Dependable Systems

Definitions and Metrics (III)

Dr. Peter Tröger

Sources:

J.C. Laprie. Dependability: Basic Concepts and Terminology

Eusgeld, Irene et al.: Dependability Metrics. 4909. Springer Publishing, 2008

Attributes of Dependability

- Reliability Continuity of service
 - Initial goal for computer system trustworthiness
 - "Reliability is not doing the wrong thing." [Gray85]
 - "Reliability: Ability of a system or component to perform its required functions under stated conditions for a specified period of time" [IEEE]
- Availability Readiness for usage
 - "Availability is doing the right thing within the specified response time."
- Availability is always required but maybe to a different degree
- Reliability, safety, and security may or may not be required

In Detail

- **Reliability** Function *R(t)*
 - Probability that a system is functioning properly and constantly over time period t
 - Assumes that system was fully operational at t=0
 - Denotes failure-free interval of operation
- Availability Fraction of / points in time were a system is operational
 - Describe system behavior in presence of fault tolerance
 - Instantaneous availability Probability that a system is performing correctly at time t, equal to reliability of non-repairable systems: A(t) = R(t)
 - **Steady-state availability** Probability that a system will be operational at any random point of time, expressed as the fraction of time a system is operational during its expected lifetime: $A_{s}(t) = Uptime / Lifetime$

PDF & CDF

- Probability density function *pdf* for random variable *X*
 - Discrete variable: Probability that X will be x
 - Continuous variable: Probability that X is in [a, b]
 - Computed as area under the density function in this range

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx \text{ and } f(x) \ge 0 \text{ for all } x$$

 Cumulative distribution function *cdf(x)*: Probability that the value of X is at most x

$$F(x)=P(X\leq x)=\int_{0,-\infty}^x f(s)ds$$

- Limits of integration depend on the nature of the distribution function
- Value of the *cdf* at *x* is always area under the *pdf* up to *x*

PDF Examples

- Different popular statistical distributions, each describing a random variable behavior
- Parameters of the distribution derived from data, complete description then by *pdf*

Probability density function

Cumulative distribution function

The Reliability Function R(t)

- Reliability: Probability *R(t)* that a component works for time period [0,*t*]
 - Failure probability F(t)=1-R(t)
- Idea: Take continuos random variable *X* over time, representing time-to-failure
 - cdf(t)=F(t) describes probability of failure before t -> Unreliability Function

- *R*(*t*)=1-*cdf*(*t*) describes probability of a failure after t -> **Reliability Function**
- Typically, the exponential distribution is used
 - Distribution is again exponential if some time *t* has elapsed (memoryless property)

Exponential Distribution of Time-To-Failure

- Events occur continuously and independently at a constant average rate (Poisson process)
- Increasing probability of failure with increasing t
- Failure rate Lambda from experience or complexity measures
- Cumulative distribution function:

 $F(x;\lambda) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$

• Reliability function for exponential failure distribution, derived from cdf:

$$R(t) = P(X > t) = 1 - F(t) = e^{-\lambda x}$$
 with $F(x) = 1 - e^{-\lambda x}$

Failure Rate

- Treat pdf for time-to-failure random variable X as failure density function
 - Can be computed as derivative of the unreliability function

f(t) = dF(t)/dt

- Failure rate / hazard rate function mean frequency of failures at time t
 - Conditional probability of a failure between a and b, given the survival until t

$$\lambda(t) = \frac{f(t)}{R(t)} = \lambda$$
 for constant failure rate

Variable Failure Rate in Real World

- Failure rate is treated as constant parameter of the exponential distribution
- (maybe invalid) simplification, combined solution:
 - Exponential distribution when failure rate is constant
 - Weibull distribution when failure rate is monotonic decreasing / increasing

Hardware Failure Rate

Software Failure Rate

Industrial practice

• When do you stop testing ? - No more time, or no more money ...

(C) Malek

Failure Rate Examples

- Standards from experience provide base data for component reliability
- Society of Automotive Engineers (SAE) reliability model

$$\lambda_p = \lambda_b \Pi_{i=1}^b \pi_i$$

- ullet Predicted failure rate $\,\lambda_p$
- Base failure rate for the component λ_b
- ullet Various modification factors $\,\pi_i$
 - Component composition
 - Ambient temperature
 - Location in the vehicle

Availability

- Mean time to failure (MTTF) Average time it takes for the system to fail
- Mean time to recover / repair (MTTR) Average time it takes to recover
- Mean time between failures (MTBF) Average time between failures

Steady-State Availability

$$A = \frac{Uptime}{Uptime + Downtime} = \frac{MTTF}{MTTF + MTTR}$$

Availability	Downtime per year	Downtime per week
90.0 % (1 nine)	36.5 days	16.8 hours
99.0 % (2 nines)	3.65 days	1.68 hours
99.9 % (3 nines)	8.76 hours	10.1 min
99.99 % (4 nines)	52.6 min	1.01 min
99.999 % (5 nines)	5.26 min	6.05 s
99.9999 % (6 nines)	31.5 s	0.605 s
99.99999 % (7 nines)	0.3 s	6 ms

Attributes of Dependability

- Safety Avoidance of catastrophic consequences on the environment
 - Critical applications
 - Specification needs to describe things that should not happen
- Security Prevention of unauthorized access and / or information handling
 - Became relevant with distributed systems
- Confidentiality Absence of unauthorized disclosure of information
- Integrity Absence of improper system alteration
 - With respect to either accidental or intentional faults
- Maintainability Ability to undergo modifications and repairs