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Design Pattern

• Definition from software engineering:
„A general reusable solution to a commonly occurring problem“

• No finished / directly applicable solution, but a template

• On the level of components and interactions

• Popular approach in computer science (Gang of Four, Portland Pattern Repository)

• Fault tolerance patterns

• ... might be suited for stateless / stateful / both kinds of system

• ... are based on observers and monitors (humans / computers)

• ... work orthogonal to primary function

• Note: ,Hamner‘-Book is about software fault tolerance, 
but the patterns are generic (enough)
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Fault Tolerance Patterns

• Architectural patterns

• Considerations that cut across all parts of the system

• Need to be applied in early design phase

• Detection patterns

• Detect the presence of root faults, error states, and failures

• Errors vs. failures -> a-priori knowledge vs. comparison of redundant elements

• Error Recovery Patterns

• Methods to continue execution in a new error-free state

• Undoing the error effects + creating the new state
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Fault Tolerance Patterns

• Error Mitigation Patterns

• Do not change application or system state, 
but mask the error and compensate for the effects

• Typical strategies for timing or performance faults

• Fault Treatment Patterns

• Prevent the error from reoccuring by repairing the fault

• System verification

• Diagnosis of fault location and nature

• Correction of the system and / or the procedures
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Architectural Patterns -
Units of Mitigation

• Only parts of the system should potentially get into error state 

• Design units of mitigation that contain errors and their error recovery mechanism

• Tradeoff: 
Component size vs. bookkeeping overhead vs. fault tolerance options

• Should contain independent atomic actions without communication focus

• Hints for granularity

• Architectural style (n-tier)

• Functional and resource (memory, CPU) boundaries

• Choice of recovery action (e.g. restart)

• Should perform self checks and fail silently, act as barrier to an error state

• Units without any recovery / mitigation possibility are too small
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Architectural Patterns -
Error Containment Barrier

• Errors spread through several mechanisms - messages, memory, follow-up actions

• Unit of mitigation boundary implemented by error containment barrier

• Treated as separate system component

• Barrier must encapsulate error state, should trigger recovery / mitigation

• In best case, perform detection close to the fault (structural proximity / time)

• Hardware: Isolate faulty components by state bit

• Babbling idiot problem

• Suspicious nodes should never be in control of the communication bus

• Bus guardian as barrier implementation
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Guardian Example: Temporal Firewall in the 
Time-Triggered Architecture (TTA)
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Architectural Patterns -
Correcting Audits

• Data element corruption can occur on hardware level (external physical faults) and 
software level (data types, currencies, pointers, ...)

• Auditing data demands correctness criteria

• Structural properties of the data structure (linked lists, pointer boundaries, ...)

• Known correlations (multiple locations, known conversion factors, cross linkage)

• Sanity checks (value boundaries, checksums)

• Direct comparison (duplication, mostly of static data)

• Automatic correction is usually easy, but must consider item consistency

• Actions: Correction, logging, resume execution

• Errors from faulty data easily propagate, common audit infrastructure helps 
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Architectural Patterns -
Redundancy

• Improving availability by reducing MTTR is the easiest way

• Error recovery phase makes the effect undone, but must be short

• Idea: Resume execution before bad effects are undone, by using identical copy

• Accomplish the same work on different hardware / software

• Does not mean identical functionality, just perform the same work

• Quick activation of redundant feature needed

• Redundancy types: spatial, temporal, informational (presentation, version)

• Special issues with software redundancy regarding deterministic behavior

• Redundancy for performance improvement, availability then by excess capacity

• Example: Checkpointing vs. fail-over
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Spatial Redundancy through Replication

• Replication: Process of ensuring consistency between redundant resources

• Mostly applied for data replication

• Active (synchronous) replication performs the same activity on every replica

• First introduced by Leslie Lamport as state machine replication

• Demands a deterministic processing of activities

• Passive replication performs activity on one replica, and transmits the delta

• Primary server vs. backup servers

• Delayed response in failover case

• Works also for non-deterministic processes

• Example: Master-Slave vs. Master-Master replication setup
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Example: VAX Spatial Hardware Redundancy
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Example: Persistency in Redundant Systems
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Example: Persistency in Redundant Systems
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Shared Disk /
,Multi-Homing‘

Shared Nothing

Advantages

Disadvantages

• Good availability 
• Good load-balancing

• Very good availability
• Unlimited scalability
• Low cost due to standard components

• Limited scalability 
• Synchronization for concurrent 
update 

• Difficult for load balancing
• Difficult for performance optimization
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Example: PostgreSQL 9 Redundancy Options

• Shared-Disk setup

• Avoids synchronization overhead, but demands network storage resp. file system

• Mutual access exclusion from active / passive node must be ensured

• Shared-Nothing setup 

• Block-device replication - Operating system can mirror file system modifications 
(e.g. GFS, DRBD)

• Point-In-Time Recovery (PITR) - Passive nodes receive stream of write-ahead 
log (WAL) records, after each transaction commit

• Master-Slave / Multimaster Replication - Batch updates on table granularity

• Statement-Based Replication Middleware - SQL is sent to all nodes
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Example: PostgreSQL 9 Redundancy Options
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Architectural Patterns -
Humans

• Minimize Human Interaction

• Error state root causes: Hardware, Software, Procedural / Operational

• Humans are bad in: Long series of steps, routine tasks, operation, response time

• Reduce failure risk due to mistakes in error treatment 
-> process errors automatically

• Operational staff should be able to monitor, but not be required for the solution

• Maximize Human Participation

• System should support experts in contributing to an error solution

• Humans are good in drawing meaning from sequence of unrelated events

• Examples: Reporting prioritization, context information (timestamp etc.)

• Safe mode: Wait for human participation
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Architectural Patterns -
Maintenance Interface

• Making maintenance task visible to the outside world - additional form of input

• Separated interfaces and handling needed

• Shed load approach or any other overload defense will affect operator

•  Intermixed interfaces might bring security problems

• Not a hidden trap door, but well well-protected dedicated path into the system

• Prevent application workload from using it

• Also useful for alike functions, such as log information fetching
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Architectural Patterns -
Someone in Charge

• Anything can go wrong, even during error processing

• If something does not work, some entity must be able to restart processing action

• For any fault tolerance activity, there must be a clearly identifiable responsible

• Example: Active / Passive standby

• Single component in charge means single failure point, also increases complexity

• Examples: Initialization module, cluster management node

• Multiple fault tolerance activities may be needed at the same time

• Component must monitor progress and might initiate alternative actions

• Dual masters problem (also with voting) 
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Architectural Patterns -
Escalation

• Endless recovery attempts might be valid in some cases (transient faults)

• But error processing becomes stalled when:

• Correcting audits remain unsuccessful

• Rollback / roll-forward remain unsuccessful

• Still human intervention should be minimized

• Escalation of the processing makes the errror less local and more drastic

• Demands understanding of faults and failure modes

• Some options: Resume partial operation, perform partial service degradation
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Architectural Patterns -
Fault Observer

• Faults and errors are detected and processed - tell all the interested parties

• Observer can publish to humans through the maintenance interface

• Can be performed by an external entity

• Good application of publish / subscribe design pattern

• Someone in charge needs the information to steer the recovery process

• Report reception usually leads to logging

• Make data storage again fault tolerant

• Typically part of some IT management software (,cockpit‘)
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Architectural Patterns -
Examples for Pattern Relation
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Detection Patterns -
Fault Correlation

• Prerequisite: Early fault removal uncovered common error types

• Look at unique signature of an error to identify an according fault category

• Enables the activation of a well-known matching error processing

• Examples: 

• Many off-by-one errors found in testing, prepare system for this

• On data errors, related data to be checked should be known beforehand

• Multiple errors can happen close in time - useful to triangulate the fault location

• fault - error - error chain

• In best case, take care of the initial fault that started the error chain 
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Detection Patterns -
System Monitor / Heartbeat

• System Monitor

• How can one part keep track that another part is functioning ?

• Monitor for system (or system parts) behavior

• Might be part of fault observer or someone in charge, or separate element

• Location of the monitor is highly application-dependent

• Heartbeat

• How does system monitor knows that a task is still working ?

• Send health reports at regular intervals (cost / benefit tradeoff)

• Ping-alike messages, heartbeat function, push / pull approach
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Detection Patterns -
Acknowledgment / Watchdog

• Acknowledgment

• Typical part of protocol definitions

• Alternative for heartbeat, does not demand additional messaging

• Piggybacking - Add acknowledgment information to response data frame

• Prominent approach in bidirectional networking protocols

• Watchdog

• Watch visible effects of the monitored task, without adding complexity to it

• Ensure that a task is alive, without messaging / processing overhead

• Strategies: Timers, peepholes, hardware test points
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Detection Patterns -
Realistic Threshold

• How much time should elapse before the system monitor takes action ?

• Message latency (e.g. heartbeat interval) vs. 
detection latency (e.g. number of missed heartbeat messages)

• Balance between short intervals (hypersensitive monitoring) and long intervals 
(possibility for silent failures)

• Influenced by communication round trip time and severity of undetected errors

• Message latency is typically worst case communication time + processing time

• Maximum unavailability > message latency + detection latency + repair time

• System can automatically adjust thresholds based on experience

• Example: Voyager spacecraft sends one heartbeat to command computer every 2s, 
failure when one is skipped

• Overload condition detected during tests with 1s heartbeat
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Detection Patterns -
Realistic Threshold - Example

• Message roundtrip time: 50ms - 100ms

• Heartbeat message: Preparation on monitor task - 20ms, Processing and reply on 
monitored task - 15ms, processing of reply - 15ms

• Detection latency: One message

• Scenarios

• Messaging latency = 50ms : All true failures reported, but many false errors

• Messaging latency = 100ms: All true failures reported, but long reporting delay
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Detection Patterns -
Voting

• Redundancy in space provides multiple answers - devise a voting strategy

• Exact voting: Decision leads to correct result or uncertainty state notification

• Inexact voting: Comparison might lead to multiple correct results

• Non-adaptive voting: Use allowable result discrepancy, put boundary on 
discrepancy minimum or maximum 

• Adaptive voting: Rank results based on past experience

• Predict what the correct value should be and take the closest result

• Example: Weighted sum of the different results
R=W1*R1 + W2*R2 + W3*R3 with W1+W2+W3=1

• Different optimizations for large answers (e.g. compare only checksum)

• Communication latency shall not influence voter operation
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Detection Patterns -
Voting

• Selection in case of multiple events: 

• Majority vote 
(uneven node number)

• Generalized median voting - 
select result that is the median, 
by iteratively removing extremes

• Formalized plurality voting - 
divide results in partitions, choose 
random member from the largest 
partition

• Weighted average technique

• Components that disagree 
(to some extend) with the vote are 
marked as erroneous
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Detection Patterns -
Maintenance and Exercises

• Routine Maintenance

• Through operator on the maintenance interface, or built in

• Typical strategy in operating systems for idle processors

• Relies on concept of checkable resources - connections, memory allocations, ...

• Routine Exercises

• Make sure that redundant spare components truly work in the failover case

• Identify latent faults by checks during light workload - typical in hardware

• Reproducible error is still better than the failure case on high workload
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Detection Patterns -
Routine Audits / Checksums

• Routine Audits (,scrubbing‘)

• Find data errors in a controlled way, usually by low priority maintenance task

• Logging is important for causal analysis - high possibility of related data errors

• Identifies latent faults

• Checksums

• Detect incorrect data by storing aggregate information along with the value

• Example: Space shuttle counts number of integers in a data structure

• Many options - parity bits, hashing

• Checksums are only for detection, recovery through error correcting codes
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Detection Patterns -
Leaky Bucket Counter

• Distinguish between transient and 
intermittent repeating faults

• Assign a leaky bucket counter 
to each unit of mitigation

• Increment for each event / fault

• Decrement periodically until initial value -> 
fault events are periodically leaked

• Exceeding the pre-defined upper limit of 
the bucket identifies a permanent fault

• Examples

• Faulty messages filling a buffer

• Correctable memory errors
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Error Recovery Patterns -
Quarantine / Concentrated Recovery

• Quarantine

• Activate the prevention of error spreading and work contribution

• Relies on units of mitigation in the architecture

• Activate barrier around the component

• Example: State indicator from voting unit

• Concentrated Recovery

• Minimize unavailability by focusing all resources on recovery activity

• Inform fault observer about recovery activity, stay inside unit of mitigation

• Establish quarantine around recovery activity

• Well established in systems with high survivability demands (e.g. telco industry)
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Error Recovery Patterns -
Rollback / Roll-Forward

• How to resume processing after error recovery / error handler execution

• Rollback

• Timing of the checkpoint / last requests decides about the rollback point

• Consider side effects of repeated work

• Errors might re-occur, so limit retries

• Roll-Forward

• Resynchronization of systems tasks might be faster

• Especially useful for event-driven stateless services

• Demands proper damage mitigation and containment

37



Dependable Systems Course PT 2012

Error Recovery Patterns -
Restart / Limit Retries

• Restart

• Way to resume execution when recovery / escalation is not possible

• cold / warm restart - skip some of the initial checks, hardware vs. software restart

• Supported by checkpoints

• Limit Retries

• Scenario: Faults are deterministic (latent fault -> same stimuli -> activation)

• Rollback might not solve the problem when the error activation reason remains

• Example: ,Killer messages‘ marked as being unprocessed, faulty checkpoints

• Problem: Propagation of error within itself, must be stopped by limiting retries

• Solution: Safeguarding and roll-forward
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• Restoring of error-free operation in active element did not succeed

• Switch to redundant resource, based on replication

• Important factors are failover time and common data access

• Establish someone in charge for steering

• Needs proper quarantine for the faulty system part
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Error Recovery Patterns -
Failover
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Redundancy Configurations for Failover

• N-to-1 and N+1 are special cases of Active / Passive with multiple services

• Active / Active has no downtime, but leads to degraded system performance in 
failover case and might demand specialized data redundancy

• N-to-1 demands a fail-back step, which is not needed with N+1

• Hot standby: No ramp-up needed on failover, no service failure for the user

• Natural property of Active / Active setups

• Possible even with Active / Passive setting through continuous replication, 
stateless services or static data

• Warm standby / log shipping: Synchronize data block-wise on spare

• Failover is typically used as synonym for Active / Passive

• Orthogonal: Shared Nothing vs. Shared Disk data management
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Failover - Dual Master Problem

• Current active element might not relinquish control - dual master problem

• Typical problem in high-availability clusters

• Split brain - Cluster interconnect is broken, several sub-cluster partitions start up

• Establish resource fencing to let only one sub-group of the cluster work

• Amnesia - Cluster restart with outdated configuration information

• Quorum - „The number (as a majority) of officers or members of a body that when 
duly assembled is legally competent to transact business“ [Merriam-Webster]

• ,Transact business‘ in the sense of ,provide service‘ - only one side should operate

• Quorum allows fencing the other sub-cluster without communication

• Loss of quorum should lead to node suicide, if possible
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Failover - Quorum Approaches

• Central arbitration - Manual quorum, centralized server / admin sets master

• Simple majority - More than the half of the nodes must form a group

• Weighted majority - Votes for each node, group with higher vote count wins

• Group decision is based on static data (nr. of votes, majority needed)

• Tie-breaker - Lightweight resolving strategy before decision inside the sub-group

• Example: Ping response from common upstream router

• Whenever node connectivity changes, quorum decision should happen again

• Split brain has different faces

• Example in DRBD file system: Multiple replication masters by human error or 
temporary connectivity lost lead to difficult data merging demand
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Failover - Weighted Majority with Quorum Device

• With even node number, provide additional external vote through quorum device

• Number of votes by the quorum devices should be less than node votes

• Allows cluster to operate with failed quorum device

• Connection scheme of the quorum device decides upon valid cases of partitioning

• Quorum device is typically a shared disk

• Only used when communication with other nodes fails

• Implemented by SCSI RESERVE,
Fibre Channel, or iSCSI
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Example - Windows File Server
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• Quorum case: Heartbeat line broken, Node 1 itself still alive

• Demands utilization of cluster storage as quorum device
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SCSI Quorum Device

• Only one SCSI device can use the bus at a time - arbitration process

• LUN acts as priority, so host bust adapters typically have the highest one

• SCSI commands RESERVE and RELEASE allow to lock one SCSI device for 
exclusive usage by another device

• Automated release on device / bus reset

• Periodical renewing of reservation by driver, or persistent reservation feature

• Example MS Windows Cluster Server

• Master node acts as defender, renews reservation every 3 seconds

• One node communication loss, challenger nodes resets the bus, waits for 7 
seconds, and tries to get the reservation again
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Example - Quorum in Clusters
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Example - Windows Server 2008 Failover Cluster

• Voting elements: Nodes, disk witness, file share witness (= tie-breaker)

• Quorum modes

• Node majority, works with odd node number

• Node and disk majority, for even node number with shared storage

• Node and file share majority, for even node number in multi-site cluster

• No majority: disk only, disk-based quorum as in Windows Server 2003

• File share / disk contains information about most recent cluster configuration 
(amnesia prevention)

• Disk mode: Hardware must offer persistent arbitration (e.g. SCSI reserve and release)

• File share mode: Active node keeps open file lock on the share (SMB feature)
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Example - Windows Server 2008 Failover Cluster

• Permanent point-to-point heartbeat surveillance on each node

• Process of achieving quorum

• As the node comes up, determine if other cluster members can be contacted

• Members compare their membership view on the cluster and agree on one
(group communication)

• Member collection determines if it has quorum

• Without enough votes, it is waited for more members to appear

• With quorum attended, resources and applications are brought into service
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Example - Windows Multi-Site Clustered File Server
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Example - Exchange 2007 Clustering

• Hub Transport Server allows 
messaging about the witness 
file share

• Witness share is checked ...

• ... when a cluster node 
comes up and only one 
cluster node is available

• ... when a previously 
reachable node is gone

• ... when a node leaves the 
cluster (release lock)

• ... periodically for validation 
purposes 
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Example - VMWare HA Split Brain Situation

• Even number of hosts run virtual machine images, stored on iSCSI / NFS

• Virtual machine image is protected by file lock with timeout

• Single host running a VM looses overall network connectivity

• Other hosts restart the VM (due to lost external reachability)

• Prevent the case that the VM on primary host will continue to run in this case

• Primary host gets connectivity back

• Takes back the virtual machine image file 
since it has the according processes

51



Dependable Systems Course PT 2012

Error Recovery Patterns -
Checkpoint

• Avoid loss of results during recovery by saving global state information

• Focus on long duration data that is hard to achieve

• Checkpoint data consistency and checkpointing interval are relevant

• The „snapshot“ problem - how to achieve global (distributed) consistency ?

• Global state == local states + messages

• Snapshot algorithms: Determine past, consistent, global state

• Chandy & Lamport (1985) landmark paper

• Relies on flushing principle of FIFO communication channels

• Control messages ,push out‘ pending messages
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Error Recovery Patterns -
Remote Storage

• Storage location for checkpoints is relevant in failover / rollback case

• Should not be the single point of failure

• Pattern is good decision point for level of redundancy needed

• Real-world application: iSCSI Multi-Homing
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Error Recovery Patterns -
Individuals Decide Timing / Data Reset

• Individuals Decide Timing

• Independent checkpoints: Opposite approach to global checkpoints

• Each process takes a dynamic local snapshot when it needs to

• Consistency establishment overhead at recovery time vs. 
global checkpoint overhead during operation

• Data Reset

• Recover from an uncorrectable data error by taking / computing initial values and 
approximate value

• Relationship to return to reference point pattern - data reset is often a correlated 
activity
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Error Mitigation Patterns -
Marked Data

• Data error detected, but no recovery option available, error mitigation is acceptable

• Data should be quarantined - do not use it, do not derive actions from it

• Example: IEEE ,Not a Number‘ (NaN)

• Result of division by zero, square root of -1, ...

• IEEE 754-1985: Standard representation for binary floating point numbers

• Rules for computation when operand is NaN - typically result is again NaN

• Options: Assume default value, skip operation, mark result as erroneous
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Error Mitigation Patterns -
Overload Toolboxes

• Handle overload situation with too many requests for the system

• Each resource class needs dedicated overload treatment

• Memory: Exhaustion hinders new request from entering the system

• CPU: Overload slows overall processing down

• Patterns: Fresh work before stale, share the load, shed load

• Tangible resources: Processing demands exclusive system resources

• Network ports, shared storage, devices, ...

• Patterns: Queue for resources, equitable resource allocation

• Consider user demands

• Patterns: Fresh work before stale, finish work in progress

57



Dependable Systems Course PT 2012

Error Mitigation Patterns -
Shed Load

• Throw away a minority of requests to serve the majority

• As early as possible, to minimize resource consumption

• Rejection method to be considered, e.g. do not send acknowledgements

• Example: ICMP

• Type 3: Destination Unreachable - not time-out on client host

• Type 4: Source Quench - typically only between routers, also used by mail servers

• Type 11: Time Exceeded - through congestion (or circular packets)

• Example: HTPP 5XX error codes

• 503: Service Unavailable

• Specialized case: Shed work at periphery
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Error Mitigation Patterns -
Finish Work in Progress / Fresh Work Before Stale

• Finish Work in Progress

• What to process, what to reject ?

• Best case is labeling of requests: „new“ vs. „continuation“

• Distinuish ,continuation‘ processes on their resource usage

• Try aggressively to get rid of resource hogs

• Can lead to oscillation when system is „starving“ for new requests after cleanup

• Solution: Let small portion of new requests through

• Fresh Work Before Stale

• If requester gives up, his retry eats up even more resources

• Perform LIFO queue handling or non-queueing for premium requesters
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Error Mitigation Patterns -
Slow It Down

• Handle overload cases and avoid saturation by multi-step escalation

• Restrict request processing with increasing severity per level

• Goal: Slow things down until the system can catch up with the load

• Feedback system, demands dedicated resources for the controller part

• Add hysterisis effect to prevent oscillation for level changes

• Different trigger values to enter / leave an escalation level
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Error Mitigation Patterns -
Deferrable Work / Equitable Resource Allocation

• Deferrable Work

• High load: Shed incoming work vs. shed routine maintenance workload

• Make routine work (only relevant in error case) deferrable

• Equitable Resource Allocation

• Scenario: Handling of many requests for a set of resources, some of them are rare

• Request-level handling would render some resources unnecessarily idle

• Solution: Pool similar requests, allocate resources to pools

• Additional bookkeeping needed for managing the requests and their related 
resource demands

• Might lead to priority-inversion scenario
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Error Mitigation Patterns -
Expansive / Protective Automatic Controls

• Expansive Automatic Controls

• Design some system parts for only being used in case of overload

• Example: No 100% CPU utilization in normal operation of HA clusters

• Example: Dynamic Offloaded Work - Cloud Computing

• Increases request processing overhead, so take only as temporary solution

• Protective Automatic Controls

• Overload options: Shed internal work, shed incoming load, do nothing

• Put restrictions on how much work the system accepts while still functioning

• System throughput can drop due to contention, but should not drop to zero
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Fault Treatment Patterns -
Let Sleeping Dogs Lie / Reintegration

• Let Sleeping Dogs Lie

• Treating faults by system change can introduce new faults

• Known latent fault: Risk of reoccurrence, damage assessment possible

• Potential new fault: Additional risk of miss-applied correction, no damage 
assessment possible for accidentally added faults

• Reintegration

• Different steps needed to reintegrate repaired component

• Take off riding over transient and isolation lists

• Watch new component for a while: hardening / soaking / trailing

• Follow deterministic procedure, use as standby if possible
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Fault Treatment Patterns -
Reproducible Error / Small Patches / Revise Procedure

• Reproducible Error

• Apply stimuli again under quarantine in order to prove fix

• Can be automated (regression test)

• Compare system output with golden unit output

• Small Patches

• Design system update as small as possible

• Revise Procedure

• When predetermined procedures contributed to failure duration, fix them
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