
Middleware and Distributed Systems

Patterns

Martin v. Löwis

Patterns | Middleware and Distributed Systems MvL 2008

Broker

• Buschmann et.al.: A System of Patterns

• Architectural Pattern

• six components: clients, servers, brokers, bridges, client-side proxies, server-
side proxies

• responsibility of broker: (un)register servers, offer APIs, transfer messages,
error recovery, interoperate with other brokers through bridges, locate servers

• CORBA: What is the ORB?

2

Patterns | Middleware and Distributed Systems MvL 2008

ORB: Connection Management

• Network transparency: clients should not need to explicitly establish and
close network connections

• Implicit binding: ORB creates connection on first request

• Connection reuse: multiple requests to same server object should use the
same TCP connection

• Connection multiplexing: multiple stub objects referring to remote objects of
the same server should reuse

• Connection re-establishment of broken connections

• Location forwarding: invoking a request might result in a location-forward
error

• Connection shutdown: "idle" connections should be closed

3

Patterns | Middleware and Distributed Systems MvL 2008

Connection Shutdown

• Problem: Either client or server may need to close a connection to reclaim OS
resources

• Client can shutdown at any time, but shouldn't if it still waits for a response
(connection won't be idle)

• Server should not shutdown while processing requests

• Problem: what if requests are still in transit?

• CloseConnection: Server indicates that no request is known at the time of
closing

• Client can abort all requests with COMPLETED_NO, or retry

4

Patterns | Middleware and Distributed Systems MvL 2008

Proxy

• Gamma et.al.: Design Patterns

• Control access to an object using another proxy object

• RPC: Proxy delegates operation to remote object

• buffer management

• marshalling

• access to connection management

• blocking operations

5

Patterns | Middleware and Distributed Systems MvL 2008

Proxy: Marshalling

• Issues:

• Avoid copying

• Deal with alignment

• Deal with endianness

• Time vs. size

• Demo: Fnorb, ORBit, Mico

6

Patterns | Middleware and Distributed Systems MvL 2008

Adapter

• Gamma et.al.

• Adjust interface of a class to another one, expected by the client

• CORBA: Object Adapter (OA) - is it an adapter?

7

Patterns | Middleware and Distributed Systems MvL 2008

Adapter: Dispatching

• Skeleton: Adapter between ORB and object implementation (servant)

• Unmarshalling of parameters

• CORBA: can only unmarshal parameters once operation name is known

• Invocation of method

• Implementation of interface by inheritance from skeleton: interface
methods are abstract in skeleton class

• Demo: Fnorb, ORBit, Mico

8

Patterns | Middleware and Distributed Systems MvL 2008

Portable Object Adapter

Replaces Basic Object Adapter (BOA) of CORBA 2.1. It specifies details of
object activation (broker pattern), and allows, in a flexible way

• to assign object references to servants

• to transparently „activate“ of servants

• to assign „policies“ to servants

The definition of the POA interfaces itself is in IDL:

• POA interfaces are „local“ interfaces

• C++ implementation objects (servants) have the IDL type native

• Implementations inherit from specified base class (adapter pattern)

9

Server Application

ORB
Incoming
Request

POA
Manager

POA Servants

Patterns | Middleware and Distributed Systems MvL 2008

Flow of Incoming Requests

10

Patterns | Middleware and Distributed Systems MvL 2008

POA Features

• Provide unique programming interface for servant development across
implementations and languages

• Provide support for transparent activation of objects

• Allow a single servant to support multiple object identities simultaneously

• Allow multiple distinct instances of the POA to exist in one server

• Provide support for transient objects with minimal programming effort and
overhead

• Provide support for implicit activation of servants with POA-allocated object ids

• Allow object implementations to be maximally responsible for an objects
behaviour.

• Provide an extensible mechanism for associating policy information with objects
implemented in a POA.

• Allow programmers to construct object implementations that inherit from static
skeleton classes, generated by IDL compilers, or a DSI implementation

11

Patterns | Middleware and Distributed Systems MvL 2008

POA Architecture

• Servant: Implementation object, determines run-time semantics of one or
more CORBA objects

• ObjectID: unique identification of object within a POA (type:
sequence<octet>)

• Active Object Map: table associating ObjectID values and servants

• Incarnate: The action of creating or specifying a servant for a given ObjectID

• Etherealize: The action of detaching a servant from an ObjectID

• Default Servant: Servant that is associated with all ObjectID values not
mentioned in the active object map

12

Patterns | Middleware and Distributed Systems MvL 2008

POA Functions

• Each POA defines a namespace for servants.

• All servants within a POA have the same implementation characteristics
(policies). The Root POA has a standardized set of policies.

• Each (active) servant is associated to a POA.

• POAs determine the relevant servant upon incoming requests, and invoke the
requested operation at the servant.

13

Patterns | Middleware and Distributed Systems MvL 2008

Functions of the POA Manager

Each POA is assigned a POA manager, which is set when the POA is created.

The POA manager controls the flow of requests for one or multiple POAs

The POA manager always has one of the following states:

• Active: Requests are processed

• Holding: Reqests are saved

• Discarding: Requests are refused with the TRANSIENT exception

• Inactive: Requests are rejected, connections are shut down

14

Holding Inactive

Discarding

activate deactivate

deactivatediscard requests

deactivate

Creation
Deletion

Active

Patterns | Middleware and Distributed Systems MvL 2008

POA Manager State Transitions

15

hold_requests

hold_requests

Object reference

Repository ID Transport
Address

Object Key

POA-Name

ObjectID

Patterns | Middleware and Distributed Systems MvL 2008

Structure of an Object Reference

16

Patterns | Middleware and Distributed Systems MvL 2008

Object Incarnation

• Association of an object reference with a servant

• Two-way association:
• Given the servant, create an object reference: Activation

• Given the object reference, find a servant: Incarnation

• POA interface provides operations for activation; policies decide what modes of
activation and incarnation are supported

• C++ mapping adds _this
MyXImpl servant(17);

MX_var object = servant._this();

• In the default case (POA of servant is RootPOA), _this does:
• Create an object in the RootPOA (generating a transient ObjectID)

• Associate the ObjectID with the servant in the active object map of the root POA

• Create an object reference for this object

• Return the object reference

17

Patterns | Middleware and Distributed Systems MvL 2008

Initializing the Server-Side ORB Runtime

• Initialize the ORB: CORBA::ORB_init(/* ... */);

• Get a reference to the RootPOA:
orb->resolve_initial_references("RootPOA");

• Narrow the RootPOA to PortableServer::POA

• Obtain the servant manager of the root POA: poa->the_POAManager();

• Activate the servant manager: poa->activate();

• Create a servant instance

• Activate the servant: servant->_this();

• Start the ORB mainloop: orb->run();

18

Patterns | Middleware and Distributed Systems MvL 2008

POA Creation

• Standard policies

• Thread policy: ORB_CTRL_MODEL

• Lifespan policy: TRANSIENT

• Object Id Uniqueness Policy: UNIQUE_ID

• Id Assignment Policy: SYSTEM_ID

• Servant Retention Policy: RETAIN

• Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY

• Used for RootPOA, and as the default for new POAs

19

Patterns | Middleware and Distributed Systems MvL 2008

Reference Creation

• Create reference not associated with a servant:

• create_reference, create_reference_with_id

• Associate a servant with an object reference

• activate_object, activate_object_with_id

• Use id_to_reference, servant_to_reference to obtain object reference

• Perform implicit activation

• according to language mapping

• Use servant_to_reference

20

Patterns | Middleware and Distributed Systems MvL 2008

Object Activation

• Reference may be associated with a servant (active) or not (inactive)

• RETAIN policy: activated objects are added to active object map

• Objects get explicitly activated through activate_object[_with_id]

• Objects get automatically activated through servant manager added by
set_servant_manager

• USE_DEFAULT_SERVANT policy: Objects get automatically associated with
the default servant

• NON_RETAIN

• Objects active only during the request

• Activation occurs through the servant manager, or with the default servant

• If no object can be activated for a request: OBJECT_NOT_EXIST

• If there should be a servant manager but is none: OBJ_ADAPTER

21

Patterns | Middleware and Distributed Systems MvL 2008

Implicit Activation

• IMPLICIT_ACTIVATION policy requires SYSTEM_ID and RETAIN policies

• Interface of servant is determined from skeleton, or _primary_interface of
DynamicImplementation

• Implicit activation happens through servant_to_reference, servant_to_id, or
_this (C++, Java)

• UNIQUE_ID: only inactive servants are activated

• Otherwise, the active object is returned

• MULTIPLE_ID: implicit activation always creates a new reference

• Language-mapping specific: _this returns „current“ object if invoked in the
context of an operation implementation

22

Patterns | Middleware and Distributed Systems MvL 2008

Multi-Threading

• Explicit main loop: ORB operations

• work_pending, perform_work, run, shutdown

• Threading models:

• Single-threaded: POA is thread-unaware

• ORB-controlled: ORB creates and terminates threads at will

• Main thread: All POAs with that policy have their events processed in the
same (main) thread

23

Patterns | Middleware and Distributed Systems MvL 2008

• All interfaces are defined in
PortableServer

• CORBA 2.6: All interfaces are
local

• POA

• POAManager

• ServantManager

• ServantActivator

• ServantLocator

• AdapterActivator

• Current

24

• Policy interfaces:

• ThreadPolicy

• LifespanPolicy

• IdUniquenessPolicy

• IdAssignmentPolicy

• ImplicitActivationPolicy

• ServantRetentionPolicy

• RequestProcessingPolicy

• PortableServer::Servant is a native
type

Patterns | Middleware and Distributed Systems MvL 2008

POAManager

local interface POAManager {
	 exception AdapterInactive{};
	 enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};
	 void activate()
	 	 	 raises(AdapterInactive);
	 void hold_requests(in boolean wait_for_completion)
	 	 	 raises(AdapterInactive);
	 void discard_requests(in boolean wait_for_completion)
	 	 	 raises(AdapterInactive);
	 void deactivate(
	 	 in boolean etherealize_objects,
	 	 in boolean wait_for_completion)
	 	 	 raises(AdapterInactive);
	 State get_state();
};

25

Patterns | Middleware and Distributed Systems MvL 2008

AdapterActivator

• Implemented by application

• Used to activate unknown adapters

• Associated with POAs

local interface AdapterActivator {
 boolean unknown_adapter(
 in POA parent,
 in string name);

};

26

Patterns | Middleware and Distributed Systems MvL 2008

Servant Managers

• Implemented by application

• Associated with POAs of appropriate policy

• Activate objects on demand

• Managers can raise ForwardRequest exception

• Two kinds

• Activators: activate objects which get put into AOM

• Used with RETAIN

• Typically dispose etherealized servants

• Locators: activate objects for the period of a single call

• Used with NON_RETAIN

• Typically cache servants across multiple invocations

• Base interface: ServantManager

• local interface ServantManager{ };

27

Patterns | Middleware and Distributed Systems MvL 2008

Servant Activators

local interface ServantActivator : ServantManager {
 Servant incarnate (
 in ObjectId oid,
 in POA adapter)
 raises (ForwardRequest);
 void etherealize (
 in ObjectId oid,
 in POA adapter,
 in Servant serv,
 in boolean cleanup_in_progress,
 in boolean remaining_activations);

};

28

Patterns | Middleware and Distributed Systems MvL 2008

Servant Activators (2)

• Invocations to incarnate and etherealize are serialized and mutually exclusive

• Incarnations cannot overlap

• Etherealization may take time until all requests complete

• Invoking new request on an object that is being etherealizeds:

• Requests are blocked or rejected

29

Patterns | Middleware and Distributed Systems MvL 2008

Servant Locators

local interface ServantLocator : ServantManager {
 native Cookie;
 Servant preinvoke(
 in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 out Cookie the_cookie)
 raises (ForwardRequest);
 void postinvoke(
 in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 in Cookie the_cookie,
 in Servant the_servant);

};

30

Patterns | Middleware and Distributed Systems MvL 2008

Servant Locators (2)

• One pair of preinvoke/postinvoke per request

• No serialization:

• Locator can use Cookie to match preinvoke and postinvoke

31

Patterns | Middleware and Distributed Systems MvL 2008

POA Policies

• Policy objects: represent configuration information

• Policy type, policy value

• Generic ORB operation to create policy objects

• POA-specific operations to create POA policies

• Example: Thread policies
	 const CORBA::PolicyType THREAD_POLICY_ID = 16;

	 enum ThreadPolicyValue {

	 	 ORB_CTRL_MODEL, SINGLE_THREAD_MODEL, MAIN_THREAD_MODEL

	 };

	 local interface ThreadPolicy : CORBA::Policy {

	 	 readonly attribute ThreadPolicyValue value;

	 };

	 interface POA { // ...

	 	 ThreadPolicy create_thread_policy(in ThreadPolicyValue value);

	 }

32

Patterns | Middleware and Distributed Systems MvL 2008

Lifespan Policy

• TRANSIENT: Objects cannot outlive the POA

• Requests received after POAManager is deactivated receive
OBJECT_NOT_EXIST

• PERSISTENT: Objects exist independent from POA

• Typically combined with USER_ID policy, and perhaps servant manager

• For SYSTEM_ID POAs, proprietary mechanisms might be used

33

Patterns | Middleware and Distributed Systems MvL 2008

IdUniquenessPolicy

• UNIQUE_ID: active servants support only one object id

• MULTIPLE_ID: a servant may be associated with more than one object id

• Meaningless in combination with NON_RETAIN

34

Patterns | Middleware and Distributed Systems MvL 2008

IdAssignmentPolicy

• USER_ID: object Ids created by application

• SYSTEM_ID: object Ids created by POA

35

Patterns | Middleware and Distributed Systems MvL 2008

ServantRetentionPolicy

• RETAIN: activated servants are put into AOM

• NON_RETAIN: objects are etherealized at the end of the request.

• Requires either USE_DEFAULT_SERVANT or USE_SERVANT_MANAGER

36

Patterns | Middleware and Distributed Systems MvL 2008

RequestProcessingPolicy

• USE_ACTIVE_OBJECT_MAP_ONLY: objects not found in the AOM don‘t exist

• USE_DEFAULT_SERVANT: Objects not found in the AOM are associated with
the default servant

• Need to invoke set_servant

• Requires MULTIPLE_ID policy

• USE_SERVANT_MANAGER:

• NON_RETAIN: Need to set servant locator

• RETAIN: Need to set servant activator

37

Patterns | Middleware and Distributed Systems MvL 2008

ImplicitActivationPolicy

• IMPLICIT_ACTIVATION: support implicit activation

• Requires SYSTEM_ID and RETAIN

• NO_IMPLICIT_ACTIVATION: implicit activation is not supported

38

Patterns | Middleware and Distributed Systems MvL 2008

POA Interface: Exceptions

local interface POA {
 exception AdapterAlreadyExists {};
 exception AdapterNonExistent {};
 exception InvalidPolicy {unsigned short index;};
 exception NoServant {};
 exception ObjectAlreadyActive {};
 exception ObjectNotActive {};
 exception ServantAlreadyActive {};
 exception ServantNotActive {};
 exception WrongAdapter {};
 exception WrongPolicy {}

39

Patterns | Middleware and Distributed Systems MvL 2008

POA Interface: POA Creation and Destruction

 POA create_POA(
 in string adapter_name,
 in POAManager a_POAManager,
 in CORBA::PolicyList policies)
 raises (AdapterAlreadyExists, InvalidPolicy);
 POA find_POA(
 in string adapter_name,
 in boolean activate_it)
 raises (AdapterNonExistent);
 void destroy(
 in boolean etherealize_objects,
 in boolean wait_for_completion);

40

Patterns | Middleware and Distributed Systems MvL 2008

POA Interface: Policy Creation

ThreadPolicy create_thread_policy(in ThreadPolicyValue value);
LifespanPolicy create_lifespan_policy(in LifespanPolicyValue value);
IdUniquenessPolicy create_id_uniqueness_policy(

 in IdUniquenessPolicyValue value);
IdAssignmentPolicy create_id_assignment_policy(

 in IdAssignmentPolicyValue value);
ImplicitActivationPolicy create_implicit_activation_policy(

 in ImplicitActivationPolicyValue value);
ServantRetentionPolicy create_servant_retention_policy(

 in ServantRetentionPolicyValue value);
RequestProcessingPolicy create_request_processing_policy(

 in RequestProcessingPolicyValue value);

41

Patterns | Middleware and Distributed Systems MvL 2008

POA Interface: Attributes

	 readonly attribute string the_name;

	 readonly attribute POA the_parent;

	 readonly attribute POAList the_children;

	 readonly attribute POAManager the_POAManager;

	 attribute AdapterActivator the_activator;

42

Patterns | Middleware and Distributed Systems MvL 2008

POA Interface: Servant Managers

 ServantManager get_servant_manager()
 raises (WrongPolicy);
 void set_servant_manager(
 in ServantManager imgr)
 raises (WrongPolicy);

43

Patterns | Middleware and Distributed Systems MvL 2008

POA Interface: Default Servants

 Servant get_servant()
 raises (NoServant, WrongPolicy);
 void set_servant(in Servant p_servant)
 raises (WrongPolicy);

44

Patterns | Middleware and Distributed Systems MvL 2008

POA Interface: Activation and Deactivation

 ObjectId activate_object(
 in Servant p_servant)
 raises (ServantAlreadyActive, WrongPolicy);
 void activate_object_with_id(
 in ObjectId id,
 in Servant p_servant)
 raises (ServantAlreadyActive,
 ObjectAlreadyActive, WrongPolicy);
 void deactivate_object(
 in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);

45

Patterns | Middleware and Distributed Systems MvL 2008

POA Interface: Reference Creation

 Object create_reference (
 in CORBA::RepositoryId intf)
 raises (WrongPolicy);
 Object create_reference_with_id (
 in ObjectId oid,
 in CORBA::RepositoryId intf
);

46

Patterns | Middleware and Distributed Systems MvL 2008

POA Interface: Identity Mapping

 ObjectId servant_to_id(in Servant p_servant)
 raises (ServantNotActive, WrongPolicy);
 Object servant_to_reference(in Servant p_servant)
 raises (ServantNotActive, WrongPolicy);
 Servant reference_to_servant(in Object reference)
 raises(ObjectNotActive, WrongAdapter, WrongPolicy);
 ObjectId reference_to_id(in Object reference)
 raises (WrongAdapter, WrongPolicy);
 Servant id_to_servant(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);
 Object id_to_reference(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);
 readonly attribute CORBA::OctetSeq id;

47

Patterns | Middleware and Distributed Systems MvL 2008

POACurrent

• Current objects: Thread-local

• Initial reference: "POACurrent"

• Determines object reference of current operation

local interface Current : CORBA::Current {
 exception NoContext { };
 POA get_POA() raises (NoContext);
 ObjectId get_object_id() raises (NoContext);
 Object get_reference() raises(NoContext);
 Servant get_servant() raises(NoContext);
};

48

Patterns | Middleware and Distributed Systems MvL 2008

• ...

49

Patterns | Middleware and Distributed Systems MvL 2008

Factory

• Gamma et.al.: Design Patterns

• Allow creation of an object without having to specify what specific class that
object should have

• Examples discussed so far:

• POA: ServantActivator, AdapterActivator

• Others?

50

Patterns | Middleware and Distributed Systems MvL 2008

CosNaming::NamingContext

interface NamingContext{

NamingContext new_context();

NamingContext bind_new_context(in Name n) raises(...);

NamingContext destroy() raises(...);

//...

};

• issues: location transparency, life cycle, federation

51

Patterns | Middleware and Distributed Systems MvL 2008

Interceptor

• Schmidt et.al.: Pattern-Oriented Software Architecture

• allows services to be added transparently to a framework and triggered
automatically when certain events occur

• components: dispatcher, interceptor, framework, context

• multiple interception points, e.g. pre-marshal-request, post-marshal-request,
pre-unmarshal-reply, post-unmarshal-reply, shutdown

• example: CORBA Portable Interceptors

52

Patterns | Middleware and Distributed Systems MvL 2008

Other relevant patterns

• master-slave (farmer-worker)

• client-dispatcher-server

• publisher-subscriber

53

