
Fault Tolerant Distributed
Systems

Dependable Systems 2014

Lena Herscheid, Dr. Peter Tröger

Distributed Fault Tolerance | Dependable Systems 2014 1

Distributed Systems – Motivation

“Distributed programming is the art of solving the same problem that
you can solve on a single computer using multiple computers.”

• For Scalability

• For Performance / Throughput

• For Availability
• Build a highly-available or reliable system using unreliable components

• Divide and conquer approach
• Partition data over multiple nodes

• Replicate data for fault tolerance or shorter response time

Distributed Fault Tolerance | Dependable Systems 2014 2

Distributed Systems – Abstractions

“You can’t tolerate faults you haven’t considered.”

• Timing assumptions
• Synchronous

• known upper bound on message delay
• each processor has an accurate clock

• Asynchronous
• processes execute at independent rates
• message delay can be unbounded

• Failure model: Crash, Byzantine, …

• Failure detectors: strong/weakly accurate, strong/weakly complete

• Consistency model
• strong: the visibility of updates is equivalent to a non-replicated system
• weak: client-centric, causal, eventual…

Distributed Fault Tolerance | Dependable Systems 2014 3

Consistency
Vogels, Werner. "Eventually consistent." Communications of the ACM 52.1 (2009):
40-44.

Terry, Doug. "Replicated data consistency explained through baseball.“
Communications of the ACM 56.12 (2013): 82-89.

Distributed Fault Tolerance | Dependable Systems 2014 4

Consistency Models

• Set of guarantees that describes constraints on the outcome of sequences
of interleaved and simultaneous operations
• “A system is in a consistent state, if all replicas are identical and the ordering

guarantees of the specific consistency model are not violated.”

• “Contract” between the programmer and the storage system
• If the programmer obeys certain rules, the results will be consistent
• An abstraction: details are application-specific and require inside knowledge

Client Client Client

Distributed Data Store Distributed Replica

Client

Data-Centric Client-CentricDistributed Fault Tolerance | Dependable Systems 2014 5

Data-Centric Consistency

• Assume no explicit synchronization operations

• Consistency needs depend on client and data

• Strict: absolute global time

• Linearizable / Atomic: all shared accesses seen in the
same order + nonunique global timestamp

• Sequential: all shared accesses seen in the same order

• Causal: preserve causal order

• FIFO: preserve per-process order

m
o

re
 c

o
n

st
ra

in
ed

Client Client Client

Distributed Data Store

weak

strong

Distributed Fault Tolerance | Dependable Systems 2014 6

Strict Consistency

• Any read on a data item returns a value corresponding to the most
recent write

• Needs global clock theoretically impossible in asynchronous
systems
• (not even guaranteed by programming languages!)

P1 W(x) a

P2 R(x) a

P1 W(x) a

P2 R(x) NIL R(x) a

Distributed Fault Tolerance | Dependable Systems 2014 7

Sequential Consistency

• The result of any execution is the same as some sequential order
• Implementation: Use Lamport clocks all concurrent ops can be re-ordered

• The operations of each individual process appear in this sequence in
the order specified by its program

P1 W(x) a

P2 W(x) b

P3 R(x) b R(x) a

P4 R(x) b R(x) a

Sequential order

P2
W(x) b

P3
R(x) b

P4
R(x) b

P1
W(x) a

P3
R(x) a

P4
R(x) a

Distributed Fault Tolerance | Dependable Systems 2014 8

Linearizable / Atomic Consistency

• Sequentially consistent, and

• Ordered timestamps: if timestamp(x) < timestamp(y), x must occur
before y in the sequence

P1 W(x) a

P2 W(x) b

P3 R(x) b R(x) a

P4 R(x) b R(x) a

P2
W(x) b

P3
R(x) b

P4
R(x) b

P1
W(x) a

P3
R(x) a

P4
R(x) a

Invalid sequential order!

Distributed Fault Tolerance | Dependable Systems 2014 9

Causal Consistency

• Causally related statements need to execute in the same order for all
processors
• The result of one statement affects the other: W(x) is causally related with R(x)

Distributed Fault Tolerance | Dependable Systems 2014 10

P1 R(x) a W(x) b

P2 W(x) a

P3 R(x) a R(x) b

P4 R(x) b R(x) a

P1 W(x) b

P2 W(x) a

P3 R(x) a R(x) b

P4 R(x) b R(x) a

FIFO Consistency

• Writes done by a single process are seen by all other processes in the
order in which they were issued

Distributed Fault Tolerance | Dependable Systems 2014 11

P1 W(x) a W(x) b

P2 W(x) a

P3 R(x) a R(x) b

P4 R(x) b R(x) a

P1 R(x) a W(x) b

P2 W(x) a

P3 R(x) a R(x) b

P4 R(x) b R(x) a

Client-Centric Consistency Models

• System-wide consistency is hard
• Focus on specific clients’ view on the system

• Stronger variants of eventual consistency
• Monotonic Reads: If a process has seen a value of x at time t, it will never see an older

version of x at t’>t
• Monotonic Writes: If a process updates a data item, all preceding updates by the same

process will be performed first
• Read Your Writes (RYW) / Immediate Consistency: Once a data item has been updated, any

read will return the updated value
• Writes Follow Reads: A write following a read by the same process is guaranteed to take

place on the same or a newer value
• Bounded Staleness: Reads return data with maximum age t
• Consistent Prefix / Snapshot Isolation: Only “snapshot” data which existed at the master at

some point in time is returned

Distributed Replica

Client

Distributed Fault Tolerance | Dependable Systems 2014 12

Tuning Consistency

N: number of replicas
W: number of nodes that must acknowledge a write (W <= N)
R: number of nodes that must agree for a read (R <= N)

• Number of tolerated faults grows with N-R and N-W

• W << N High write availability

• R << N High read availability

• W = N Fully consistent reads and writes

• R+W > N Immediately (RYW) consistent
• E.g., N = 3, R = 2, W = 2

Distributed Fault Tolerance | Dependable Systems 2014 13

Eventual Consistency

• State of the art in NoSQL databases

• Update one replica eventually all replicas will be updated
• Only liveness, no safety

• Optimistic replication: dealing with eventual consistency
• Eventual consistency comes at the cost of additional client logic

• Allow replicas to drift apart

• Tentative scheduling: sites may repeatedly change and re-order operations to
eventually arrive at the same result

• Conflict resolution

Distributed Fault Tolerance | Dependable Systems 2014 14

W(x) a

W(x) b

R(x) ? R(x) # R(x) a R(x) b

Optimistic Replication

Distributed Fault Tolerance | Dependable Systems 2014 15

Optimistic Replication (Yasushi Saito and Marc Shapiro)
http://research.microsoft.com/apps/pubs/default.aspx?id=66979

Causal Consistency

• Stronger than eventual consistency

• Rules for causality (similar to happened before)
1. Same thread of execution

2. Reads-from (W(x) R(x))

3. Transitivity
(a b and b c imply a c)

• Causality information attached to each write

• Client-side library tracks causality rules

• In geo-replicated systems: delay remote writes,
until all causally previous writes have occurred

Distributed Fault Tolerance | Dependable Systems 2014 16

Quiz

1. Are there systems in which sequential consistency implies strict
consistency?

2. How many faults can be tolerated in a distributed storage system
with N = R = W?

3. What consistency guarantees can you make in a system with N=3
nodes, where R=2 nodes are required for reads, and R=2 nodes are
required for writes?

Distributed Fault Tolerance | Dependable Systems 2014 17

Trade-Offs
Fox, Armando, and Eric A. Brewer. "Harvest, yield, and scalable tolerant systems." Hot Topics in Operating Systems, 1999. Proceedings
of the Seventh Workshop on. IEEE, 1999.

Brewer, Eric A. "Lessons from giant-scale services." Internet Computing, IEEE5.4 (2001): 46-55.

Pritchett, Dan. "Base: An acid alternative." Queue 6.3 (2008): 48-55.

Brewer, Eric. "CAP twelve years later: How the" rules" have changed."Computer 45.2 (2012): 23-29.

Abadi, Daniel J. "Consistency tradeoffs in modern distributed database system design." Computer-IEEE Computer Magazine 45.2
(2012): 37.

Distributed Fault Tolerance | Dependable Systems 2014 18

Harvest and Yield

• Yield: probability of completing, queries completed / queries offered
• Can be measured as availability (“4 nines”)

• Similar to uptime, but closer to user experience

• Harvest: completeness of the answer, data available / complete data
• Sometimes, imperfect query results or answers can be tolerated

• Trading Harvest for Yield in the presence of faults
• Stop answering requests or reply incompletely?

• Replicate high-priority data reduced probability of losing it

• Trading response time for harvest: intelligent degradation

Distributed Fault Tolerance | Dependable Systems 2014 19

• DQ value: data per query (D) × queries per second (Q) constant

• Intuition: There’s always a physical bottleneck tied to data movement
• Bandwidth

• I/O

• DQ decreases linearly with the number of failed nodes

• Controlled graceful degradation to avoid overload in case of faults
• Limit capacity / Admission control decrease Q to maintain D

• Decision: how should saturation influence availability (yield)/ QoS (harvest)?

DQ Analysis (Brewer. Lessons from giant-scale services. 2001)

Distributed Fault Tolerance | Dependable Systems 2014 20

Replication vs Partition

Replication

• Reduced Q, constant D

• Reduced Yield

• Can A handle the additional
workload? (Load redirection
problem)

Partition

• Reduced D, constant Q

• Reduced Harvest

• Saved storage space does not
affect DQ bottleneck (DQ still
constant)

Harvest: data available / complete data
Yield: queries completed / queries offered
DQ: Data per query * Queries per second

1 2 3 4 1 2 3 4 1 2 3 4

A B A B

Distributed Fault Tolerance | Dependable Systems 2014 21

Brewer. Lessons from giant-scale services.

• Use symmetry to simplify analysis and management.

• Harvest and yield are more useful metrics than just uptime.

• Focus on MTTR at least as much as on MTBF.

• Data replication is insufficient for preserving uptime under faults; you
also need excess DQ.

• Graceful degradation is a critical part of a high-availability strategy.

Distributed Fault Tolerance | Dependable Systems 2014 22

CAP Theorem (strong)

• Consistency, Availability, Partition tolerance – pick 2
• Consistency := strong consistency

• Availability := a client can always reach some replica

• Partition Tolerance := survive network partitions between data replica

• CA: cluster databases
• Network partitions not part of the fault model

• CP: some distributed databases
• Majority protocols unavailable once the majority fails

• PA: web caching
• Caching stale copies might be returned

Distributed Fault Tolerance | Dependable Systems 2014 23

CAP Theorem (weak)

• In practice, you want to lose neither C nor A completely

• Weak CAP Principle:
“You can have both C and A, except when there is a partition”
• Partitions are a property of the underlying system (unreliable communication)

• Distributed storage systems offer configuration options for the C-A trade-off

• Relaxed consistency models (eventual or causal)

• Probabilistic availability
• Replicate high-priority data

Distributed Fault Tolerance | Dependable Systems 2014 24

PACELC Model

• If there is a partition (P)
how does the system trade off availability and consistency (A, C)?

• Else (E)
how does the system trade off latency and consistency (L, C)?

• Network partitions are probably going to happen
https://github.com/aphyr/partitions-post

Distributed storage systems classified in terms of PACELC:

• PA/EL: Dynamo, Cassandra, Riak

• PC/EC: ACID systems, BigTable, Hbase

• PA/EC: MongoDB

• PC/EL: PNUTS

Distributed Fault Tolerance | Dependable Systems 2014 25

https://github.com/aphyr/partitions-post

Consistency vs Availability

• CAP Theorem in the presence of network partitions, pick
Consistency or Availability

• ACID usually achieved by 2PC

• The availability of any system is the product of the availability of the
components required for operation.
• The more databases involved in 2PC, the lower the availability

• BASE (Basically Available Soft-state Eventual Consistency)
• ACID’s C and I can be traded for availability and performance

Distributed Fault Tolerance | Dependable Systems 2014 26

Fault Tolerance vs Real Time

Fault Tolerance

• Reordering for data consistency

• Determinism: coherent data state

• Concurrency harder to ensure
consistency

Real Time

• Reordering to meet deadlines

• Determinism: bounded temporal
behaviour

• Concurrency increased efficiency

Distributed Fault Tolerance | Dependable Systems 2014 27

http://www.ece.cmu.edu/~mead/2003-03-06.pdf

Quiz

1. How does the DQ value scale with
a) The number of nodes in the system?

b) The number of tolerated faults?

2. Why is it wise to use a combination of both replication and
partition?

3. Why is there a trade-off between strong consistency and
availability?

Distributed Fault Tolerance | Dependable Systems 2014 28

Replication
Wiesmann, Matthias, et al. "Understanding replication in databases and distributed systems." Distributed
Computing Systems, 2000. Proceedings. 20th International Conference on. IEEE, 2000.

Wiesmann, Matthias, et al. "Database replication techniques: A three parameter classification." Reliable
Distributed Systems, 2000. SRDS-2000. Proceedings The 19th IEEE Symposium on. IEEE, 2000.

http://docs.mongodb.org/manual/replication/

Distributed Fault Tolerance | Dependable Systems 2014 29

Replication

• Logical objects implemented by multiple physical copies: replicas

• Clients do operations on replicas, preserving consistency properties

• Replication transparency
• Clients unaware of the existence of individual objects

• Operations are sent to one copy only

• Replica managers
• Maintain replication transparency

• Maintain a level of consistency

Client

Client

FE

FE

Distributed Fault Tolerance | Dependable Systems 2014 30

RM

RM
RM

Replication Protocols

• Abstract replication protocol (Wiesmann et al., 2000)

1. Request
• sent to one (passive replication) or to all replica (active replication)

2. Server Coordination
• find an ordering of operations (sequential consistency)

3. Execution

4. Agreement Coordination
• commit or abort?

5. Response
• synchronous vs asynchronous

Distributed Fault Tolerance | Dependable Systems 2014 31

State Machine Replication (Active)

• Non-centralized, all replicas process the same sequence of requests

• Replicas need to work deterministically
• Same ordered input same result

• Needs atomic broadcast
• All processors receive messages

in the same order

• Either all processors receive the
message, or none of them

Distributed Fault Tolerance | Dependable Systems 2014 32

Primary/Backup Replication (Passive)

• Clients send requests to primary replica
• Primary sends update requests to backups

• Updates != original client invocation non-determinism possible

• Needs view synchronous broadcast

• Asynchronous update

Distributed Fault Tolerance | Dependable Systems 2014 33

Eager vs Lazy Replication

• Another dimension to the replication problem: When are updates
processed?

• Eager replication: updates propagated within the boundaries of a
transaction
• Before the response is sent to the client

• E.g., using 2PC

• Lazy replication: local update, later propagation
• Asynchronous eventually consistent

• Higher performance

Distributed Fault Tolerance | Dependable Systems 2014 34

Case Study: Replication in MongoDB

• Primary/Backup replication
• Writes are always routed to primary
• Reads can also be routed to secondaries

 Increase read availability

• Supports data centre locality awareness

Distributed Fault Tolerance | Dependable Systems 2014 35

Replication in MongoDB – Primary Failover

Distributed Fault Tolerance | Dependable Systems 2014 36

Arbiters (for even-numbered replica sets)

Non-voting secondaries

