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Distributed Systems – Motivation

“Distributed programming is the art of solving the same problem that 
you can solve on a single computer using multiple computers.”

• For Scalability

• For Performance / Throughput

• For Availability
• Build a highly-available or reliable system using unreliable components

• Divide and conquer approach
• Partition data over multiple nodes

• Replicate data for fault tolerance or shorter response time
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Distributed Systems – Abstractions

“You can’t tolerate faults you haven’t considered.”

• Timing assumptions
• Synchronous

• known upper bound on message delay
• each processor has an accurate clock

• Asynchronous
• processes execute at independent rates
• message delay can be unbounded

• Failure model: Crash, Byzantine, …

• Failure detectors: strong/weakly accurate, strong/weakly complete

• Consistency model
• strong: the visibility of updates is equivalent to a non-replicated system
• weak: client-centric, causal, eventual…
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Consistency
Vogels, Werner. "Eventually consistent." Communications of the ACM 52.1 (2009): 
40-44.

Terry, Doug. "Replicated data consistency explained through baseball.“ 
Communications of the ACM 56.12 (2013): 82-89.
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Consistency Models

• Set of guarantees that describes constraints on the outcome of sequences 
of interleaved and simultaneous operations
• “A system is in a consistent state, if all replicas are identical and the ordering 

guarantees of the specific consistency model are not violated.”

• “Contract” between the programmer and the storage system
• If the programmer obeys certain rules, the results will be consistent
• An abstraction: details are application-specific and require inside knowledge

Client Client Client

Distributed Data Store Distributed Replica

Client
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Data-Centric Consistency

• Assume no explicit synchronization operations

• Consistency needs depend on client and data

• Strict: absolute global time

• Linearizable / Atomic: all shared accesses seen in the 
same order + nonunique global timestamp

• Sequential: all shared accesses seen in the same order

• Causal: preserve causal order

• FIFO: preserve per-process order
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Strict Consistency

• Any read on a data item returns a value corresponding to the most 
recent write

• Needs global clock  theoretically impossible in asynchronous 
systems
• (not even guaranteed by programming languages!)

P1 W(x)  a

P2 R(x)  a

P1 W(x)  a

P2 R(x)  NIL R(x)  a
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Sequential Consistency

• The result of any execution is the same as some sequential order
• Implementation: Use Lamport clocks  all concurrent ops can be re-ordered 

• The operations of each individual process appear in this sequence in 
the order specified by its program

P1 W(x)  a

P2 W(x)  b

P3 R(x)  b R(x)  a

P4 R(x)  b R(x)  a

Sequential order 

P2
W(x)  b

P3
R(x)  b

P4
R(x)  b

P1
W(x)  a

P3
R(x)  a

P4
R(x)  a
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Linearizable / Atomic Consistency

• Sequentially consistent, and

• Ordered timestamps: if timestamp(x) < timestamp(y), x must occur 
before y in the sequence

P1 W(x)  a

P2 W(x)  b

P3 R(x)  b R(x)  a

P4 R(x)  b R(x)  a

P2
W(x)  b

P3
R(x)  b

P4
R(x)  b

P1
W(x)  a

P3
R(x)  a

P4
R(x)  a

Invalid sequential order! 
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Causal Consistency

• Causally related statements need to execute in the same order for all 
processors
• The result of one statement affects the other: W(x) is causally related with R(x)
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P1 R(x)  a W(x)  b

P2 W(x)  a

P3 R(x)  a R(x)  b

P4 R(x)  b R(x)  a

P1 W(x)  b

P2 W(x)  a

P3 R(x)  a R(x)  b

P4 R(x)  b R(x)  a



FIFO Consistency

• Writes done by a single process are seen by all other processes in the 
order in which they were issued
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P1 W(x)  a W(x)  b

P2 W(x)  a

P3 R(x)  a R(x)  b

P4 R(x)  b R(x)  a

P1 R(x)  a W(x)  b

P2 W(x)  a

P3 R(x)  a R(x)  b

P4 R(x)  b R(x)  a



Client-Centric Consistency Models

• System-wide consistency is hard
• Focus on specific clients’ view on the system

• Stronger variants of eventual consistency
• Monotonic Reads: If a process has seen a value of x at time t, it will never see an older 

version of x at t’>t
• Monotonic Writes: If a process updates a data item, all preceding updates by the same 

process will be performed first
• Read Your Writes (RYW) / Immediate Consistency: Once a data item has been updated, any 

read will return the updated value
• Writes Follow Reads: A write following a read by the same process is guaranteed to take 

place on the same or a newer value
• Bounded Staleness: Reads return data with maximum age t
• Consistent Prefix / Snapshot Isolation: Only “snapshot” data which existed at the master at 

some point in time is returned

Distributed Replica

Client
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Tuning Consistency

N: number of replicas
W: number of nodes that must acknowledge a write (W <= N)
R: number of nodes that must agree for a read (R <= N)

• Number of tolerated faults grows with N-R and N-W

• W << N  High write availability

• R << N  High read availability

• W = N  Fully consistent reads and writes

• R+W > N  Immediately (RYW) consistent
• E.g., N = 3, R = 2, W = 2
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Eventual Consistency

• State of the art in NoSQL databases

• Update one replica  eventually all replicas will be updated
• Only liveness, no safety

• Optimistic replication: dealing with eventual consistency
• Eventual consistency comes at the cost of additional client logic

• Allow replicas to drift apart

• Tentative scheduling: sites may repeatedly change and re-order operations to 
eventually arrive at the same result

• Conflict resolution
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W(x)  a 

W(x)  b

R(x)  ? R(x)  # R(x)  a R(x)  b



Optimistic Replication
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Optimistic Replication (Yasushi Saito and Marc Shapiro)
http://research.microsoft.com/apps/pubs/default.aspx?id=66979



Causal Consistency

• Stronger than eventual consistency

• Rules for causality (similar to happened before)
1. Same thread of execution

2. Reads-from (W(x)  R(x))

3. Transitivity
(a  b and b  c imply a  c)

• Causality information attached to each write

• Client-side library tracks causality rules

• In geo-replicated systems: delay remote writes, 
until all causally previous writes have occurred

Distributed Fault Tolerance      |     Dependable Systems 2014 16



Quiz

1. Are there systems in which sequential consistency implies strict 
consistency?

2. How many faults can be tolerated in a distributed storage system 
with N = R = W?

3. What consistency guarantees can you make in a system with N=3 
nodes, where R=2 nodes are required for reads, and R=2 nodes are 
required for writes?
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Trade-Offs
Fox, Armando, and Eric A. Brewer. "Harvest, yield, and scalable tolerant systems." Hot Topics in Operating Systems, 1999. Proceedings 
of the Seventh Workshop on. IEEE, 1999.

Brewer, Eric A. "Lessons from giant-scale services." Internet Computing, IEEE5.4 (2001): 46-55.

Pritchett, Dan. "Base: An acid alternative." Queue 6.3 (2008): 48-55.

Brewer, Eric. "CAP twelve years later: How the" rules" have changed."Computer 45.2 (2012): 23-29.

Abadi, Daniel J. "Consistency tradeoffs in modern distributed database system design." Computer-IEEE Computer Magazine 45.2 
(2012): 37.
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Harvest and Yield

• Yield: probability of completing, queries completed / queries offered
• Can be measured as availability (“4 nines”)

• Similar to uptime, but closer to user experience

• Harvest: completeness of the answer, data available / complete data
• Sometimes, imperfect query results or answers can be tolerated

• Trading Harvest for Yield in the presence of faults
• Stop answering requests or reply incompletely?

• Replicate high-priority data  reduced probability of losing it

• Trading response time for harvest: intelligent degradation
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• DQ value: data per query (D) × queries per second (Q)  constant

• Intuition: There’s always a physical bottleneck tied to data movement
• Bandwidth

• I/O

• DQ decreases linearly with the number of failed nodes

• Controlled graceful degradation to avoid overload in case of faults
• Limit capacity / Admission control  decrease Q to maintain D

• Decision: how should saturation influence availability (yield)/ QoS (harvest)? 

DQ Analysis (Brewer. Lessons from giant-scale services. 2001)
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Replication vs Partition

Replication

• Reduced Q, constant D

• Reduced Yield

• Can A handle the additional 
workload? (Load redirection 
problem)

Partition

• Reduced D, constant Q

• Reduced Harvest

• Saved storage space does not 
affect DQ bottleneck (DQ still 
constant)

Harvest: data available / complete data
Yield: queries completed / queries offered
DQ: Data per query * Queries per second 

1 2 3 4 1 2 3 4 1 2 3 4

A B A B
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Brewer. Lessons from giant-scale services.

• Use symmetry to simplify analysis and management.

• Harvest and yield are more useful metrics than just uptime.

• Focus on MTTR at least as much as on MTBF.

• Data replication is insufficient for preserving uptime under faults; you 
also need excess DQ.

• Graceful degradation is a critical part of a high-availability strategy. 

Distributed Fault Tolerance      |     Dependable Systems 2014 22



CAP Theorem (strong)

• Consistency, Availability, Partition tolerance – pick 2
• Consistency := strong consistency

• Availability := a client can always reach some replica

• Partition Tolerance := survive network partitions between data replica

• CA: cluster databases
• Network partitions not part of the fault model

• CP: some distributed databases
• Majority protocols  unavailable once the majority fails

• PA: web caching
• Caching  stale copies might be returned
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CAP Theorem (weak)

• In practice, you want to lose neither C nor A completely 

• Weak CAP Principle:
“You can have both C and A, except when there is a partition”
• Partitions are a property of the underlying system (unreliable communication)

• Distributed storage systems offer configuration options for the C-A trade-off

• Relaxed consistency models (eventual or causal)

• Probabilistic availability
• Replicate high-priority data
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PACELC Model

• If there is a partition (P) 
how does the system trade off availability and consistency (A, C)?

• Else (E) 
how does the system trade off latency and consistency (L, C)?

• Network partitions are probably going to happen
https://github.com/aphyr/partitions-post

Distributed storage systems classified in terms of PACELC:

• PA/EL: Dynamo, Cassandra, Riak

• PC/EC: ACID systems, BigTable, Hbase

• PA/EC: MongoDB

• PC/EL: PNUTS
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https://github.com/aphyr/partitions-post


Consistency vs Availability

• CAP Theorem  in the presence of network partitions, pick 
Consistency or Availability

• ACID usually achieved by 2PC

• The availability of any system is the product of the availability of the 
components required for operation.
• The more databases involved in 2PC, the lower the availability

• BASE (Basically Available Soft-state Eventual Consistency)
• ACID’s C and I can be traded for availability and performance
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Fault Tolerance vs Real Time

Fault Tolerance

• Reordering for data consistency

• Determinism: coherent data state

• Concurrency harder to ensure 
consistency

Real Time

• Reordering to meet deadlines

• Determinism: bounded temporal 
behaviour

• Concurrency increased efficiency
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http://www.ece.cmu.edu/~mead/2003-03-06.pdf



Quiz

1. How does the DQ value scale with
a) The number of nodes in the system?

b) The number of tolerated faults?

2. Why is it wise to use a combination of both replication and 
partition?

3. Why is there a trade-off between strong consistency and 
availability?
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Replication
Wiesmann, Matthias, et al. "Understanding replication in databases and distributed systems." Distributed 
Computing Systems, 2000. Proceedings. 20th International Conference on. IEEE, 2000.

Wiesmann, Matthias, et al. "Database replication techniques: A three parameter classification." Reliable 
Distributed Systems, 2000. SRDS-2000. Proceedings The 19th IEEE Symposium on. IEEE, 2000.

http://docs.mongodb.org/manual/replication/
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Replication

• Logical objects implemented by multiple physical copies: replicas

• Clients do operations on replicas, preserving consistency properties

• Replication transparency
• Clients unaware of the existence of individual objects

• Operations are sent to one copy only

• Replica managers
• Maintain replication transparency

• Maintain a level of consistency

Client

Client

FE

FE
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Replication Protocols

• Abstract replication protocol (Wiesmann et al., 2000)

1. Request
• sent to one (passive replication) or to all replica (active replication)

2. Server Coordination
• find an ordering of operations (sequential consistency)

3. Execution

4. Agreement Coordination
• commit or abort?

5. Response
• synchronous vs asynchronous
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State Machine Replication (Active)

• Non-centralized, all replicas process the same sequence of requests

• Replicas need to work deterministically
• Same ordered input  same result

• Needs atomic broadcast
• All processors receive messages

in the same order

• Either all processors receive the
message, or none of them
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Primary/Backup Replication (Passive)

• Clients send requests to primary replica
• Primary sends update requests to backups

• Updates != original client invocation  non-determinism possible

• Needs view synchronous broadcast

• Asynchronous update
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Eager vs Lazy Replication

• Another dimension to the replication problem: When are updates 
processed?

• Eager replication: updates propagated within the boundaries of a 
transaction
• Before the response is sent to the client

• E.g., using 2PC

• Lazy replication: local update, later propagation
• Asynchronous  eventually consistent

• Higher performance
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Case Study: Replication in MongoDB

• Primary/Backup replication
• Writes are always routed to primary
• Reads can also be routed to secondaries

 Increase read availability

• Supports data centre locality awareness
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Replication in MongoDB – Primary Failover

Distributed Fault Tolerance      |     Dependable Systems 2014 36

Arbiters (for even-numbered replica sets)

Non-voting secondaries


