
Dependable Systems

Fault Tolerance Patterns (I)

Dr. Peter Tröger

Source:

Hanmer, Robert S.: Patterns for Fault Tolerant Software. Wiley, 2007.

Error Processing

Dependable Systems | Fault Tolerance Patterns PT 2010

Phases of Fault Tolerance (Hanmer)

2

Latent
Fault

Error Normal
OperationFault

Activation

Error Recovery

Error Mitigation

Error
Detection

Fault
Treatment

Dependable Systems | Fault Tolerance Patterns PT 2010

Design Pattern

• Software Engineering - A general reusable solution to a commonly occurring problem

• No finished / directly applicable solution, but a template

• On the level of components and interactions

• Popular approach in computer science

• Gang of Four, Portland Pattern Repository

• Shared context for fault tolerance patterns

• Patterns might be suited for stateless / stateful / both kinds of system

• Fault tolerant systems have observers and monitors (humans / computers)

• On-top-of application functionality, orthogonal to primary function

3

Dependable Systems | Fault Tolerance Patterns PT 2010

Fault Tolerance Patterns

• Architectural patterns

• Considerations that cut across all parts of the system

• Need to be applied already in early design

• Detection patterns

• Detect the presence of root faults, error states, and failures

• Errors vs. failures, a-priori knowledge vs. comparison of redundant elements

• Error Recovery Patterns

• Methods to continue execution in a new error-free state

• Undoing the error effects + creating the new state

4

Dependable Systems | Fault Tolerance Patterns PT 2010

Fault Tolerance Patterns

• Error Mitigation Patterns

• Do not change application or system state, but mask the error and compensate
for the effects

• Typical strategies for timing or performance faults

• Fault Treatment Patterns

• Prevent the error from reoccuring by repairing the fault

• System verification, diagnosis of fault location and nature, and correction of the
system and / or the procedures

5

Architectural Patterns

Dependable Systems | Fault Tolerance Patterns PT 2010

Units of Mitigation

• Only parts of the system should potentially get into error state

• Design units of mitigation that contain errors and error recovery

• Component size vs. bookkeeping overhead vs. fault tolerance options

• Should contain independent atomic actions without communication focus

• Architectural style (e.g. n-tier architecture), sizes, function and memory / processor
boundaries can provide hints

• Entities of a group of similar functionalities are good candidates (thread pool)

• Unit design depends on choice of recovery action (e.g. restart)

• Should perform self checks and fail silently, act as barrier to an error state

• Units without any recovery / mitigation possibility are too small

• Example: n-tier architecture
7

Dependable Systems | Fault Tolerance Patterns PT 2010

Correcting Audits

• Data element corruption can occur - low level hardware, random and transient
physical faults, and software (data type, currencies, pointers, ...)

• Checking resp. auditing data for errors demands correctness criteria

• Structural properties of the data structure (linked lists, pointer boundaries, ...)

• Known correlations (multiple locations, known conversion factors, cross linkage)

• Sanity checks (value boundaries, checksums)

• Direct comparison (duplication, mostly of static data)

• Automatic correction is usually easy, but must check related item consistency

• Actions: Correction, logging, resume execution

• Errors from faulty data easily propagate, common audit infrastructure helps

8

Dependable Systems | Fault Tolerance Patterns PT 2010

Redundancy

• Wish for minimal MTTR, all software and hardware components are important

• Error recovery makes the effect of the error undone - phase must be minimized

• Idea: Resume execution before bad effects are undone, by using identical copy

• Another way to accomplish the same work on different hardware / software

• Quick activation of redundant feature needed

• Redundancy types: spatial, temporal, informational (presentation, version)

• Does not mean identical functionality, just perform the same work

• Danger with deterministic software execution in case of identical copies

• Redundancy for performance improvement, availability then by excess capacity

9

Dependable Systems | Fault Tolerance Patterns PT 2010

Example: VAX Spatial Hardware Redundancy

10

Dependable Systems | Fault Tolerance Patterns PT 2010

Redundancy Classification (Hitt / Mulcare)

11

Active
Redundant
Modules

Passive
Spare

Modules

Dependable Systems | Fault Tolerance Patterns PT 2010

Example: Data Management Tradeoffs

12

(adopted from Pfister)

Disk Replication Disk Access Switchover

Easier to add to a given system Demands altering of given system

Independent configuration Synchronized configurations

Nodes can be apart Co-location

Fault-intolerant storage ok Demands fault-tolerant storage

Demands active copying Single data storage

CPU & I/O overhead No overhead

Tight vs. loose synchronization No synchronization needed

Failback brings re-synchronization issues Switch back is painless

Dependable Systems | Fault Tolerance Patterns PT 2010

Example: PostgreSQL 9 Redundancy Options

• Shared-Disk

• Failover - Avoids synchronization overhead, demands network storage resp. file
system, mutual access exclusion from active / passive node must be ensured

• Shared-Nothing

• Block-device replication - Operating system can mirror file system modifications
(e.g. GFS, DRBD)

• Point-In-Time Recovery (PITR) - Passive nodes receive stream of write-ahead
log (WAL) records, after each transaction commit

• Master-Slave / Multimaster Replication - Batch updates on table granularity

• Statement-Based Replication Middleware - SQL is sent to all nodes

13

Dependable Systems | Fault Tolerance Patterns PT 2010

Example: PostgreSQL 9 Redundancy Options

14

Dependable Systems | Fault Tolerance Patterns PT 2010

Recovery Blocks

• Redundant system implementations are typically used simultaneously,
best answer is picked i.e. by voting

• Alternative way: Sequential execution of recovery blocks

• Limited overhead (execution only in error case), redundancy in time

• Diversity of redundancy implementation is relevant

• Acceptance tests per block, might lead to final error handler

• Checkpoint before first block needed, to ensure same preconditions

• Make successive block more simple, maybe loose parts of the result

• Example: Monitor software update process for correct finalization

• Problems: Shared global data, lack of alternative algorithms, added complexity

15

Dependable Systems | Fault Tolerance Patterns PT 2010

Humans

• Minimize Human Interaction

• Errors in HA system: Hardware, Software, Procedural / Operational

• Humans are bad in: Long series of steps, routine tasks, operation, response time

• Reduce failure risk due to procedural errors - process errors automatically

• Operational staff should be able to monitor, but not be required for the solution

• Use patterns for effective communication with people

• Maximize Human Participation

• System should support design / operational / external experts in contributing to an
error solution - Humans can draw meaning from sequence of unrelated events

• Examples: Reporting prioritization, context information (timestamp etc.)

• Safe mode: Wait for human participation

16

Dependable Systems | Fault Tolerance Patterns PT 2010

Maintenance Interface

• Making maintenance task visible to the outside world - additional form of input

• Separated interfaces and handling needed

• Shed load approach or any other overload defense will affect operator

• Intermixed interfaces might bring security problems

• Not hidden trap door, well well-protected dedicated path into the system

• Prevent application workload from using it

• Also useful for alike functions, such as log information fetching

17

Dependable Systems | Fault Tolerance Patterns PT 2010

Someone in Charge

• Anything can go wrong, even during error processing

• If something does not work, some entity must be able to restart processing action

• For any fault tolerance activity, there must be a clearly identifiable responsible

• Example: Active / Passive standby

• Single component in charge means single failure point, also increases complexity

• Examples: Initialization module, cluster management node

• Component must monitor progress and might initiate alternative actions

• Dual masters problem (also with voting) - unique index approaches (e.g. time)

18

Dependable Systems | Fault Tolerance Patterns PT 2010

Escalation

• Error processing is stalled - correcting audits unsuccessful, rollback / roll-forward
failed, goal to minimize human intervention, some components are in charge

• Endless recovery attempts might be valid (transient errors)

• Step by step, make the error processing less local and more drastic

• Identifying the escalation steps is true fault tolerant system design, demands
understanding of faults and failure modes

• Options: Resume partial operation, perform partial service degradation

19

Dependable Systems | Fault Tolerance Patterns PT 2010

Fault Observer

• Faults and errors are detected and processed - tell all interested parties

• Notify from processing component (error), not detection component (fault)

• Observer can publish to personal over maintenance interface

• Can be performed by an external entity

• Good application of publish / subscribe pattern

• Someone in charge needs the information to steer the recovery process

• Report reception usually leads to logging

• Make data storage again fault tolerant

20

Dependable Systems | Fault Tolerance Patterns PT 2010

Relations (Example)

21

Units of MitigationRedundancy

Recovery Blocks

Maintenance
Interface

Correcting Audits

Escalation

Someone In
Charge

Software Update

Fault Observer

Minimize Human
Interaction

Maximize Human
Participation

Guides

Example

Supported
By

Makes
use of

Can
serve

as

Makes
use ofProgress

Reports

If not
working

Makes
use of

Example

Triggers

If not working

Example

Benefits
from

Benefits
from

Intervention

Accessible
Through

Reports
to

Detection Patterns

Dependable Systems | Fault Tolerance Patterns PT 2010

Fault Correlation

• Fault removal during design and test uncovered common error types

• Look at unique signature of error to identify error type and according fault category

• Enables the application of a known proper error processing

• Examples: Many off-by-one errors found in testing, prepare system for this class

• Data errors - correlation also demands identification of related data to be checked

• Multiple errors can happen close in time - use to triangulate the fault location

• fault - error - error chain

• In best case, process the initial fault that triggered the chain

23

Dependable Systems | Fault Tolerance Patterns PT 2010

Error Containment Barrier

• Errors spread through several mechanisms - messages, memory, follow-up actions

• Error mitigation or ignorance does not always work

• Software: Barrier for errors is the unit of mitigation boundary

• Barrier must resist error state itself, and should trigger recovery / mitigation

• In best case, perform detection close to the fault (structural proximity / time)

• Hardware: Isolate faulty components by state bit

• Babbling idiot problem - bus guardian as barrier implementation

• Idea - suspicious nodes should never be in control of the communication bus

24

Dependable Systems | Fault Tolerance Patterns PT 2010

Guardian Example: Temporal Firewall in the
Time-Triggered Architecture (TTA)

25

(C) Kopetz et al., TU Wien

Dependable Systems | Fault Tolerance Patterns PT 2010

Complete Parameter Checking

• Minimize time from fault activation to error detection

• Perform frequent checks on data and operations to detect errors quickly

• Strongest realization with lock step approach in active / active redundancy

• Relaxation by checking only computational end results

• Value ranges for function / method arguments, less costly approximations

• Design by contract approach

• Frequency of checks and resulting error detection time vs.
system performance / maintenance effort / development time

• Variation: Mask detected error into an acceptable result

26

Dependable Systems | Fault Tolerance Patterns PT 2010

System Monitor / Heartbeat

• System Monitor

• How can one part keep track that another part is functioning ?

• Monitor for system (or system parts) behavior

• Might be part of fault observer or someone in charge, or separate element

• Location of the monitor is highly application-dependent

• Heartbeat

• How does system monitor knows that a task is still working ?

• Send health reports at regular intervals (cost / benefit tradeoff)

• Ping-alike messages, heartbeat function, push / pull approach

27

Dependable Systems | Fault Tolerance Patterns PT 2010

Acknowledgment / Watchdog

• Acknowledgment

• Alternative for heartbeat, does not demand additional messaging (as error source)

• Piggybacking - Add acknowledgment information to data frame

• Prominent approach in bidirectional networking protocols

• Watchdog

• Ensure that a task is alive, without messaging / processing overhead

• Watch visible effects of the monitored task, without adding complexity to it

• Strategies: Timers, peepholes, hardware test points

28

Dependable Systems | Fault Tolerance Patterns PT 2010

Realistic Threshold

• How much time should elapse before the system monitor takes action ?

• Message latency (e.g. heartbeat interval) vs.
Detection latency (e.g. number of missed heartbeat messages)

• Balance between short intervals (hypersensitive monitoring) and long intervals
(possibility for silent failures)

• Influenced by communication round trip time and severity of undetected errors

• Message latency is typically worst case communication time + processing time

• Maximum unavailability > message latency + detection latency + restart time

• System can automatically adjust thresholds based on experience

• Example: Voyager spacecraft sends one heartbeat to command computer every 2s,
failure when one is skipped

• Overload condition detected during tests with 1s heartbeat

29

Dependable Systems | Fault Tolerance Patterns PT 2010

Realistic Threshold - Example

• Message roundtrip time: 50ms - 100ms

• Heartbeat message: Preparation on monitor task - 20ms, Processing and reply on
monitored task - 15ms, processing of reply - 15ms

• Detection latency: One message

• Scenarios

• Messaging latency = 50ms : All true failures reported, but many false errors

• Messaging latency = 1000ms: All true failures reported, but long reporting delay

30

Monitoring Task

Monitored Task

t

Dependable Systems | Fault Tolerance Patterns PT 2010

Voting

• Redundancy in space provides multiple answers - devise a voting strategy

• Comparison at high level might lead to multiple correct results - inexact voting

• Adaptive voting - Rank results based on past experience

• Predict what the correct value should be and take the closest result

Example: Weighted sum of the different results
R=W1*R1 + W2*R2 + W3*R3 with W1+W2+W3=1

• Non-adaptive voting - Use allowable result discrepancy, put boundary on
discrepancy minimum or maximum

• With exact voting, decision leads to correct result or uncertainty state notification

• With large answers, only checksums could be compared

• Communication latency shall not influence voter operation

31

Dependable Systems | Fault Tolerance Patterns PT 2010

Voting

• Selection in case of multiple events:

• Majority vote (uneven node
number)

• Generalized median voting -
select result that is the median, by
iteratively removing extremes

• Formalized plurality voting -
divide results in partitions, choose
random member from the largest
partition

• Weighted average technique

• Components that disagree (to some
extend) with the vote are marked as
erroneous

32

Triple Modular Redundancy (TMR)

N-Modular Redundancy (NMR)

Dependable Systems | Fault Tolerance Patterns PT 2010

Maintenance and Exercises

• Routine Maintenance

• Through operator on the maintenance interface, or built in

• Typical strategy in operating systems for idle processors

• Relies on concept of checkable resources - connections, memory allocations, ...

• Routine Exercises

• Make sure that redundant spare components truly work in the failover case

• Identify latent faults by checks during light workload - typical in hardware

• Reproducible error is still better than the failure case on high workload

33

Dependable Systems | Fault Tolerance Patterns PT 2010

Routine Audits / Checksums

• Routine Audits

• Find data errors in a controlled way, usually by low priority maintenance task

• Logging is important for causal analysis - high possibility of related data errors

• Identifies latent faults

• Checksums

• Detect incorrect data by storing aggregate information along with the value

• Example: Space shuttle counts number of integers in a data structure

• Many options - parity bits, hashing

• Checksums are only for detection, recovery through error correcting codes

34

Dependable Systems | Fault Tolerance Patterns PT 2010

Riding Over Transients / Leaky Bucket Counter

• Riding Over Transients

• Avoid wasting resources on processing of transient error states

• Examples: Retry on parity error with optical disk read, ignore error code return
values from operating system API functions

• With easy error propagation, number of tolerated transient faults should be low

• Correlate faults and tolerate only well-known transient fault, keep statistics

• Leaky Bucket Counter

• Distinguish between transient and intermittent repeating faults

• Assign a leaky bucket counter (== error counter) to each unit of mitigation

• Decrement the counter periodically, but never below initial value

• Exceeding the predefined upper limit identifies a permanent fault

35

