
Middleware and Distributed Systems

Security

Martin v. Löwis

Security | Middleware and Distributed Systems MvL 2008

Introduction

• Threat model: shared resources need to be protected against adversaries

• Security Policy: specification defining what operations are on the resources
are acceptable

• Often declared through access control

• Security Mechanism: procedure/infrastructure to enforce a security policy

• Design process

• Cryptography: art of encoding information so that only a designated recipient
can understand it; distinct from security

2

Security | Middleware and Distributed Systems MvL 2008

Cryptography

• based in military applications (esp. intelligence and counter-intelligence)

• recently also used for other parts of life (esp. industry)

• opening of cryptography caused better understanding of the concept,
more uniform terminology (e.g. usage of common names Alice, Bob, Carol,
Dave, Eve, Mallory, Sara

• Literature

• Schneier, Applied Cryptography

• Anderson, Security Engineering

3

Security | Middleware and Distributed Systems MvL 2008

Threats and Attacks

• Threats

• Leakage: acquisition of information by unauthorized recipients

• Tampering: unauthorized alteration of information

• Vandalism: inference with proper operation of a system without gain for the
perpetrator

• Attacks depend on gaining access to a channel or a node

• Eavesdropping: obtaining coies of messages without authority

• Masquerading: sending or receiving messages using the identity of another
participant

• Replaying: storing intercepted messages and sending them later

• Denial of service: flooding a channel or node so that access to others is denied

4

Security | Middleware and Distributed Systems MvL 2008

Design process for secure systems

• Assume for the worst

• interfaces are exposed to attackers

• networks are insecure

• algorithms are available to attackers

• attackers may have access to large resources

• Define policies

• Define list of threat

• Specify how each threat is prevented through mechanism built into the
system

• ideally: formally proof properties

• employ auditing

5

Security | Middleware and Distributed Systems MvL 2008

Cryptography

• Only consider "advanced" techniques here (e.g. no substitution algorithms)

• Algorithm should have a secret key as its parameter (KA, KB)

• Encryption E(K, M), decryption D(K, M)

• Shared-key algorithms: KAB used both for encryption and decryption

• public/private key algorithms: each participant has a pair of keys

• Applications of cryptography:

• Secrecy and integrity of messages

• Authentication

• Digital Signatures

6

Security | Middleware and Distributed Systems MvL 2008

Secrecy and Integrity

• Secrecy: Alice sends Bob E(K, M); Bob applies D(K, E(K, M))

• Problem: How can Alice and Bob exchange the key securely? (key
exchange)

• Problem: How can Bob know that Alice just send the message, as Mallory
might have captured a message and replayed it? (replay attack)

• Integrity: may just use encryption; if D yields a meaningful result, it is
authentic

• better: use Message Authentity Codes MAC(M):

• Alice sends encrypted MAC along with the message

• Bob decrypts received MAC, computed MAC(M), and compares them

7

Security | Middleware and Distributed Systems MvL 2008

Authentication

• Needham, Schroeder (1978): Using Encryption for Authentication in Large Networks.
Communications of the ACM, Vol. 21, pp. 993-999

• Authentication against a central server: Sara has shared secrets with both Alice and
Bob

• Alice sends a plain-text message to Sara requesting a ticket for authentication to
Bob

• Sara generates a new random secret key KAB, and puts E(KB, KAB) into the ticket

• Sara sends to Alice: E(KA, ticket+KAB)

• Alice decrypts the message, and extracts E(KB, ticket) and KAB

• Alice sends to Bob: ticket, E(KAB, M)

• Bob decrypts the ticket, verifies it really is from Sara, retrieves KAB, and decodes
the message

8

Security | Middleware and Distributed Systems MvL 2008

Authentication (2)

• Needham/Schroeder algorithm uses concept of a challenge: Alice can only
use the ticket for B if she really possesses KA

• sending her password to Sara is not necessary for authentication

• Problem with that algorithm: a central server is needed which shares a secret
key with each user

• Problem later solved through public/private key cryptography

9

Security | Middleware and Distributed Systems MvL 2008

Digital Signatures

• Scenario 1: Bob wants to make sure the message really originates from Alice

• Can use MAC as discussed earlier

• MAC is sometimes also called message digest

• Scenario 2: Bob wants to prove to Carol that the message is from Alice

• Cannot use shared keys anymore, since Bob would need to reveal the key
to Carol

• Solution 1: Alice provides KApub to Bob in advance, then sends
M, E(KApriv, digest(M)); Bob and Carol both decrypt the digest and verify it

• Problem: How can Carol be sure about KApub?

• Solution 2: Digital Certificates

10

Security | Middleware and Distributed Systems MvL 2008

Digital Certificates and Digital Signatures

• Dave, an authority, publishes his public key KDpub

• Alice identifies herself somehow to Dave, and simultaneously provides KApub

• Dave returns to Alice C=E(KDpriv, KApub)

• Alice sends C, M, E(KApriv, digest(M)) to Bob

• Bob and Carol decrypt C with KDpub, obtain certified KApub, then decrypt the
digest with KApub, and compare it with digest(M)

11

Security | Middleware and Distributed Systems MvL 2008

Access Control

• Protection domain: List of <resource, right> pairs given to a set of processes
in a distributed system

• typically established by a principal authenticating to the system, then
processes acting on behalf of the principal

• typically implemented through capabilities or access control lists

• variations: role-bases access control (principals act in roles, and gain
access based on their roles)

12

Security | Middleware and Distributed Systems MvL 2008

Capabilities

• tokens that enumerate the operations that a process may perform

• similar to physical keys in the real world

• need to be unforgable in a distributed system

• client passes capability along with the request; server verifies it and performs the
operation

• problem 1: key theft

• may try to revoke capability when it is reported stolen

• partial solution: include the holder in the capability

• problem 2: capability revocation

• need to communicate to servers to "exchange the locks"

• partial solution: add timeout (end of validity) to capability

13

Security | Middleware and Distributed Systems MvL 2008

Access Control Lists

• add a list of <principal, operation> pairs to each resource

• several variations, e.g. groups of principals, separate allow and deny
entries, ...

• problem: assumes that principals can be reliably authenticated

14

Security | Middleware and Distributed Systems MvL 2008

Credentials

• evidence provided by principal when requesting access to a resource

• certificates, passwords, physical tokens, ...

• speaks-for relationship: possession of credentials allows a principal to speak
for another one

• delegation: passing of credentials from one process to another, to allow the
other process to speak for the principal

• typically limited by permitted operations and by time

15

Security | Middleware and Distributed Systems MvL 2008

Cryptographic Algorithms

• Cryptoanalysis: known ciphertext, known plaintext, chosen plaintext;
 differential analysis (similar input data), related key analysis (similar keys)

• algorithm considered broken if a better-than-brute-force attack is known

• Symmetric vs. asymmetric algorithms

• block ciphers: algorithms often operate on fixed-size blocks (e.g. 64 bits)

• threat: attacker might recognize patterns, perform known plaintext analysis

• cipher block chaining: cipherblock i is XOR'ed with plaintext block i+1 before
encryption

• repeated plaintext data will not result in same cipertext anymore

• threat: first encrypted block in a communication just based on plaintext

16

Security | Middleware and Distributed Systems MvL 2008

Cryptographic Algorithms (2)

• Stream ciphers: encrypting blocks of data might be inappropriate if data need
to be transmitted quickly after the get produced

• e.g. live AV data

• encryption must encrypt bit-per-bit

• solution: keystream generator produces a stream of key bits based on
some initial state

• Quality of algorithm: diffusion and confusion (Shannon)

• confusion: make output look different from input (e.g. combining multiple
input bits into one)

• diffusion: dissipate regular patterns in the input, to make output look
"random" (Avalanche Effect)

17

Security | Middleware and Distributed Systems MvL 2008

Shared-key (symmetric) algorithms

• TEA (Tiny Encryption Algorithm): Wheeler and Needham 1994

• mainly for educational usage

• 128 bit keys (4x32), 64 bit blocksize

• DES (Data Encryption Standard): U.S. National Bureau of Standards 1977

• originally by IBM

• 56-bit key, 64 bit blocksize

• designed for efficient implementation in hardware

• IDEA (International Data Encryption Algorithm): Lai and Massey 1990

• developed as successor to DES; 128-bit keys

18

Security | Middleware and Distributed Systems MvL 2008

Shared-key algorithms (2)

• RC4: Rivest 1992

• variable-length keys up to 256 bytes

• allows for efficient implementation in software, used in 802.11

• AES (Advanced Encryption Standard): Daemen and Rijmen 2000

• submitted to U.S. NIST under the name Rijndael

• AES: block length 128 bits, key lengths 128, 192, 256

• usable for U.S. SECRET data (TOP SECRET requires keys >= 192 bits)

• Rijndael: block and key length multiple of 32, between 128 and 256

19

Security | Middleware and Distributed Systems MvL 2008

TEA

• uses integer addition, XOR and shift for diffusion and confusion

• bit shuffling: P-boxes (permutation)

• non-linear functions: S-boxes (substitution)

• Feistel network:

• encryption and decryption are very similar (reverse key schedule)

• product cipher (output is product of several rounds)

• 32 rounds

• each round takes as input the two 32-bit parts of the text, and combines
them with the 4 32-bit parts of the key and with each other

• delta added to obscure key

20

Time | Middleware and Distributed Systems MvL & PT 200721

Source: Wikipedia

Security | Middleware and Distributed Systems MvL 200822

TEA: Encryption

void encipher(unsigned long *const v,unsigned long *const w,
 const unsigned long *const k)
{
 register unsigned long y=v[0],z=v[1],sum=0,delta=0x9E3779B9,

 a=k[0],b=k[1],c=k[2],d=k[3],n=32;

 while(n-->0)
 {
 sum += delta;
 y += (z << 4)+a ^ z+sum ^ (z >> 5)+b;
 z += (y << 4)+c ^ y+sum ^ (y >> 5)+d;
 }

 w[0]=y; w[1]=z;
}

Security | Middleware and Distributed Systems MvL 2008

TEA: Decryption

void decipher(unsigned long *const v,unsigned long *const w,
 const unsigned long *const k)
{
 register unsigned long y=v[0],z=v[1],sum=0xC6EF3720,

 delta=0x9E3779B9,a=k[0],b=k[1],
 c=k[2],d=k[3],n=32;

 /* sum = delta<<5, in general sum = delta * n */

 while(n-->0)
 {
 z -= (y << 4)+c ^ y+sum ^ (y >> 5)+d;
 y -= (z << 4)+a ^ z+sum ^ (z >> 5)+b;
 sum -= delta;
 }

 w[0]=y; w[1]=z;
}

23

Security | Middleware and Distributed Systems MvL 2008

TEA weaknesses

• key equivalence: symmetric usage of key causes certain 4-tuples of keys to
be equivalent

• effective key size is only 126

• related key attacks: similar keys lead to similar output

• need 223 chosen plaintexts for successful key discovery

24

Security | Middleware and Distributed Systems MvL 2008

AES

• general substitution-permutation network

• key schedule: generate round keys from encryption key, expanding it to block
size

• each round has four steps:

• AddRoundKey: combine 4x4 bytes with round key

• SubBytes: substitute each byte with another one according to a specified
table

• ShiftRows: shift each row of the table somewhat

• MixColumns: apply a linear transformation on each column

25

Security | Middleware and Distributed Systems MvL 2008

AES: AddRoundKey

26

Source: Wikipedia

Security | Middleware and Distributed Systems MvL 2008

AES: SubBytes

27

Security | Middleware and Distributed Systems MvL 2008

AES: ShiftRows

28

Security | Middleware and Distributed Systems MvL 2008

AES: MixColumns

29

Security | Middleware and Distributed Systems MvL 2008

Public Key (asymmetric) Algorithms

• Key pair: Ke, Kd so that D(Kd, E(Ke, M)) == M

• Ke made known public; Kd kept secret

• Assumption: Derivation of Kd from Ke is computationally expensive;
generation of a new pair Kd/Ke is not

• RSA (Rivest, Shamir, Adelman), 1978

• arbitrary key sizes, must generate two large primes

• ElGamal: Taher Elgamal, 1984

• need to compute a large prime and its generator

• Various algorithms based elliptic curves

30

Security | Middleware and Distributed Systems MvL 2008

RSA

• Choose two large primes P and Q, N = P·Q, Z = (P-1)·(Q-1)

• Publish N, keep Z secret

• Choose d so that it is relatively prime with Z (lcd(d, Z) = 1)

• Choose e so that e·d ≡ 1 (mod Z)
• Compute through extended Euclidean algorithm

• E(e, M) = Me mod N

• Compute through repeated quadration

• D(d, M) = Md mod N

• Idea: Med ≡ M (mod Z)

• Fermat-Euler-Theorem: MZ ≡ 1 (mod N)

• hence Med ≡ M1+kZ ≡ M1MZk ≡ M11k ≡ M(mod N)

31

Security | Middleware and Distributed Systems MvL 2008

RSA Analysis

• Chosen plain-text attack: Encrypt all messages with the public key until the
encrypted message is found

• needs block size large enough to make this attack infeasible

• Compute private key from public key: Needs to factor N=PQ

• feasibility depends on efficient factorization algorithm; none is known today

• Key generation: need to test primality of large numbers quickly

• probabilistic tests: determine whether P, Q are "probable primes"

• fast deterministic tests: cyclotomy test, elliptic curve primality test

• N not a power of two - need padding to achieve bit-oriented block sizes

• introduce randomized padding to protect better against brute force attacks

32

Security | Middleware and Distributed Systems MvL 2008

Secure Hashing

• fixed-length bit pattern that characterizes a message

• Digest/Hash function H(M)

• ideally: collision-free; M1 ≠ M2 ⇒ H(M1) ≠ H(M2)

• practically: if hash is short than message, there will be collisions

• collisions should not appear in practice

• ideally: irreversible (one-way hash functions)

• Birthday paradox (birthday attack): for a random sample of

elements from a total of N elements, there is a 50% probability of duplicates

33

√
2 ∗ ln(2) ∗N ≈ 1.2

√
N

Security | Middleware and Distributed Systems MvL 2008

Secure Hashing (2)

• MD5 (Message Digest 5): Rivest 1992

• arbitrary-sized input, 128 bit hash

• broken; vulnerable to suffix attack (if MD5(A)==MD5(B) then for all X, Y
MD5(X+A+Y) == MD5(X+B+Y))

• SHA-1 (US Secure Hash Algorithm 1): NIST 1993

• based on MD4, 160 bit hash

• assumed broken: Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu report
that fewer than 269 operations are necessary to produce collision

• SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512): NIST 2002

• different size of resulting hash

34

Security | Middleware and Distributed Systems MvL 2008

MD-5

• Input message split into 512-bit chunks; potentially padded

• padding: last 64 bits specify size of the original message, preceded by
zeros, preceded by a single 1-bit, preceded by the original message

• multiple blocks are fed to algorithm

• state: 4 words

• A = 01 23 45 67, B = 89 ab cd ef, C = fe dc ba 98, D = 76 54 32 10

• each 32-bit word is processed in four rounds

• 16 words per chunk -> 64 rounds

35

Security | Middleware and Distributed Systems MvL 2008

MD5 (2)

• 64 constant Ki, one per round (computed from sine values)

• 4 round functions:

36

Security | Middleware and Distributed Systems MvL 2008

MD5 (3)

37

Security | Middleware and Distributed Systems MvL 2008

Public Key Infrastructure (PKI)

• X.509: Information technology - Open Systems Interconnection - The
Directory: Public-key and attribute certificate frameworks, CCITT 1988

• part of OSI Directory

• RFC 3280 (obsoletes 2459): Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile

• Certificate Authority (CA): issuer/signer of public keys

• removes need for independent verification of public keys, assuming CA is
trusted

• CA policy: under what conditions are certificates issued? how is the
private key of the CA protected against theft? what information about the
subject will be included?

38

Security | Middleware and Distributed Systems MvL 2008

PKI (2)

• CA hierarchy: individual users don't obtain certificate from a single authority,
but root CA certifies sub-ordinate CA

• certificate chain: sequence of certificates leading up to root

• signed information in certificate:

• subject: who is being certified (distinguished name, public key

• issuer: what CA issued the certificate (distinguished name, signature)

• period of validity

• additional attributes

39

Security | Middleware and Distributed Systems MvL 2008

X.509: Certificate

Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

40

Security | Middleware and Distributed Systems MvL 2008

TBSCertificate

TBSCertificate ::= SEQUENCE {

 version [0] EXPLICIT Version DEFAULT v1, -- today, always v3

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

 extensions [3] EXPLICIT Extensions OPTIONAL

 }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

41

Security | Middleware and Distributed Systems MvL 2008

Certificate fields

CertificateSerialNumber ::= INTEGER

 Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time }

 Time ::= CHOICE {

 utcTime UTCTime, -- UNIVERSAL 23

 generalTime GeneralizedTime }

 UniqueIdentifier ::= BIT STRING

 SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier,

 subjectPublicKey BIT STRING }

 Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

42

Security | Middleware and Distributed Systems MvL 2008

Algorithms

AlgorithmIdentifier ::= SEQUENCE {

 algorithm OBJECT IDENTIFIER,

 parameters ANY DEFINED BY algorithm OPTIONAL }

43

Security | Middleware and Distributed Systems MvL 2008

Names

 Name ::= CHOICE { RDNSequence }

 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

 RelativeDistinguishedName ::= SET OF AttributeTypeAndValue

 AttributeTypeAndValue ::= SEQUENCE {

 type AttributeType,

 value AttributeValue }

 AttributeType ::= OBJECT IDENTIFIER

 AttributeValue ::= ANY DEFINED BY AttributeType

44

Security | Middleware and Distributed Systems MvL 2008

Extensions

 Extension ::= SEQUENCE {

 extnID OBJECT IDENTIFIER,

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING }

Predefined extensions:

id-ce OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 29 }

45

Security | Middleware and Distributed Systems MvL 2008

OIDs for Algorithms

• 1.3.14.3.2.3 md5WithRSA

• 1.3.14.3.2.6 des-ecb

• 1.3.14.3.2.7 des-cbc

• 1.3.14.3.2.13 DSA-SHA

• 1.3.14.3.2.15 RSA-SHA

• 1.3.14.3.2.26 sha1

• 1.2.840.113549.1.1.1 rsaEncryption

• 1.2.840.113549.1.1.4 md5WithRSAEncryption

• 1.2.840.113549.1.1.5 sha1WithRSAEncryption

• 1.2.840.113549.1.1.11 sha256WithRSAEncryption

• 1.2.840.113549.1.1.13 sha512WithRSAEncryption

• 1.3.6.1.4.1.18832.11.3.1 Elliptic-Curve Nyberg-Rueppel with SHA-1 signature

46

Security | Middleware and Distributed Systems MvL 2008

OIDs for Names

• 2.5.4.3 CN

• 2.5.4.4 SN

• 2.5.4.5 serialNumber

• 2.5.4.6 C

• 2.5.4.7 L

• 2.5.4.8 ST

• 2.5.4.9 streetAddress

• 2.5.4.10 O

• 2.5.4.11 OU

• 2.5.4.72 role

• 0.9.2342.19200300.100.1.1 userId

• 1.2.840.113549.1.9.1 emailAddress

47

Security | Middleware and Distributed Systems MvL 2008

OIDs for Extensions

• 2.5.29.14 Subject Key Identifier

• 2.5.29.15 Key Usage

• 2.5.29.17 Subject Alternative Name

• 2.5.29.18 Issuer Alternative Name

• 2.5.29.19 Basic Constraints

• 2.5.29.37 Extended Key Usage

• 2.16.840.1.113730.1.2 Netscape Base Url

• 2.16.840.1.113730.1.3 Netscape Revocation Url

• 2.16.840.1.113730.1.13 Netscape Comment

• 1.3.6.1.4.1.311.20.2 Microsoft Certificate Type

48

Security | Middleware and Distributed Systems MvL 2008

Key Usage Extension

 id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }

 KeyUsage ::= BIT STRING {

 digitalSignature (0),

 nonRepudiation (1),

 keyEncipherment (2),

 dataEncipherment (3),

 keyAgreement (4),

 keyCertSign (5),

 cRLSign (6),

 encipherOnly (7),

 decipherOnly (8) }

49

Security | Middleware and Distributed Systems MvL 2008

Subject Alternative Name Extension

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
GeneralName ::= CHOICE {
 otherName [0] OtherName,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] ORAddress,
 directoryName [4] Name,
 ediPartyName [5] EDIPartyName,
 uniformResourceIdentifier [6] IA5String,
 iPAddress [7] OCTET STRING,
 registeredID [8] OBJECT IDENTIFIER }
 OtherName ::= SEQUENCE {
 type-id OBJECT IDENTIFIER,
 value [0] EXPLICIT ANY DEFINED BY type-id }

50

Security | Middleware and Distributed Systems MvL 2008

Extended Key Usage Extension

• ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId

• KeyPurposeId ::= OBJECT IDENTIFIER

• 1.3.6.1.5.5.7.3.1 Server Authentication

• 1.3.6.1.5.5.7.3.2 Client Authentication

• 1.3.6.1.5.5.7.3.3 Code Signing

• 1.3.6.1.5.5.7.3.4 Email Protection

• 1.3.6.1.5.5.7.3.8 Time Stamping

• 1.3.6.1.5.5.7.3.9 OCSP Signing

• 1.3.6.1.4.1.311.10.3.4 Microsoft Encrypting File System

51

Security | Middleware and Distributed Systems MvL 2008

Transport Layer Security

• RFC 2246

• goal: provide privacy and data integrity, interoperable, extensible, efficient

• two layers: record protocol, handshake protocol

• record protocol:

• private connection (DES, RC4, ...)

• reliable transport (SHA, MD5, ...)

• handshake protocol: allow client and server to authenticate to each other,
using asymmetric algorithms

• one peer does not need to authenticate

• negotiate shared secret for communication

52

Security | Middleware and Distributed Systems MvL 2008

Kerberos

• Originally RFC 1510 (Kerberos v5), recently revised in RFC 4120

• based on Needham/Schroeder algorithm

• developed for MIT Project Athena

• KDC: Key Distribution Center

• Realm: Scope of a KDC

• Principal: uniquely named client or server

• Server: principal which provides a resource to clients

• Ticket: record to authenticate a client to a server

53

Security | Middleware and Distributed Systems MvL 2008

Kerberos: Basic Operation

• Client requests TGT (Ticket Granting Ticket) from AS (Authentication service)

• KRB_AS_REQ and KRB_AS_REP

• Client requests ticket for specific service from TGS (Ticket-Granting Service)

• KRB_TGS_REQ and KRB_TGS_REP; ticket carries session key

• client caches all tickets in ticket cache

• Client communicates session key to service

• KRB_AP_REQ and KRB_AP_REP (only for mutual authentication)

• Messages include "authenticator": nonce values computed from system time
and principal name, signed with session key

• time stamp prevents replay attacks; server needs replay cache for clock
skew

• Client and server exchange KRB_PRIV and KRB_SAFE messages

54

Security | Middleware and Distributed Systems MvL 2008

Kerberos: Tickets

Ticket ::= [APPLICATION 1] SEQUENCE {
 tkt-vno[0] INTEGER, -- 5
 realm[1] Realm,
 sname[2] PrincipalName,
 enc-part[3] EncryptedData
}
Realm ::= GeneralString
PrincipalName ::= SEQUENCE {
 name-type[0] INTEGER,
 name-string[1] SEQUENCE OF GeneralString
}

55

Security | Middleware and Distributed Systems MvL 2008

Kerberos: Tickets (2)

EncTicketPart ::= [APPLICATION 3] SEQUENCE {
 flags[0] TicketFlags,
 key[1] EncryptionKey,
 crealm[2] Realm,
 cname[3] PrincipalName,
 transited[4] TransitedEncoding,
 authtime[5] KerberosTime,
 starttime[6] KerberosTime OPTIONAL,
 endtime[7] KerberosTime,
 renew-till[8] KerberosTime OPTIONAL,
 caddr[9] HostAddresses OPTIONAL,
 authorization-data[10] AuthorizationData OPTIONAL
}

KerberosTime ::= GeneralizedTime
 -- Specifying UTC time zone (Z)

56

Security | Middleware and Distributed Systems MvL 2008

TicketFlags

TicketFlags ::= BIT STRING {
 reserved(0),
 forwardable(1),
 forwarded(2),
 proxiable(3),
 proxy(4),
 may-postdate(5),
 postdated(6),
 invalid(7),
 renewable(8),
 initial(9),
 pre-authent(10),
 hw-authent(11)
 }

57

Security | Middleware and Distributed Systems MvL 2008

TicketFlags (2)

• initial: ticket originates from AS

• pre-authenticated: the client has authenticated itself to the KDC

• required in Active Directory; client needs to encrypt time stamp with
password hash

• designed to prevent offline attacks against the shared secret

• HW-authenticated: the client has authenticated itself using a hardware token

• forwardable/forwarded: TGT can be moved to a different network

• proxiable/proxy: ticket allows the service to act on the principal's behalf

• renewable: ticket can be renewed until renew-till; KDC might check whether it
was reported stolen

• may-postdate/postdated: ticket starts validity at a future point in time

58

Security | Middleware and Distributed Systems MvL 2008

Application Programming Interfaces and Layering

• GSSAPI (RFC 2743): Generic Security Service API

• Attempt to integrate multiple security mechanisms into single API

• Implies wire protocol for interoperability

• different mechanisms are not interoperable: Kerberos, NTLM, DCE,
SPKM, ...

• CryptoAPI and SSPI (Microsoft): single API for multiple mechanisms

• CSP: Cryptographic Service Provider

• offers various cryptographic functions

• SSPI authentication mechanisms: Schannel (TLS), Kerberos, Negotiate
(SPNEGO), NTLM, DIGEST

59

