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Phases of Fault Tolerance (Hanmer)
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Design Pattern

• Software Engineering - A general reusable solution to a commonly occurring problem

• No finished / directly applicable solution, but a template

• On the level of components and interactions

• Popular approach in computer science

• Gang of Four, Portland Pattern Repository

• Shared context for fault tolerance patterns

• Patterns might be suited for stateless / stateful / both kinds of system

• Fault tolerant systems have observers and monitors (humans / computers)

• On-top-of application functionality, orthogonal to primary function
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Fault Tolerance Patterns

• Architectural patterns

• Considerations that cut across all parts of the system

• Need to be applied already in early design

• Detection patterns

• Detect the presence of root faults, error states, and failures

• Errors vs. failures, a-priori knowledge vs. comparison of redundant elements

• Error Recovery Patterns

• Methods to continue execution in a new error-free state

• Undoing the error effects + creating the new state

4



Dependable Systems | Fault Tolerance Patterns PT 2010

Fault Tolerance Patterns

• Error Mitigation Patterns

• Do not change application or system state, but mask the error and compensate 
for the effects

• Typical strategies for timing or performance faults

• Fault Treatment Patterns

• Prevent the error from reoccuring by repairing the fault

• System verification, diagnosis of fault location and nature, and correction of the 
system and / or the procedures

5



Architectural Patterns



Dependable Systems | Fault Tolerance Patterns PT 2010

Units of Mitigation

• Only parts of the system should potentially get into error state 

• Design units of mitigation that contain errors and error recovery

• Component size vs. bookkeeping overhead vs. fault tolerance options

• Should contain independent atomic actions without communication focus

• Architectural style (e.g. n-tier architecture), sizes, function and memory / processor 
boundaries can provide hints

• Entities of a group of similar functionalities are good candidates (thread pool) 

• Unit design depends on choice of recovery action (e.g. restart)

• Should perform self checks and fail silently, act as barrier to an error state

• Units without any recovery / mitigation possibility are too small

• Example: n-tier architecture
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Correcting Audits

• Data element corruption can occur - low level hardware, random and transient 
physical faults, and software (data type, currencies, pointers, ...)

• Checking resp. auditing data for errors demands correctness criteria

• Structural properties of the data structure (linked lists, pointer boundaries, ...)

• Known correlations (multiple locations, known conversion factors, cross linkage)

• Sanity checks (value boundaries, checksums)

• Direct comparison (duplication, mostly of static data)

• Automatic correction is usually easy, but must check related item consistency

• Actions: Correction, logging, resume execution

• Errors from faulty data easily propagate, common audit infrastructure helps 

8



Dependable Systems | Fault Tolerance Patterns PT 2010

Redundancy

• Wish for minimal MTTR, all software and hardware components are important

• Error recovery makes the effect of the error undone - phase must be minimized

• Idea: Resume execution before bad effects are undone, by using identical copy

• Another way to accomplish the same work on different hardware / software

• Quick activation of redundant feature needed

• Redundancy types: spatial, temporal, informational (presentation, version)

• Does not mean identical functionality, just perform the same work

• Danger with deterministic software execution in case of identical copies

• Redundancy for performance improvement, availability then by excess capacity
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Example: VAX Spatial Hardware Redundancy
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Redundancy Classification (Hitt / Mulcare)
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Example: Data Management Tradeoffs
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(adopted from Pfister)

Disk Replication Disk Access Switchover

Easier to add to a given system Demands altering of given system

Independent configuration Synchronized configurations

Nodes can be apart Co-location

Fault-intolerant storage ok Demands fault-tolerant storage

Demands active copying Single data storage

CPU & I/O overhead No overhead

Tight vs. loose synchronization No synchronization needed

Failback brings re-synchronization issues Switch back is painless
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Example: PostgreSQL 9 Redundancy Options

• Shared-Disk

• Failover - Avoids synchronization overhead, demands network storage resp. file 
system, mutual access exclusion from active / passive node must be ensured

• Shared-Nothing

• Block-device replication - Operating system can mirror file system modifications 
(e.g. GFS, DRBD)

• Point-In-Time Recovery (PITR) - Passive nodes receive stream of write-ahead 
log (WAL) records, after each transaction commit

• Master-Slave / Multimaster Replication - Batch updates on table granularity

• Statement-Based Replication Middleware - SQL is sent to all nodes
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Example: PostgreSQL 9 Redundancy Options
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Recovery Blocks

• Redundant system implementations are typically used simultaneously, 
best answer is picked i.e. by voting

• Alternative way: Sequential execution of recovery blocks

• Limited overhead (execution only in error case), redundancy in time

• Diversity of redundancy implementation is relevant

• Acceptance tests per block, might lead to final error handler

• Checkpoint before first block needed, to ensure same preconditions

• Make successive block more simple, maybe loose parts of the result

• Example: Monitor software update process for correct finalization

• Problems: Shared global data, lack of alternative algorithms, added complexity
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Humans

• Minimize Human Interaction

• Errors in HA system: Hardware, Software, Procedural / Operational

• Humans are bad in: Long series of steps, routine tasks, operation, response time

• Reduce failure risk due to procedural errors - process errors automatically

• Operational staff should be able to monitor, but not be required for the solution

• Use patterns for effective communication with people

• Maximize Human Participation

• System should support design / operational / external experts in contributing to an 
error solution - Humans can draw meaning from sequence of unrelated events

• Examples: Reporting prioritization, context information (timestamp etc.)

• Safe mode: Wait for human participation
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Maintenance Interface

• Making maintenance task visible to the outside world - additional form of input

• Separated interfaces and handling needed

• Shed load approach or any other overload defense will affect operator

•  Intermixed interfaces might bring security problems

• Not hidden trap door, well well-protected dedicated path into the system

• Prevent application workload from using it

• Also useful for alike functions, such as log information fetching
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Someone in Charge

• Anything can go wrong, even during error processing

• If something does not work, some entity must be able to restart processing action

• For any fault tolerance activity, there must be a clearly identifiable responsible

• Example: Active / Passive standby

• Single component in charge means single failure point, also increases complexity

• Examples: Initialization module, cluster management node

• Component must monitor progress and might initiate alternative actions

• Dual masters problem (also with voting) - unique index approaches (e.g. time)
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Escalation

• Error processing is stalled - correcting audits unsuccessful, rollback / roll-forward 
failed, goal to minimize human intervention, some components are in charge

• Endless recovery attempts might be valid (transient errors)

• Step by step, make the error processing less local and more drastic

• Identifying the escalation steps is true fault tolerant system design, demands 
understanding of faults and failure modes

• Options: Resume partial operation, perform partial service degradation
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Fault Observer

• Faults and errors are detected and processed - tell all interested parties

• Notify from processing component (error), not detection component (fault)

• Observer can publish to personal over maintenance interface

• Can be performed by an external entity

• Good application of publish / subscribe pattern

• Someone in charge needs the information to steer the recovery process

• Report reception usually leads to logging

• Make data storage again fault tolerant
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Relations (Example)
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Fault Correlation

• Fault removal during design and test uncovered common error types

• Look at unique signature of error to identify error type and according fault category

• Enables the application of a known proper error processing

• Examples: Many off-by-one errors found in testing, prepare system for this class

• Data errors - correlation also demands identification of related data to be checked

• Multiple errors can happen close in time - use to triangulate the fault location

• fault - error - error chain

• In best case, process the initial fault that triggered the chain 
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Error Containment Barrier

• Errors spread through several mechanisms - messages, memory, follow-up actions

• Error mitigation or ignorance does not always work

• Software: Barrier for errors is the unit of mitigation boundary

• Barrier must resist error state itself, and should trigger recovery / mitigation

• In best case, perform detection close to the fault (structural proximity / time)

• Hardware: Isolate faulty components by state bit

• Babbling idiot problem - bus guardian as barrier implementation

• Idea - suspicious nodes should never be in control of the communication bus
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Guardian Example: Temporal Firewall in the 
Time-Triggered Architecture (TTA)
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Complete Parameter Checking

• Minimize time from fault activation to error detection

• Perform frequent checks on data and operations to detect errors quickly

• Strongest realization with lock step approach in active / active redundancy

• Relaxation by checking only computational end results

• Value ranges for function / method arguments, less costly approximations

• Design by contract approach

• Frequency of checks and resulting error detection time vs. 
system performance / maintenance effort / development time

• Variation: Mask detected error into an acceptable result 
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System Monitor / Heartbeat

• System Monitor

• How can one part keep track that another part is functioning ?

• Monitor for system (or system parts) behavior

• Might be part of fault observer or someone in charge, or separate element

• Location of the monitor is highly application-dependent

• Heartbeat

• How does system monitor knows that a task is still working ?

• Send health reports at regular intervals (cost / benefit tradeoff)

• Ping-alike messages, heartbeat function, push / pull approach
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Acknowledgment / Watchdog

• Acknowledgment

• Alternative for heartbeat, does not demand additional messaging (as error source)

• Piggybacking - Add acknowledgment information to data frame

• Prominent approach in bidirectional networking protocols

• Watchdog

• Ensure that a task is alive, without messaging / processing overhead

• Watch visible effects of the monitored task, without adding complexity to it

• Strategies: Timers, peepholes, hardware test points
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Realistic Threshold

• How much time should elapse before the system monitor takes action ?

• Message latency (e.g. heartbeat interval) vs. 
Detection latency (e.g. number of missed heartbeat messages)

• Balance between short intervals (hypersensitive monitoring) and long intervals 
(possibility for silent failures)

• Influenced by communication round trip time and severity of undetected errors

• Message latency is typically worst case communication time + processing time

• Maximum unavailability > message latency + detection latency + restart time

• System can automatically adjust thresholds based on experience

• Example: Voyager spacecraft sends one heartbeat to command computer every 2s, 
failure when one is skipped

• Overload condition detected during tests with 1s heartbeat
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Realistic Threshold - Example

• Message roundtrip time: 50ms - 100ms

• Heartbeat message: Preparation on monitor task - 20ms, Processing and reply on 
monitored task - 15ms, processing of reply - 15ms

• Detection latency: One message

• Scenarios

• Messaging latency = 50ms : All true failures reported, but many false errors

• Messaging latency = 1000ms: All true failures reported, but long reporting delay
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Voting

• Redundancy in space provides multiple answers - devise a voting strategy

• Comparison at high level might lead to multiple correct results - inexact voting

• Adaptive voting - Rank results based on past experience

• Predict what the correct value should be and take the closest result

Example: Weighted sum of the different results
R=W1*R1 + W2*R2 + W3*R3 with W1+W2+W3=1

• Non-adaptive voting - Use allowable result discrepancy, put boundary on 
discrepancy minimum or maximum

• With exact voting, decision leads to correct result or uncertainty state notification

• With large answers, only checksums could be compared

• Communication latency shall not influence voter operation
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Voting

• Selection in case of multiple events: 

• Majority vote (uneven node 
number)

• Generalized median voting - 
select result that is the median, by 
iteratively removing extremes

• Formalized plurality voting - 
divide results in partitions, choose 
random member from the largest 
partition

• Weighted average technique

• Components that disagree (to some 
extend) with the vote are marked as 
erroneous
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Maintenance and Exercises

• Routine Maintenance

• Through operator on the maintenance interface, or built in

• Typical strategy in operating systems for idle processors

• Relies on concept of checkable resources - connections, memory allocations, ...

• Routine Exercises

• Make sure that redundant spare components truly work in the failover case

• Identify latent faults by checks during light workload - typical in hardware

• Reproducible error is still better than the failure case on high workload
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Routine Audits / Checksums

• Routine Audits

• Find data errors in a controlled way, usually by low priority maintenance task

• Logging is important for causal analysis - high possibility of related data errors

• Identifies latent faults

• Checksums

• Detect incorrect data by storing aggregate information along with the value

• Example: Space shuttle counts number of integers in a data structure

• Many options - parity bits, hashing

• Checksums are only for detection, recovery through error correcting codes
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Riding Over Transients / Leaky Bucket Counter

• Riding Over Transients

• Avoid wasting resources on processing of transient error states

• Examples: Retry on parity error with optical disk read, ignore error code return 
values from operating system API functions

• With easy error propagation, number of tolerated transient faults should be low

• Correlate faults and tolerate only well-known transient fault, keep statistics

• Leaky Bucket Counter

• Distinguish between transient and intermittent repeating faults

• Assign a leaky bucket counter (== error counter) to each unit of mitigation

• Decrement the counter periodically, but never below initial value

• Exceeding the predefined upper limit identifies a permanent fault
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