
Middleware and Distributed Systems

Transactions

Martin v. Löwis

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Terminology

• Financial Transaction (purchase, loan, mortgage, ...)

• Database Transaction: unit of interaction between a process and a relational
database

• Atomic transaction: sequence of operations that should be atomic

• not necessarily limited to databases - may involve regular files, or actions
"in the real world"

• all-or-nothing: should either completely succeed or completely fail

• failure atomicity: should be atomic even in the presence of crashes

• durability: changes should persist once transaction succeeds

• isolation: concurrent transactions must not interfere

2

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

ACID

• Härder and Reuter, Principles of Transaction-Oriented Database Recovery,
Computing Surveys, 1983

• Atomicity: updates are all-or-nothing

• Consistency: integrity is maintained across transactions

• Isolation: intermediate states are not observable to other processes

• Durability: changes are not undone after a transaction completes

• Recovery: system reverts to previous state in case of failure

• Concurrency: allow concurrent operations even though they possibly might
have conflicting effects

• server needs to verify that actions are serializable

3

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Distributed Transactions

• client invokes operations on different servers

• effects should be atomic across all servers

• flat vs. nested

• flat: a client starts a transaction, then sequentially performs operations on
multiple servers

• nested: within a transaction, further transactions can be started;
sub-transactions may run concurrently

4

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 20095

Client

X

Y

Z

X

Y

M

NT1

T2

T11

Client

P

T
T12

T
21

T
22

T
T

© Pearson Education 2005

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Transaction Coordinator

• aka Transaction Manager aka Transaction Monitor

• allows identification of transaction, and keeps track of participants (resources)
of a transaction

• openTransaction: start a new transaction, returns transaction handle

• closeTransaction: complete successfully

• abortTransaction: discard all partial changes

• join: include a reference to a participant (process) into the transaction

• client needs to communicate transaction handle to all participants

• coordinator does not talk to participants during the transaction (only at the
end)

6

Freitag, 12. Februar 2010

..

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participant join

 join

 join

T

 a.withdraw(4);

 c.deposit(4);

 b.withdraw(3);

 d.deposit(3);

openTransaction

 b.withdraw(T, 3);

closeTransaction

T = openTransaction
 a.withdraw(4);
 c.deposit(4);
 b.withdraw(3);
 d.deposit(3);

 closeTransaction

 Note: the coordinator is in one of the servers, e.g. BranchX

Transactions | Middleware and Distributed Systems MvL 20097

© Pearson Education 2005Coordinator

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Atomic Commit Protocols

• one-phase commit

• server sends commit/abort messages to all participants

• participant individually commits local changes

• problem: what if a server fails to commit, e.g. when the server had to break
a lock to resolve a deadlock with some other transaction

• two-phase commit (Gray 1978)

• prepare phase: participants vote to commit or abort transactions

• write prepared log entries, and enter uncertain (in-doubt) state

• servers who voted to commit then must not change their minds

• commit phase: participants all commit

8

Freitag, 12. Februar 2010

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)
prepared to commit

committed

statusstepstatus

Transactions | Middleware and Distributed Systems MvL 20099

© Pearson Education 2005

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Failures

• time-outs, server crashes, message loss

• server crash: server gets restarted from consistent state

• information about ongoing transactions might have been lost, so prepare
messages from coordinator result in aborts

• in a crash after a "commit" vote, server needs to recover with prepare log

• coordinator may abort transaction after participant timeout

10

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Failures (2)

• coordinator should maintain log of ongoing transactions, redo log during
recovery

• for started transactions without completed prepare phase: abort

• if no vote was recorded for some participant: ask again

• if abort was logged: redo abort

• if commit was logged: redo commit

• coordinator crash: participant needs to find out global state, by asking
restarted coordinator

• before prepare: can safely abort transaction

• after prepare (uncertainty period): need to wait for coordinator, or try to find
other participants

11

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Correctness of 2PC

• Safety: if one process is in a final (committed/aborted) state, then either all
processes are in the committed state, or all processes are in the aborted state

• Liveness: for a finite number of failures, 2PC will reach a final global state
after a finite sequence of state transitions (i.e. messages sent)

12

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Nested Transactions

• Additional operations on coordinator:

• openSubTransaction(trans): nested transaction ID must include/refer to
parent transaction

• Transaction status may be committed, aborted, or provisional

• provisional commit is not durable, and visible only within the outer
transaction (sub-transaction joins parent transaction)

• server may lose information about provisional commits in a crash

• Parent transaction can be committed even if sub-transactions failed

• Application needs to take appropriate corrective measures (e.g. retry)

13

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Nested Transactions: 2PC

• Hierarchic model: prepare calls are made recursively through the tree

• intermediate nodes act as coordinators for their sub-transactions

• entire transaction will abort if one participant aborts

• Flat model: top-level coordinator asks all coordinators of provisionally-
committed transactions

• if a parent transaction has already aborted, the sub-transaction must vote
"abort": coordinator should send list of aborted transactions in prepare
message

14

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

XA

• X/Open specification for distributed transactions (1991)

• Application Program (AP)

• Resource Manager (RM)

• Transaction Manager (TM)

• not meant for communication (i.e. unspecified wire protocol)

• suggests to use OSI DTP

• XA is interface between RM and TM

• unit of work: global transaction

• transaction branches on individual RMs, identified by XIDs

15

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

xa.h

• C API to be used by the RM

• XA implementation provided by the TM vendor

• routines to be called by the RM: ax_reg, ax_unreg

• routines to be called by the TM (implemented by the RM, as function
pointers):

• xa_open, xa_close: initialisation

• xa_start: create a new branch for the current thread, and associate it with
given XID (or join current thread if XID was already started)

• xa_end: dissociate current thread with XID

• xa_prepare, xa_commit, xa_rollback: 2PC

16

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

XA Implementations

• integrated into Java Transaction API (JTA), through
javax.transaction.xa.XAResource

• TM Implementations

• IBM Customer Information and Control Service (CICS)

• Bea Tuxedo

• Microsoft Transaction Server (also: OLE transactions)

• RM Implementations

• Oracle, DB/2, MySQL, Berkeley DB, ...

17

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

TX

• X/Open API for APs

• tx_begin, tx_rollback, tx_commit

• tx_info: returns XID

18

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

CORBA Transaction Service

• OMG document formal/03-09-02: Transaction Service Specification, version 1.4

• both local API, and wire protocol

• IDL interfaces:

• Current

• Control

• TransactionFactory

• Terminator

• Coordinator

• Resource

• Synchronization

19

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Current Interface

• gives access to current transaction, simplifies programming

• available as initial reference ("TransactionCurrent")

• needs to be thread-local

• void begin() raises(SubtransactionsUnavailable);

• void commit(in bool report_heuristics)
 raises(NoTransaction, HeuristicsMixed, HeuristicsHazard);

• void rollback()...

• Control get_control();

• Control suspend(); void resume(in Control which)...;

20

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

TransactionFactory Interface

• implemented by TP monitor

• Control create(in unsigned long time_out); // seconds

• Control recreate(in PropagationContext ctx);

21

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Control Interface

• Terminator get_terminator()...

• Coordinator get_coordinator()...

22

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Terminator Interface

• void commit(in boolean report_heuristics)..

• void rollback();

23

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Coordinator Interface

• responsible for a single transaction

• access to status, transaction hierarchy

• creation of sub-transactions

• RecoveryCoordinator register_resource(in Resource r)...

• void register_synchronization(in Synchronization sync)...

• PropagationContext get_txcontext()...

24

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Resource Interface

• Vote prepare() raises{HeuristicsMixed, HeuristicsHazard};

• VoteReadOnly: no modifications made

• VoteCommit, VoteRollback

• void rollback()...

• void commit()...

• void commit_one_phase()...

• void forget();

• only used after heuristic outcomes

25

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Synchronization Interface

• used to integrate transient state

• void before_completion();

• invoked before the prepare step

• object may start copying transient state to some resource

• void after_completion(in Status s);

• invoked after complete or rollback

26

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Heuristic Decisions

• unilateral decisions, before consensus was achieved

• typically in expectation of a likely outcome, and under some resource
pressure (e.g. lock timeout)

• only allowed/possible in the "uncertain" state

• reported as exceptions

• HeuristicRollback

• HeuristicCommit

• HeuristicMixed

• HeuristicHazard (not all outcomes known; the known ones are either all
commit or all rollback)

27

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Transaction Context

• Automatically transmitted together with operation invocations
• Alternatively: explicitly pass Control object to remote operation

• specific format for a single TP monitor unspecified; interoperable version
encoded as a IOP::ServiceContext (ServiceId 0), as PropagationContext
struct TransIdentity{

 Coordinator coord;

 Terminator term;

 otid_t otid; // compatible with XA XID

 };

struct PropagationContext{

 unsigned long timeout;

 TransIdentity current;

 sequence<TransIdentity> parents;

 any implementation_specific_data;

};

28

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Policies

• objects need to express their ability to participate in a transaction

• OTS 1.0, 1.1: Inheritance from empty interface TransactionalObject

• OTS 1.2: IOR contains component indicating policy of object (OTSPolicy)

• requires: object must be invoked in the context of a transaction

• forbids: object must not be invoked in a transaction

• adapts: can live with or without transaction

• CORBA messaging: communication may go through a broker breaks
transaction boundary

• InvocationPolicy specifies whether target object requires SHARED
transactions, UNSHARED transactions, or either kind

• Server code sets policy on POA creation

29

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

OTS Implementations

• Java Mapping: JTS (Java Transaction Service) is based on OTS 1.2

• BEA Jolt

• VisiBroker ITS (Integrated Transaction Service)

• BEA Tuxedo (for C++)

• Orbix E2A Application Server Platform

• Encina++ (IBM TXSeries)

• OpenORB transaction service

• ...

30

Freitag, 12. Februar 2010

Transactions | Middleware and Distributed Systems MvL 2009

Related Technology

• Persistent State Service (PSS) (formal/02-09-06)

• data definition in PSDL

• Additional Structuring Mechanisms for OTS (formal/05-01-01)

• Activity Service

• support for long-running transactions

• ACID properties not necessary; resources are committed before end of
activity

• additional transaction concepts: activity, compensation

31

Freitag, 12. Februar 2010

