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 – Object detection in images.
 – Stitching images.
 – Description of images.
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Speeded Up Robust Features



02 [Bränzel et al.]
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SURF & NUMA
satellite images
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Outline
  I. SURF
        Keypoint Extraction (our Focus):
        – Wavelet Responses
        – Approximation with Box-Filters
        – Octaves and Scales
        – Speeding up Filters  with the Integral Image
        Keypoint Description:
        – Direction
        – Results
        Limitations
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Outline
  II. SURF & NUMA
        Experiments:
        – Time Performance
        – Data Access Patterns
        Implementation Proposal:
        – Distributed Integral Image
        – Ghost Cells within the Integral Image
        Peformance Comparison:
        – Single Thread vs. Multi Thread vs. Ours
  Conclusion
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Wavelet Responses

Lyy Lxx Lxy

 – SURF tracks edges (≙gradient changes)
 – gradient changes have high derivations
    in the image
 – wavelets are used to calculate those
    derivations

Σ
i,j

Image[i, j]  .Lyy[i, j]  ryy =
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Approximation with Box-Filters
 – computation of wavelets is expensive
 – let’s approximate them with box filters

 – actually we want to compute the determinant of the Hessian
 – with approximation we have to account for a bias w ≈ 0.9

Dyy Dxx Dxy

H  =  [ ]rxx

ryy

rxy
ryx

 det(H ) ≈ Dxx   Dyy – (w  Dxy)2  ..



Octaves and Scales
 – objects can be differently sized in the image
 → let’s  use different filter sizes with different step sizes
 – each area is analyzed with multiple octaves and scales

scales octaves application
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Speeding up Filters with the Integral Image
performance issue:

Σ
i,j

Image[i, j]  .Dyy[i, j]  ryy =

addition:
per position
 × scales
 × octaves
 × filter size
 × 3 box filtersparallelsurf 0.96, naïve:

1 MByte greyscale image, just first octave 
→ 7.05 GByte memaccess
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x, y

Σ

A

B

C

D

integral image integral image

Σ(  )=  A – B – C + D   (4 mem accesses)
first octave ~ 70MB memaccess

The Integral Image
»Our Rescue« – Reducing memory acc. by 2 orders of magnitude

[Viola&Jones]
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Computing the Integral Image
(in parallel)—Addition is commutative, associative!

embarassingly parallel
cache-friendly

 embarassingly parallel
 not cache-friendly (on CPUs)
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Excursus: GPU Memory Caching {

} thanks to HPI3D

L2

L1

VRAM

image

———

(compute)
shader

texture
cache
unit

caching
infos s,t ( )

cache content, optimized 
for filter operation
and compute unit
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Back to CPU Caching: Box Filters

[TERRIBERRY et al.]

 – it is good to compute all three filters in one pass!
      → improves cache hits in one line

32  memory accesses
10 cache lines hit

(assuming small filter)

 – implementations exist that try to also overlay access points of
     various filter scales!

Dyy Dxx Dxx
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Last Step: Feature Description

 – just features with det(H)  > threshold are processed further!
 – the strongest direction is retrieved, and rotated filters are computed 
 – additionally, n×n sub-directions are obtained and stored as descriptor

[images: cs.wahsington.edu, docs.opencv.org]
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Results: Image Stitching

[images: TERRIBERRY et al.]

+

+



16

Qualitative Strengths & Limitations
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 – SURF’s quality remains slightly inferior to SIFT
 – rotational errors stem partly from pixel-grid combined with rotation 



Part II: SURF & NUMA
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Experiments: Time
 – we analyzed the implementation parallelsurf 0.96 as a base (OpenMP) 
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Experiments: Time (Speedup)
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Idea: Calculate many Integral Images 
 – vertical is smarter if image is large (if biggest filter < stripe) 

II1 II2

II3 II4

worst case: 4acc → 16acc worst case: 4acc → 8acc, ‘partners’ 

II1 II3II2 II4
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Experiments: Memory Access
 – we recorded the memory access pattern of first step (pre-thresholding)

512×512, 1 part 512×512, 4 parts
(images visually enhanced)
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Implementation: Algorithm & Locality

//Collect
FOR scales
  ALLOCATE scale_images
  FOR octaves
    #omp parallel for
    FOR filters
      FOR RANGE y
        FOR RANGE x
          scale_images[scale] ← Filter(x,y)
//Detect
FOR scales
  DetectFeatures(scale_images)

 – Example: Detection
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Implementation1:  memcpy Integral-Images to all Nodes
 – to test the performance of  memory accesses, we consider 
     the best scenario → every node does just local accesses

_ii2 = (double**) numa_alloc_onnode(
     width*height*sizeof(double),1);

if(!_ii2)
{
  std::cout << "[NUMA] Could not allocate Memory"
            << std::endl;
return;

}
memcpy(_ii2, _ii, iWidth*iHeight*sizeof(double));
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Implementation1: Memory Dispatch
 – we once memecpy the integral image to other node(s)
 – dispatch accesses based on thread locality
#include <utmpx.h>
#include <numa.h>

inline double ** getIntegralImage()
{
int cpuId = sched_getcpu();
int nodeId = numa_node_of_cpu(cpuId);
if(nodeId == 1) return _ii2;
return _ii;
}

slowdown!
time 10× 

24 threads
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Side Note: Measuring Dispatch cost

auto t1 = std::chrono::high_resolution_clock::now();
…  
auto t2 = std::chrono::high_resolution_clock::now();
  std::cout << "Detect:"

<< std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count()
<< " ns"
<<std::endl;

 – using std::chrono::high_resolution_clock

 → 79.96 µs
– called ~ 100m times. Extreme Overhead… not feasable

buffered:
1.05×

24 threads
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OMP PROC_BIND
 – disallowing movement of threads between processors

 → might ensure more locality

significant speedup
of 5%

24 threads
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Conclusion & Future Work
 – SURF is the art of approximation applied to 
    a mathematically complex task
 – NUMA requires data locality, SURF allows for it
 – parallelsurf does not respect locality at all

 – parallelsurf already speeds up ~OK on NUMA machines using  OMP
 – memory access patterns super-interesting for further research
 – micro-optimising OMP yields ~5% speedup
 → for further speedup full restructuring of code is needed!
 Our Conclusion: Location, Location, Location!



Thank you!
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