. Both of it may use the
wildcards * ? . A special host-identifier used in this implementation is gss/krb5
(gss/krb5i, gss/krbSp) which matches to any host that can authenticate itself using a
nfs/host Kerberos ticket. The security provided by those are as follows:

krb5:

Only the header is signed. In consequence, a client or server is able to check the
sender of an request or response packet.
krb5i - Integrity:

The header and the body of each request and response packet is signed. Nobody
without the corresponding keys should be able to modify packet-content without

invalidating the signature.
krb5p - Privacy:

The header of an request or response is signed, and the body is encrypted. Nobody
without the corresponding keys should be able to modify the packet or even read
the content.

The following are some important options, to get a complete list refer to the exports-
man page:

insecure, secure (default = secure):

The client's source port has to be smaller then [IPPORT_RESERVED.
ro, rw (default = ro):

Allow both read and write requests on this NFS volume.
fsid (fsid=value):

This option can be used to assign an unique number to an exported files system.
fsid=0 has to be used to specify the 'root' directory of the exported pseudo-file-
system.

subtree_check, no_subtree_check (default = subtree_check):

Specifies whether the server has to make sure that a subdirectory is in the
exported tree or not.

hide, nohide (default = hide):

Setting the nohide option on a file system makes it visible and available to an
appropriately authorized client without the need of explicitly mounting it.

async, sync (default = sync):

This option allows the NFS server to violate the NFS protocol and reply to
requests before any changes made by that request have been committed to
stable storage (e.g. disc drive).

no_wdelay, wdelay (default = no_wdelay):
Whether to allow lazy writing or not.
mp: Do export a point only if the specified file system has been mounted correctly.
no_root_squash, root_squash (default = root_squash):
Map requests from uid/gid O to the anonymous uid/gid.
all_squash, no_all_squash (default = no_all_squash):
Map all uids and gids to the anonymous user.
anongid, anonuid:

These options explicitly set the uid and gid of the anonymous account.

Thisisan example exports file. /lhome/shares is exported using any supported

authentication:

/ shares *(ro, fsid=0,insecure, no_subtree_check)

/ shares gss/ krb5(rw, fsi d=0, i nsecure, no_subtree_check)
/ shares gss/ krb5i (rw, fsid=0, i nsecure, no_subtree_check)

/ shares gss/ krb5p(rw, fsid=0, i nsecure, no_subtree_check)

idmapd.conf:
Thisisthe configuration file for idmapd which maps IDs to names and vice versa.

It consists of two sections, [General] and [Mapping], each of it may contain lines of
the form: name = value

Following variables are used:

[General]
Verbosity:

Specifies the verbosity-level of idmapd, this may be a value O, 1, 2, 3, ...
Pipefs-Directory:

Specifies the location of RPC pipefs. The default valueis
"Ivar/lib/nfs/rpc_pipefs'.

Domain:

This is used by NFS internally and should be the domain of the server.

[Mapping]
Nobody-User:

Specifies the NFSv4 nobody user. The default value is "nobody".
Nobody-Group:

Specifies the NFSv4 nobody group. The default value is"nobody".

This is an example of idmapd.conf:

[General]

Verbosity = 0

Pi pefs-Directory = /var/lib/nfs/rpc_pipefs
Domain = asg-platformorg

[Mappi ng]
Nobody- User = nobody
Nobody- G- oup = nogroup

rmtab:
For every successful mount, the mountd process adds a corresponding entry to the
rmtab file (/etc/lib/nfs/rmtab). This entry is removed when mountd process receives an
unmount request. However, this file is not used by the CITI NFSv4 implementation
and it may contain invalid information.

2.4 Problems
Several of the errors one might get while installing or configuring are very irritating. In
the following section, some of them are listed together with their possible causes.

Linux with CITI Implementation:

$>mount -t nfs4 -o sec=krb5 server:/ /target/path/

$>cd /target/path

bash: cd: client: Input/output error
The root user may not have the necessary access rights to the exported file system. This
may be caused by the * _sguash options.

Sun Solaris:
$>root@sun-solaris:~# mount -F nfs -o ro server.domain.com:/ /path/to/mount
nfs mount: mount: /path/to/mount: Not owner

This may occur if the file system is not exported to 'the world' at all. This can be checked
using the 'exportfs’ command on the server.

3. Resources
RFC3530, NFSv4 (August 2003)
RFC1831, RPC (August 1995)
RFC1832, XDR (August 1995)

CITI NFSv4 Open Source Reference I mplementation
http://www.citi.umich.edu/projects/nfsv4/ (August 2005)

SUN System Administration Guide: Network Services
http://docs.sun.com/app/docs/doc/816-4555/6maoqui84 (July 2005)

die.net, Linux Manual Pages http://www.die.net/doc/linux/man (June 2005)

