
AP 2005

Design Patterns

AP 2005

What is a Design Pattern

„Each pattern describes a problem which occurs

over and over again in our environment,

and then describes the core of the solution to that problem,

in such a way that you can use this solution

a million times over,

without ever doing it the same way twice“

(Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid

Fiksdahl-King, Shlomo Angel, “A Pattern Language: Towns/Buildings/ Construction”,

Oxford University Press, New York, 1977)

AP 2005

What is a Design Pattern (II)

• Description of communicating objects and classes that

are customized to solve a general design problem in a

particular context.
(Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design

Patterns – Elements of Reusable Object-Oriented Software”, Addison-

Wesley, 1994 (22nd printing July 2001))

• Each pattern focuses in a particular object-oriented

design problem or issue

AP 2005

Designing for Change –

Causes for Redesign (I)

• Creating an object by specifying a class explicitly
– Commits to a particular implementation instead of an interface

– Can complicate future changes

– Create objects indirectly

– Patterns: Abstract Factory, Factory Method, Prototype

• Dependence on specific operations
– Commits to one way of satisfying a request

– Compile-time and runtime modifications to request handling can be

simplified by avoiding hard-coded requests

– Patterns: Chain of Responsibility, Command

AP 2005

Causes for Redesign (II)

• Dependence on hardware and software platform
– External OS-APIs vary

– Design system to limit platform dependencies

– Patterns: Abstract Factory, Bridge

• Dependence on object representations or

implementations
– Clients that know how an object is represented, stored, located, or

implemented might need to be changed when object changes

– Hide information from clients to avoid cascading changes

– Patterns: Abstract factory, Bridge, Memento, Proxy

AP 2005

Causes for Redesign (III)

• Algorithmic dependencies
– Algorithms are often extended, optimized, and replaced during

development and reuses

– Algorithms that are likely to change should be isolated

– Patterns: Builder, Iterator, Strategy, Template Method, Visitor

• Tight coupling
– Leads to monolithic systems

– Tightly coupled classes are hard to reuse in isolation

– Patterns: Abstract Factory, Bridge, Chain of Responsibility, Command,

Facade, Mediator, Observer

AP 2005

Causes for Redesign (IV)

• Extending functionality by subclassing
– Requires in-depth understanding of the parent class

– Overriding one operation might require overriding another

– Can lead to an explosion of classes (for simple extensions)

– Patterns: Bridge, Chain of Responsibility, Composite, Decorator,

Observer, Strategy

• Inability to alter classes conveniently
– Sources not available

– Change might require modifying lots of existing classes

– Patterns: Adapter, Decorator, Visitor

AP 2005

How Design Patterns Solve

Design Problems

• Finding Appropriate Objects
– Decomposing a system into objects is the hard part

– OO-designs often end up with classes with no counterparts in real

world (low-level classes like arrays)

– Strict modeling of the real world leads to a system that reflects today’s

realities but not necessarily tomorrows

– Design patterns identify less-obvious abstractions

• Determining Object Granularity
– Objects can vary tremendously in size and number

– Facade pattern describes how to represent subsystems as objects

– Flyweight pattern describes how to support huge numbers of objects

AP 2005

Elements of Design Patterns

• Pattern Name
– Increases design vocabulary, higher level of abstraction

• Problem
– When to apply the pattern

– Problem and context, conditions for applicability of pattern

• Solution
– Design elements with their relationships, responsibilities, and

collaborations

– Not any concrete design or implementation, rather a template

• Consequences
– Results and trade-offs of applying the pattern

– Space and time trade-offs, reusability, extensibility, portability

AP 2005

Purpose

BehavioralStructuralCreational

Chain of

Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Interpreter

Template Method

Adapter (object)

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Adapter (class)Factory Method

Abstract Factory

Builder

Prototype

Singleton

Object

Class

Scope

Defer object creation to

another class

Defer object creation to

another object

Describe algorithms and

flow control

Describe ways to

assemble objects

Design Pattern Space

AP 2005

Relations among Design Patterns

Builder

Proxy

saving state

of iteration

creatingcomposites

Memento

Adapter

Bridge

Command

Iterator
Avoidinghysteresis

Composite

Decorator

Enumerating

children

adding

respnsibilities

to objects

composed

using

sharing

composites

Flyweight
defining

grammar

Interpreter

Visitor

addingoperations

defining
traversals

definingthe chain

Chain of
Responsibility

sharing

strategies

changing skin

versus guts

Strategy

adding

operations

State

sharing

strategies

sharing
terminal

symbols

Mediator Observer

complex
dependency
management

Template Method

defining

algorithm´s

steps
Prototype

Abstract Factory

Singleton Facade

Factory Method

implement

using

single

instance

single

instance

configure factory
dynamically

often uses

AP 2005

How to Select a Design Pattern

• Consider how design patterns solve design problems
– Find appropriate objects

– Determine object granularity

– Specify object interfaces

• Scan intent sections

• Study how patterns interrelate

• Study patterns of like purpose
– Creational, structural, behavioral patterns

• Examine cause of redesign

• Consider what should be variable in your design

AP 2005

How to Apply a Design Pattern

• Study applicability and consequences

• Study structure, participants, collaborations

• Choose names for pattern participants that are

meaningful in the application context

• Define the classes
– Declare interfaces, inheritance relationships; define instance variables

– Identify existing classes in your app that the pattern will affect

• Define application-specific names for ops in the pattern

• Implement operations to carry out responsibilities and

collaborations in the pattern

AP 2005

Design aspects that design patterns

let you vary

How an object is accessed, its locationProxy

Storage cost of objectsFlyweight

Interface to a subsystemFacade

Responsibilities of an object without

subclassing

Decorator

Structure and composition of an objectComposite

Implementation of an objectBridge

Interface to an objectAdapterStructural

The sole instance of a classSingleton

Class of object that is instantiatedPrototype

Families of product objectsAbstract Factory

Representation of created complex objectBuilder

The concrete class of the product objectFactory MethodCreational

Aspect(s) that can varyDesign PatternPurpose

AP 2005

Design aspects that design patterns

let you vary (contd.)

Operations that can be applied to object(s) without

changing their class(es)

Visitor

Steps of an algorithmTemplate Method

An algorithmStrategy

States of an objectState

Number of objects that depend on another object;

how the dependent objects stay up to date

Observer

What private information is stored outside an object,

and when

Memento

How and which objects interact with each otherMediator

How an aggregate‘s elements are traversedIterator

Grammar and interpretation of a languageInterpreter

When and how a request is fulfilledCommand

Object that can fulfill a requestChain of Resp.Behavioral

Aspect(s) that can varyDesign PatternPurpose

AP 2005

Notation

• Interface:
– Set of all signatures defined by an object’s operations

– Any request matching a signature in the objects interface may be sent
to the object

– Interfaces may contain other interfaces as subsets

• Type:
– Denotes a particular interfaces

– An object may have many types

– Widely different object may share a type

– Objects of the same type need only share parts of their interfaces

– A subtype contains the interface of its supertype

• Dynamic binding, polymorphism

AP 2005

Remember: Program to an interface,

not an implementation

• Manipulate objects solely in terms of interfaces

defined by abstract classes!

• Benefits:
1. Clients remain unaware of the specific types of objects they use.

2. Clients remain unaware of the classes that implement the objects.

Clients only know about abstract class(es) defining the interfaces

• Do not declare variables to be instances of particular concrete classes

• Use creational patterns to create actual objects.

AP 2005

Remember: UML Class Diagram

• Association
– Bi-directional class connection

• Multiplicity
– “one to many”, “many to many”

• Direct Association
– Container-contained relationship

– Special case: Reflexive Association

• Relation to same class

• Aggregation
– Class as collection of other classes

– “has a” relationship

AP 2005

Remember: UML Class Diagram (II)

• Composition
– Aggregation with strong lifecycle

• Inheritance / Generalization
– “is a” relationship

– Child class is a type of the parent class

– Child class inherits functionality

• Realization
– One entity defines contract for functionalities

– Other entity realizes the contract (implements to

functionality)

– Example: Interface vs. class

AP 2005

Object Modeling Technique

• Class diagram
– Classes, their structure, static relationship between them

AbstractClass

CreateProductA()

CreateProductB()

ConcreteSublass1 ConcreteSubclass2

Operation() Operation2()

Operation3()

!" #$%"%&'(')*&

+,%-.*/*.%

012%/'34%5%4%&/%354*"6'*37 *&%8

012%/'34%5%4%&/%354*"6'*37" (&98

:4%('%,37 *&%8

;< < 4%< (')*&3*537 *&%8

AP 2005

Purpose

BehavioralStructuralCreational

Chain of

Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Interpreter

Template Method

Adapter (object)

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Adapter (class)Factory Method

Abstract Factory

Builder

Prototype

Singleton

Object

Class

Scope

Design Pattern Space

AP 2005

Creational Patterns

• Abstract the instantiation process
– Make a system independent of how objects are created, composed,

and represented

• Use case: Important if systems evolve to depend more

on object composition than on class inheritance
– Emphasis shifts from hard-coding fixed sets of behaviors towards a

smaller set of composable fundamental behaviors

• Encapsulate knowledge about concrete classes the

system uses and instantiates

AP 2005

FACTORY METHOD

(Class Creational)

• Intent:
– Define an interface for creating an object, but let subclasses decide

which class to instantiate

– Factory Method lets a class defer instantiation to subclasses.

– Also known as: Virtual Constructor

• Motivation:
– Framework use abstract classes to define and maintain relationships

between objects

– Framework has to create objects as well - must instantiate classes but

only knows about abstract classes - which it cannot instantiate

– Factory method encapsulates knowledge of which subclass to create -

moves this knowledge out of the framework

AP 2005

docs
Document

Open()

Close()

Save()

Revert()

Application

MyDocument

CreateDocument()

NewDocument()

OpenDocument()

MyApplication

CreateDocument()

Document* doc=CreateDocument();

docs.Add(doc);

doc->Open();

return new MyDocument

FACTORY METHOD

Motivation

AP 2005

Product

Creator

ConcreteProduct

FactoryMethod()

AnOperation()

ConcreteCreator

FactoryMethod()

...

product = FactoryMethod()

...

return new ConcreteProduct

FACTORY METHOD

Structure

AP 2005

FACTORY METHOD

Participants

• Product
– Defines the interface of objects the factory method creates

• ConcreteProduct
– Implements the product interface

• Creator
– Declares the factory method which returns object of type “Product”

– May contain a default implementation of the factory method

– Creator relies on its subclasses to define the factory method

– Subclass returns an instance of the appropriate “ConcreteProduct”

• ConcreteCreator
– Overrides factory method to return instance of ConcreteProduct

AP 2005

FACTORY METHOD

Applicability / Benefits

• Use the Factory Method pattern when

– a class can't anticipate the class of objects it must create

– a class wants its subclasses to specify the objects it creates

• Benefits
– Eliminate need to bind application-specific classes to your code

– Factory method gives according subclass a hook

– Concrete factory method might be used directly by the client

AP 2005

ABSTRACT FACTORY

(Object Creational)

• Intent:
– Provide an interface for creating families of related or dependent

objects

– No need to specify their concrete classes

– Also known as: Kit

• Motivation:
– User interface toolkit supports multiple look-and-feel standards (Motif)

– Different appearances and behaviors for UI widgets (no hard-coding)

• Solution:
– Abstract classes for WidgetFactory and each kind of widget

– WidgetFactory with interface to create each kind of widget

– Concrete factory subclass for each look-and-feel standard

– Concrete widget subclasses implement specific look-and-feel

AP 2005

Widget Factory

CreateScrollBar()

CreateWindow()

MotifWidgetFactory

CreateScrollBar()

CreateWindow()

PMWidgetFactory

CreateScrollBar()

CreateWindow()

Client

Windows

PMWindow MotifWindow

ScrollBar

PMScrollBar MotifScrollBar

ABSTRACT FACTORY

Motivation

AP 2005

Abstract Factory

CreateProductA()

CreateProductB()

ConcreteFactory1 ConcreteFactory2

Client

AbstractProductA

ProductA2 ProductA1

ProductB2 ProductB1

CreateProductA()

CreateProductB()

CreateProductA()

CreateProductB()
AbstractProductB

ABSTRACT FACTORY

Structure

AP 2005

ABSTRACT FACTORY

Participants

• AbstractFactory
– Declares interface for operations that create abstract product objects

• ConcreteFactory
– Implements operations to create concrete product objects

• AbstractProduct
– Declares an interface for a type of product object

• ConcreteProduct
– Defines a product object to be created by concrete factory

– Implements the abstract product interface

• Client
– Uses only interfaces declared by AbstractFactory and AbstractProduct

classes

AP 2005

ABSTRACT FACTORY

Applicability

Use the Abstract Factory pattern when
– A system should be independent of how its products are created,

composed, and represented

– A system should work with one of multiple families of produces

– A family of related product objects is designed to be used together,

and you need to enforce this constraint

– You want to provide a class library of products, and you want to reveal

just their interfaces, not their implementations

AP 2005

BUILDER

(Object Creational)

• Intent:
– Separate the construction of a complex object from its representation

– Same construction process shall create different representations

• Motivation:
– RTF reader should be able to represent RTF in different formats

– Adding new conversions without modifying the reader should be easy

• Solution:
– Configure RTFReader class with a TextConverter object

– Subclasses of TextConverter specialize in different conversions

– Some subclasses might ignore partial conversion requests (e.g.

formatting instructions)

AP 2005

RTFReader

ParseRTF()

while(t=get the next token){

switch t.Type{

CHAR:

 builder->ConvertCharacter(t.Char)

FONT:

 builder->ConvertFontCharnge(t.Font)

PARA:

 builder->ConvertParagraph()

 }

}

TextConverter

ConvertCharacter(char)

ConvertFontChange(Font)

ConvertParagraph()

ASCIIConverter

ConvertCharacter(char)

GetASCIIText()

TeXConverter

ConvertCharacter(char)

ConvertFontChange(Font)

ConvertParagraph()

GetTeXText()

TextWidgetConverter

ConvertCharacter(char)

ConvertFontChange(Font)

ConvertParagraph()

GetTextWidget()

ASCIIText TeXText TextWidget

builders

BUILDER

Motivation

AP 2005

Director

Construct ()

for all objects in structure {

 builder->BuildPart ()

}

Builder

BuildPart ()

ConcreteBuilder

BuildPart ()

GetResult ()

Product

builders

BUILDER

Structure

AP 2005

BUILDER

 Collaborations

• Client creates Director object and configures it with the

desired Builder object

• Director notifies Builder whenever a part of the product

should be built

• Builder handles requests from the Director and adds

parts to the product

• Client retrieves the product from the Builder (!)

AP 2005

aDirectoraClient

new ConcreteBuilder

new Director (aConcreteBuilder)

GetResult ()

BuildPart C ()

BuilPart B ()

BuildPart A ()

aConcreteBuilder

BUILDER

Collaborations

AP 2005

BUILDER

Applicability / Benefits

Use the Builder pattern when
– The algorithm for creating a complex object should be independent of

the parts that make up the object and how they are assembled

– The construction process must allow different representations for the
object that is constructed

Benefits:
– Vary a product’s internal representation

– Isolate code for construction from representation

– Fine-grained construction process leads to more control

AP 2005

PROTOTYPE

(Object Creational)

• Intent:
– Specify the kinds of objects to create using a prototypical instance

– Create new objects by copying this prototype

• Motivation:
– Framework provides abstract Graphic class for graphical components

– Concrete GraphicTool class for manipulating/creating instances of

these Graphic components

– Actual graphical components are application-specific

– How to parameterize instances of GraphicTool class with type

(== class) of objects to create ?

– Solution: create new objects in GraphicTool by cloning a prototype

object instance

AP 2005

Tool

Manipulate()

Rotate Tool

Manipulate()

Graphic Tool

Manipulate()

Graphic

Staff MusicalNote

WholeNote

Return copy of self

HalfNote
p = prototype ->Clone()

while(user drags mouse){

 p ->Draw(new position)

}

Insert p into drawing

Draw(Position)

Clone()

Draw(Position)

Clone()

Draw(Position)

Clone()

Return copy of self

Draw(Position)

Clone()

prototype

Return copy of self

PROTOTYPE

Motivation

AP 2005

client

Operation()

p = prototype ->Clone()

Prototype

ConcretePrototype1

return copy of self

prototype

Clone()

return copy of self

Clone()

ConcretePrototype2

Clone()

PROTOTYPE

Structure

AP 2005

PROTOTYPE

Participants

• Prototype (Graphic)
– Declares an interface for cloning itself

• ConcretePrototype (Staff, WholeNote, HalfNote)
– Implements an interface for cloning itself

• Client (GraphicTool)
– Creates a new object by asking a Prototype to clone itself

AP 2005

PROTOTYPE

Applicability

• Use the Prototype pattern when
– a system should be independent of how its products are created,

composed, and represented

– when the classes to instantiate are specified at run-time, for example,
by dynamic loading; or

– to avoid building a class hierarchy of factories that parallels the class
hierarchy of products; or

– when instances of a class can have one of only a few different
combinations of state

• Install a corresponding number of prototypes

• Clone them

• Better than instantiating the class manually,
each time with the appropriate state.

AP 2005

SINGLETON

(Object Creational)

• Intent:
– Ensure a class only has one instance

– Provide a global point of access to it

• Motivation:
– Some classes should have exactly one instance

(one print spooler, one file system, one window manager)

– Global variable makes an object accessible but doesn’t prohibit

instantiation of multiple objects

– Class should be responsible for keeping track of its sole interface

• Intercept requests to create new objects

• Provide way to access the interface

AP 2005

Singleton

return uniquelnstancestatic Instance()

SingletonOperation()

GetSingletonData()

static uniquelnstance

singletonData

SINGLETON

Structure

AP 2005

SINGLETON

Example (C++)

Class Singleton {

 public:

 static Singleton* Instance();

 protected:

 Singleton();

 private:

 static Singleton* _instance;

}

AP 2005

SINGLETON

Applicability / Benefits

• Use the Singleton pattern when

– there must be exactly one instance of a class

– the instance must be accessible from a well-known access point

– sole instance should be extensible by subclassing

– clients should be able to use an extended instance without modifying their code

• Benefits

– Controlled access to sole interface

– Reduced global variable name space

– Refinement of operations and representations (run-time choice)

– Variable number of instances

– Better than class (C++ static member) operations

• Hard to have more than one instance, no polymorphism

AP 2005

Purpose

BehavioralStructuralCreational

Chain of

Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Interpreter

Template Method

Adapter (object)

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Adapter (class)Factory Method

Abstract Factory

Builder

Prototype

Singleton

Object

Class

Scope

Defer object creation to

another class

Defer object creation to

another object

Describe algorithms and

flow control

Describe ways to

assemble objects

Design Pattern Space

AP 2005

Structural Patterns

• Describe how classes and objects are composed to

form larger structures

• Structural class patterns
– Use inheritance to compose interfaces or implementations

• Structural object patterns
– Describe ways to compose objects to realize new functionality

– Added flexibility through ability to change composition at runtime

• Most structural patterns are related to some degree

AP 2005

ADAPTER

(Class, Object Structural)

• Intent:
– Convert the interface of a class into another interface clients expect

– Adapter lets classes work together that could not otherwise

• Incompatible interfaces

• Motivation:
– Toolkit class that‘s designed for reuse is not reusable

• Interface does not match the domain-specific interface

– Example: Drawing editor

• Shape as abstraction for graphical objects

• Combine existing shape classes (LineShape) with unrelated new class

(TextView) from another source

• Modification is no option

AP 2005

LineShape TextShape

DrawingEditor
Shape

BoundingBox()

CreateManipulator()

BoundingBox()

CreateManipulator()

BoundingBox()

CreateManipulator()

TextView

GetExtent()

return text ->GetExtent()

return new TextManipulator

ADAPTER

Motivation

AP 2005

client
Target

Adapter

SpecificRequest()

Request()

Request()

Adaptee

SpecificRequest()

(implementation)
Class adapter uses multiple inheritance

to adapt one interface to another

client
Target

Adapter

adaptee->SpecificRequest()

Request()

Request()

Adaptee

SpecificRequest()

Object adapter relies on composition

adaptee

ADAPTER

Structure

AP 2005

ADAPTER

Participants

• Target (Shape)
– Defines the domain-specific interface that client uses

• Client (DrawingEditor)
– Collaborates with objects conforming to the Target interface

• Adaptee (TextView)
– Defines existing interface that needs adapting

• Adapter (TextShape)
– Adapts the interface of Adaptee to the Target interface

AP 2005

ADAPTER

Applicability / Benefits

• Use the Adapter pattern when
– you want to use an existing class with non-matching interface

– you want to create a reusable class that cooperates with unrelated or
unforeseen classes

– you need to use several existing subclasses, but it's impractical to
adapt their interfaces

• object adapter can adapt the interface of the parent class

• Benefits
– Class adapter

• Introduces only one object (no additional indirection)

• Lets Adapter override some of Adaptee’s behavior

– Object adapter

• Lets a single Adapter work with many Adaptees

AP 2005

BRIDGE

(Object Structural)

• Intent:
– Decouple an abstraction from its implementation

– Allows that both can vary independently

• Motivation:
– Inheritance helps when an abstraction can have multiple possible

implementations - sometimes not flexible enough

– Put abstraction and its implementation in separate class hierarchies

– Example:

• One class hierarchy for Window interfaces

(Window, IconWindow, TransientWindow)

• Separate hierarchy for platform-specific implementations

• Decoupling through abstract implementation root class

AP 2005

Window

IconWindow

Windowimp

DrawText()

DrawRect()

bridge

DevDrawText()

DevDrawLine()

imp ->DevDrawLine()

imp ->DevDrawLine()

imp ->DevDrawLine()

imp ->DevDrawLine()

DrawBorder()

TransientWindow

DrawCloseBox()

DrawText()

DrawRect()
DrawRect()

XWindowimp

DevDrawText()

DevDrawLine()

PMWindowimp

DevDrawText()

DevDrawLine()

XDrawLinie() XDrawString()

BRIDGE

 Motivation
)" #

AP 2005

Abstraction

ConcreteImplementor A

Operation()

OperationImp()

Implementor

OperationImp()

client

RefinedAbstraction

imp ->OperationImp();

ConcreteImplementor B

OperationImp()OperationImp()

imp

BRIDGE

 Structure

AP 2005

BRIDGE

Participants

• Abstraction (Window)

– Defines the abstraction’s interface

– Maintains a reference to an object of type Implementor

• RefinedAbstraction (IconWindow)

– Extends the interface defined by Abstraction

• Implementor (WindowImp)

– Defines interface for implementation class

– Not necessarily identical to Abstraction’s interface

– Typically provides primitive operations

• Abstraction is responsible for higher-level operations

• ConcreteImplementor (XWindowImp, PMWindowImp)

– Implements the Implementor interface, defines concrete implementation

AP 2005

BRIDGE

Applicability

• Use the Bridge pattern when:
– you want to avoid a permanent binding between an abstraction and its

implementation

• implementation might be selected or switched at run-time

– both the abstractions and their implementations should be extensible

by subclassing

– you want to hide the implementation of an abstraction completely from

clients (C++ represents class in the interface)

– you want to share an implementation among multiple objects

• Hidden from the client

• Might use reference counting

AP 2005

COMPOSITE

(Object Structural)

• Intent:
– Compose objects into tree structures

– Represent part-whole hierarchies

– Let clients treat individual objects and compositions uniformly

• Motivation:
– Example: Graphical application which allow grouping of objects into

more complex structures

– Simple implementation:

• Classes for graphical primitives (Text, Lines)

• Other classes that act as containers for primitives

– Leads to different treatment of primitive objects and containers

– More complexity, even though the user treats them identically

AP 2005

Line Picture

Graphic

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

Draw()

graphic

forall g in graphics

g.Draw()

add g to list of graphics

Rectangle

Draw()

Text

Draw() Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

COMPOSITE

 Motivation

AP 2005

aPicture

aPicture

aLine
aRectangle

aText aLine aRectangle

A typical composite object structure of recursively composed Graphic objects.

COMPOSITE

Motivation

AP 2005

Client

Composite

children

forall g in children

g.Operation()

Leaf

Operation()

Component

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Operation()

Add(Component)

Remove(Component)

GetChild(int)

COMPOSITE

Structure

AP 2005

aComposite

aLeaf aLeaf aComposite aLeaf

aLeaf aLeaf aLeaf

COMPOSITE

Typical Object Structure

AP 2005

COMPOSITE

Participants

• Component (Graphic)

– Declares interface for objects in the composition

– Implements default behavior for the interface

– Declares interface for accessing and managing child components

• Leaf (Rectangle, Line, Text)

– Leaf objects in the composition, without children

– Implements behavior for primitive objects in the composition

• Composite (Picture)

– Defines behavior for components having children

– Stores child components

– Implements child-related operations in the Component interface

• Client

– Manipulates objects through Component interface

AP 2005

COMPOSITE

Collaborations

• Clients use the Component class interface
– Interaction with objects in the composite structure

• Recipient is a Leaf
– Request is handled directly

• Recipient is a Composite
– Usually forwards requests to its child components

– Possibly performing additional operations before / after forwarding

AP 2005

COMPOSITE

Applicability / Benefits

• Use the Composite pattern when
– you want to represent part-whole hierarchies of objects

– you want clients to be able to ignore the difference between

compositions of objects and individual objects

– You want clients to treat all objects in the structure uniformly

• Benefits
– Whenever client code expects a primitive object, it can also take a

composite object

– Makes the client simple

– Makes it easier to add new kinds of components

AP 2005

DECORATOR

(Object Structural)

• Intent:
– Attach additional functionality to an object dynamically

– Flexible alternative to subclassing

– Also known as wrapper

• Motivation:
– Add responsibilities to individual objects, not an entire class

• Inheritance as inflexible (static) solution

• Clients cannot control the extension of object‘s functionality

– Enclosing the object into another object

• Decorator object adds the functionality

• Conforms to the interface of the decorated component

• Presence is transparent to clients

• Recursive nesting possible

AP 2005

aTextView

aScrollDecorator

aBorderDecorator
Some allplications would benefit from

using objects to modes every aspect

of their functionality, but a naive

design approach would be

prohibitively expensive.

For example, most document edi-

tors modularize their text formatting

and editing facilities to some extent.

However, they invariably stop short

of using objects to represent each

character and graphical element in

the document. Doing so would

promote flexibility at the finest level in

the application. Text and graphics

could be treated uniformly with

aBorderDecorator

aScrollDecorator

aTextView
component

component

Example: Create a bordered, scrollable text view

DECORATOR

 Motivation

AP 2005

TextView Decorator

VisualComponent

Draw()

Draw()Draw()

ScrollDecorator

Draw()

ScrollTo()

component -> Draw()

Decorator :: Draw();

DrawBorder();

BorderDecorator

Draw()

DrawBorder()

component

scrollPosition
borderWidth

DECORATOR

Motivation

AP 2005

ConcreteComponent Decorator

Component

Operation()

Operation()Operation()

ConcreteDecoratorA

Operatio()

component -> Operation()

Decorator :: Operation();

AddedBehavior();

ConcreteDecoratorB

Operation()

AddedBehavior()addedState

component

DECORATOR

Structure

AP 2005

DECORATOR

Participants and Collaborations

Participants:

• Component (VisualComponent)

– Interface for objects that can have responsibilities added to them dynamically

• ConcreteComponent (TextView)

– Defines an object to which additional responsibilities can be attached

• Decorator

– Maintains a reference to a Component object and defines interface that

conforms to Component’s interface

• ConcreteDecorator (BorderDecorator, ScrollDecorator)

– Adds responsibilities to the component

Collaborations:

– Decorator forwards requests to its Component object

– May perform additional operations before and after forwarding

AP 2005

DECORATOR

Applicability / Benefits

• Use Decorator
– to add responsibilities to individual objects dynamically /transparently

– for responsibilities that can be withdrawn.

– when extension by subclassing is impractical

• large number of independent extensions might be possible

• would produce an explosion of subclasses to support every combination

• class definition may be hidden / unavailable for subclassing

• Benefits
– More flexibility than static inheritance

– Easy to add the same property more than once (double border)

– Avoids feature-loaded classes at the top of the hierarchy

• Add functionality incrementally when needed

AP 2005

FACADE

(Object Structural)

• Intent:
– Unified interface to a set of interfaces

– Higher-level interface that makes the subsystem easier to use

• Motivation:
– Structuring a system into subsystems

• Helps reduce complexity

• Minimize communication and dependencies between subsystems

– Single, simplified interface to the more general facilities of subsystems

– Example:

• Compiler environment with subsystems (parser, scanner, …)

• High-level compiler interface for most clients

• Glue together specific functionalities, without hiding them completely

AP 2005

client classes

Subsystem classes

Facade

FACADE

Motivation

AP 2005

Compiler

subsystem

classes

Compiler

Compiler

Stream

BytecodeStream

CodeCenerator

StackMachineCodeGenerator RISCCodeGenerator

Scanner Token

Parser Symbol

ProgramNodeBuilder ProgramNode

StatementNode

ExpressionNode

ExpressionNode

FACADE

Motivation

AP 2005

subsystem classes

Facade

FACADE

Structure

AP 2005

FACADE

Participants and Collaborations

Participants:

• Facade (Compiler)
– Knows which subsystem classes may handle a request

– Delegates client requests to appropriate subsystem objects

• Subsystem classes (Scanner, Parser, ProgramNode)
– Implement subsystem functionality

– Have no knowledge of the facade (no references to it)

Collaborations:
– Clients sends requests to Façade

– Forwarded to the appropriate subsystem object(s)

– Facade may have to translate its interface to subsystem interfaces

– Clients do not have to access subsystem objects directly

AP 2005

FACADE

Applicability

Use the Facade pattern:

• to provide a simple interface to a complex subsystem
– Subsystems often get more complex as they evolve

– Most patterns result in smaller classes – harder for clients

– Simple default view, good enough for most clients

• in case of dependencies between client and abstraction

classes
– Facade decouples the subsystems from clients and other subsystems

– Promoting subsystem independence and portability

– Works also for subsystem interdependencies

AP 2005

FLYWEIGHT

(Object Structural)

• Intent:
– Use sharing to support large numbers of small objects efficiently

• Motivation:
– Applications could benefit from using objects throughout their design

– Naive implementation would be prohibitively expensive

– Example: Document editor

• Use objects to represent embedded elements (figures, tables)

• Each character could be handled as own object

• Memory / run-time overhead costs

– Share objects to allow their use at fine granularities

• Intrinsic state: stored in the flyweight

• Extrinsic state: depends upon context, can’t be shared; passed by client

AP 2005

a p p r e n ta

charakter

objects

row

objects

column

objects

FLYWEIGHT

Motivation

AP 2005

column

row row row

a p a nr e tpa p a nr e tp

 a b c d e f g h i j k l m

 n o p q r s t u v w x y z

 a b c d e f g h i j k l m

 n o p q r s t u v w x y z

 a b c d e f g h i j k l m

Logically - one object per character in the document

Physically - one shared flyweight object per character

FLYWEIGHT

Motivation

AP 2005

If (flyweight[key] exists) {

 return existing flyweight;

}else{

 create new flyweight;

 add to pool of flyweights;

return the new flyweight;

}

UnsharedConcreteFlyweight

FlyweightFactory

Operation(extrinsicState)

Flyweight

Operation(extrinsicState)GetFlyweight(key)

flyweights

client

allState

ConcreteFlyweight

Operation(extrinsicState)

intrinsicState

FLYWEIGHT

Structure

AP 2005

aClient aClient

aFlyweightFactory

flyweights

aConcreteFlyweight

intrinsicState

aConcreteFlyweight

intrinsicState

Flyweight

pool

FLYWEIGHT

Structure

AP 2005

FLYWEIGHT

Participants

• Flyweight
– Declares an interface through which flyweights can receive and act on

extrinsic state

• ConcreteFlyweight
– Implements Flyweight interface and adds storage for intrinsic state

– Must be sharable

– Any state it stores must be independent of concrete object‘s context

• FlyweightFactory
– Creates and manages flyweight objects

– Ensures that flyweights are shared properly

• Client
– Maintains reference to flyweight(s)

– Computes or stores the extrinsic state of flyweight(s)

AP 2005

FLYWEIGHT

Collaborations

• State that a flyweight needs to function must be

characterized as either intrinsic or extrinsic
– Intrinsic state is stored in the ConcreteFlyweight object

– Extrinsic state is stored or computed by Client objects

– State is passed to flyweight with operation invocation

• Clients should not instantiate ConcreteFlyweights
– Clients must obtain them exclusively from the FlyweightFactory

– Ensures proper sharing of objects

AP 2005

FLYWEIGHT

Applicability / Benefits

Applicability:
• Effectiveness depends heavily on how and where the pattern is

used

• Application when:
– application uses a large number of objects, and

– storage costs are high (sheer quantity of objects), and

– most object state can be made extrinsic

• Groups of objects may be replaced by relatively few shared objects
– extrinsic state must be removed

Benefits:
• Run-time costs (extrinsic state handling) vs. space saving

(increases with amount of shared state)

AP 2005

PROXY

(Object Structural)

• Intent:
– Surrogate or placeholder to control access to another object

• Motivation:
– Example: Defer the full cost of object creation and initialization until

the real need for it

– Document editor that can embed graphical objects into an document

– Creation of image objects can be expensive

– Opening the document should still be fast

– Image proxy might act as stand-in for the real image

AP 2005

DocumentEditor Graphic

Draw()

GetExtent()

Store()

Load()

Image

imageImp

extent

Draw()

GetExtent()

Store()

Load()

ImageProxy

fileName

extent

Draw()

GetExtent()

Store()

Load()

If (image ==0){

 image = LoadImage(fileName);

}

image ->Draw()

If (image ==0) {

 return extent;

} else{

 return image -> GetExtent();

}

image

PROXY

Motivation

AP 2005

aTextDocument

image aImageProxy

fileName anImage

data

in memory on disk

PROXY

Motivation

AP 2005

Client
Subject

Request()

...

RealSubject

Request()

...

Proxy

Request()

...

...

realSubject ->Request()

...

realSubject

PROXY

Structure

aClient

aProxy

aRealSubject
subject

Real-subject

AP 2005

PROXY

Participants and Collaborations

Participants:
• Proxy (ImageProxy)

– Maintains reference to the RealSubject

– Provides interface identical to the RealSubject

– Controls access to RealSubject; manages creation and deletion

• Subject (Graphic)
– Defines common interface for RealSubject and Proxy

• RealSubject (Image)
– Defines the real object that the proxy represents

Collaborations:
– Proxy forwards requests to RealSubject when appropriate

– Depends on the kind of proxy

AP 2005

PROXY

Applicability

• Covers need for a more sophisticated reference to an

object than a simple pointer

• Common situations:

– Remote proxy provides a local representative for an object in a

different address space (NeXTSTEP)

– Virtual proxy creates expensive objects on demand (ImageProxy)

– Protection proxy controls access to the original object (useful when

objects should have different access rights)

– Smart reference - replacement for a bare pointer that performs

additional actions on access

AP 2005

Purpose

BehavioralStructuralCreational

Chain of

Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Interpreter

Template Method

Adapter (object)

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Adapter (class)Factory Method

Abstract Factory

Builder

Prototype

Singleton

Object

Class

Scope

Defer object creation to

another class

Defer object creation to

another object

Describe algorithms and

flow control

Describe ways to

assemble objects

Design Pattern Space

