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What is Middleware ?

•  Bauer et al. Software Engineering, Report on a conference sponsored by the 
NATO SCIENCE COMMITTEE Garmisch, Germany, 7th to 11th October 1968

• d’Agapeyeff: "The point about this pyramid is that it is terribly sensitive to 
change in the underlying software such that the new version does not contain 
the old as a subset. It becomes very expensive to maintain these systems 
and to extend them while keeping them live."
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What is Middleware? (2)

• Things that have been called "middleware" in the past:

• Implementations of RPC protocols (DCOM, IONA Orbix)

• Messaging Systems (MPI, MQSeries, Tibco Rendezvous)

• Database systems (Oracle, PostgreSQL)

• Run-time systems for programming languages (JVM, .NET Framework)

• Application Servers (IBM WebSphere, IIS)

• Transaction Processing Monitors (BEA Tuxedo, Microsoft MTS)

• Specifications describing these systems

• Focus of this lecture: middleware for communications
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Distributed Systems

“A distributed system is one in which the failure of a computer you didn't 
even know existed can render your own computer unusable.”
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Parallel vs. Distributed Systems

• Flynn 1966: SISD, MISD, SIMD, MIMD

• MIMD is not distributed computing

• Network speed

• Multicomputer concept

• Data exchange for SIMD and MIMD

• Shared memory, message passing

• Interconnection network design
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Taxonomy (Tanenbaum)
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Distributed System: Definitions

• Tanenbaum (Distributed Operating Systems): A distributed system is a 
collection of independent computers that appear to the users of the system 
as a single computer.

• example: network of workstations where a command started on one 
machine may arbitrarily run on any machine

• Coulouris et al.: [system] in which hardware or software components located 
at networked computers communicate and coordinate their actions only by 
passing messages.

• Consequences: concurrency, no global clock, independent failures

• Challenges: heterogeneity, openness, security, scalability, failure handling, 
concurrency, need for transparency
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Our View of Distributed System

• Distributed system: Utilize ‘services’ on other nodes

• Number of independent computing nodes, connected through network

• Computing node

• One or multiple processors with one or multiple layers of memory

• Number of external devices

• Distributed system can contain heterogeneous resources

• Parallel systems: Compute one parallel application

• Typically communication through shared memory
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Distributed application

• Number of programs or program parts, which are executed concurrently on one or 
more nodes

• Different names: Tasks (Ada), Processes (Hermes, NIL), Objects (Corba)

• Historically names as ‘processes’

• Additional problems in contrast to sequential applications

• Synchronization between processes

• Communication between processes

• Consideration of partial failures

• Middleware supports distributed application development

• Inter-process communication and synchronization mechanisms
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Lecture Objective

• Focus on middleware in distributed systems

• Ability to develop own middleware components

• Deep understanding of principles underlying distributed systems

• Lecture metadata

• 4 SWS, 6 credit points, registration until 9.5.2008

• Oral exam, 4 successful exercise presentations as precondition
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Lab Exercise

• Development of an own middleware stack

• Given wire format and interface definition language

• New exercises every three weeks on Mondays

• First exercise in the next lecture

• To be presented by all groups in the lecture (28.4., 2.6., 23.6., 14.7.)

• 1-2 students per group
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Topics

• Inter-process communication

• Interface description, remote procedure call, message-oriented 
middleware, stream communication

• OMG IDL, ASN.1, WSDL, ..., IIOP, XDR, ...

• Design patterns and algorithms in distributed systems

• Broker, Proxy, Adapter, ..., Life Cycle, Identification and State, ...

• Naming services and registries

• Distributed systems architecture models

• Adaptive and real-time middleware
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Topics (contd.)

• Security in distributed systems

• Kerberos, PKI

• Clock synchronization and coordination of distributed activities

• P2P systems

• Transactions and distributed shared memory

• Cluster and grid computing
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Topics not discussed

• Language Mappings

• Distributed File Systems

• Distributed Operating Systems

• Mobile Computing
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TWP - The Wire Protocol

• Simple messaging protocol

• Support for few data types: integers, strings, binary, structs, arrays

• Extensible

• Protocols defined in TDL

• Beispiel:
protocol Echo = id 2 {

message Request = 0 {
string text;

}

message Reply = 1 {
string text;
int number_of_letters;

}
}
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