
AP 04/07

Why Components?

The rationale behind component software:

• Largely pushed by desktop – and Internet-based

solutions.

• Complex technology to master – viable, component-

based solutions will only evolve if benefits are clear.

• Benefits of traditional enterprise computing depend on

enterprises willing to evolve substantially.

„Software components are binary units of independent
production, acquisition, and deployment that interact to form
a functioning system“ (Szyperski 1997)

AP 04/07

How to Create Standards

• Historically, closed solutions with proprietary interfaces
addressed most customers’ needs.

• Attempts to create low-level connection standards or
wiring standards are either product or standard-driven.
– Microsoft standards have always been product-driven.

– COM-driven, incremental, evolutionary, legacy-laden by nature.

• Standard-driven approaches usually originate in
industry consortia.
– Prime example: Object Management Group (OMG)

CORBA Beans as generalization of JavaSoft’s Enterprise JavaBeans
standards for components.

– The EJB standard so far is not implementation language-neutral,
bridging to existing services is non-trivial.

AP 04/07

Mainframes PC‘s The Grid

Hardware Software Middleware

IBM Microsoft ???

closed closed open standards,

proprietary proprietary WebServices

PC1

PC3PC2

The Shifting Paradigm

Cluster

SuperDome

AP 04/07

The Internet World

• In the Internet world, the situation is different.

• Centralized control over what information is processed

when and where is not an option.

• Content (web pages, documents) arrives at a user’s

machine and needs to be processed there and then.

• Monolithic applications have long reached their limit.
– rapidly exploding variety of content types

– open coding standards such as XML

• Flexibility of component software is its capability to

dynamically grow to address changing needs.

AP 04/07

Terms and Concepts

Components:

• are a unit of independent deployment;

• are a unit of third-party composition;

• have no persistent state.

Implications:

• A Component needs to be well-separated from its
environment and from other components.

• A component encapsulates its constituent features.

• Components are never partially deployed.

AP 04/07

Observations on Components

• Components need to come with clear specifications of what they

provides and what they require.

– Functional vs. non-functional properties

– Well-defined interfaces and platform assumptions are essential.

– Minimize hard-wired dependencies in favor of externally configurable providers.

• Components cannot be distinguished from copies of themselves.

• In any given process, there will be at most one copy of a particular

component.

– So, while it is useful to ask whether a particular component is available or not, it

isn’t useful to ask about the number of copies of that component.

• Many currently available components are heavyweights.

– Database server, operating system services

AP 04/07

Terms and Concepts (contd.)

Objects:

• are units of instantiation (Each object has a unique identity);

• have state that can be persistent;

• encapsulate their state and behavior.

Implications:

• Objects cannot be partially instantiated.

• Since an object has individual state, it also needs a unique identity

to identify the object, despite state changes, for its lifetime.

• Nothing but an object‘s abstract identity remains stable over time.

AP 04/07

Observations on Objects

• Objects need a construction plan that describes the new object’s

state space, initial state, and behavior before the object can exist.

– Such a plan may be explicitly available and is then called a class.

– Alternatively, it may be implicitly available in the form of an object that already

exists, that is close to the object to be created, and can be cloned.

– A preexisting object might be called a prototype object.

• The newly instantiated object needs to be set to an initial state.

– The initial state needs to be a valid state of the constructed object, but it may

also depend on parameters specified by the client asking for the new object.

– The code that is required to control object creation and initialization could be a

static procedure, usually called a constructor.

– Alternatively, it can be an object of its own, usually called an object factory, or

factory for short.

AP 04/07

Object References and

Persistent Objects

• The object’s identity is usually captured by an object reference.

• Most programming languages do not explicitly support object

references.

– language-level references hold unique references of objects (usually their

addresses in memory),

– no direct high-level support to manipulate the reference as such.

• Distinguishing between an object and an object reference is

important when considering persistence.

– almost all so-called persistence schemes just preserve an object’s state and

class, but not its absolute identity.

– An exception is CORBA, which defines interoperable object references (IORs)

as stable entities (which are really objects). Storing an IOR makes the pure

object identity persist.

AP 04/07

Components and Objects

• A component comes to life through objects.

• It would normally contain one or more classes or
immutable prototype objects.
– In addition, it might contain a set of immutable objects that capture

default initial state and other component resources.

– No need for a component to contain only classes or any classes at all.

– A component could contain traditional procedures and even have
global (static) variables; or it may be realized in its entirety using a
functional programming approach, an assembly language, or any
other approach.

– Objects created in a component, or references to such objects, can
become visible to the component’s clients, usually other components.

– If only objects become visible to clients, there is no way to tell whether
or not a component is purely object-oriented inside.

AP 04/07

Components and Objects illustrated

Components are rather on the level of classes than of objects

Component

(unit of deployment)

Class

Factory A

Class

Factory B

Entry point

(CoGetClassObject())

B object

A object

A object

Interface

(IUnknown)

AP 04/07

Components and Objects (contd.)

• A component may contain multiple classes, but a class

is necessarily confined to a single component;

• partial deployment of a class wouldn’t normally make

sense.
– Just as classes can depend on other classes (inheritance),

components can depend on other components (import).

– The superclasses of a class do not necessarily need to reside in the

same component as the class. Where a class has a superclass in

another component, the inheritance relation crosses component

boundaries.

– Not clear, whether cross-component inheritance is a good thing.

AP 04/07

Modules and Components

• Components are rather close to modules (early 1980s).
– The most popular modular languages are Modula-2 and Ada (packages).

– Support of separate compilation,

– Proper type-check across module boundaries.

• Eiffel: „a class is a better module“.
– justified idea that modules would each implement one abstract data type (ADT).

– However, modules can be used to package multiple entities, such as ADTs or
classes, into one unit.

– Modules do not have a concept of instantiation, while classes do.

• Recent language designs keep the modules and classes separate.
– Oberon, Modula-3, and Component Pascal are examples

– Where classes inherit from each other, they can do so across module
boundaries.

– Even modules that do not contain any classes can function as components.

AP 04/07

Modules and Components (contd.)

• Modules are not configurable:

– There are no persistent immutable resources that come with a module, beyond

what has been hardwired as constants in the code.

– Resources parameterize a component (and are modified in builder tools).

– Resources allow for versioning a component without needing to recompile.

• Resources are different from mutable component state!

– Components are neither supposed to modify their own resources nor their

code!

• Component technology unavoidably leads to modular solutions.

– The software engineering benefits can thus justify initial investment into

component technology, even if you don’t foresee component markets.

AP 04/07

Component: A Definition

“A software component is a unit of composition with

contractually specified interfaces and explicit context

dependencies only. A software component can be

deployed independently and is subject to composition by

third parties.”
(Workshop on Component-Oriented Programming, ECOOP, 1996.)

AP 04/07

Interfaces

• A component’s interfaces define its access points.
– These points let clients access the component’s services.

– Components may have multiple interfaces.

– Each access point may provide a different service.

• Interface specifications have contractual nature.
– Component and clients are developed in mutual ignorance.

– The standardized contract forms ground for successful interaction.

• Economy of scale:
– interfaces should be simple, extensible and fulfill a market need.

• Common media to advertise interfaces is required
– Unique naming scheme (e.g., ISBN numbers).

– Component identifier is not required to carry any meaning.

AP 04/07

Classes and Interfaces

• Interfaces are used to express type-compatibility

between multiple independent classes
– Interfaces express what is common across classes

– Interfaces allow classes to share a common design

– Interfaces identify subsets of the set of all possible objects

– Interfaces enable real polymorphism

• Interfaces are used to constrain the types of objects a

variable/parameter/field can refer to

• Classes are used to manufacture objects in memory

• Components expose interfaces rather than classes

AP 04/07

Explicit Context Dependencies

• Besides specifying provided interfaces, components are

also required to specify their needs.
– What does the deployment environment need to provide, so that the

components can function (so-called context dependencies).

– For example, a mail-merge component would specify that it needs a

file system interface.

• Problems with today’s components:
– The list of required interfaces is not normally available.

– Emphasis is usually just on provided interfaces.

• Non-functional component properties are not addressed
– CPU/memory usage, timing behavior, fault-tolerance properties.

AP 04/07

Context Dependencies – the Reality

• In reality, several component worlds coexist, compete,

and conflict with each other.
– OMG’s CORBA, Microsoft’s COM+, Sun’s JavaBeans (EJB).

– Component worlds are fragmented by the various computing

platforms.

(This is not likely to change anytime soon.)

– A component’s context dependencies specification must include its

required interfaces and the component world (or worlds) for which it

has been prepared.

• Markets for cross-component-world integration.
– Bridging solutions (i.e., OMG’s „COM and CORBA Interworking“

spec).

– .NET might develop towards a bridge among component worlds.

AP 04/07

Component-Based Programming vs.

Component Assembly

• Component technology == “visual assembly” ?
– Wiring components is surprisingly productive for simple applications

– plumbing instead of programming: JavaSoft’s BeanBox

• Look behind the scenes:
– Visual assembly tools register event listeners with event sources

– Not the graph of particular assembled objects that is saved but

enough information to generate a new graph of same topology

– The newly generated graph and the original graph will not share

common objects: the object identities are all different.

• The stored graph represents persistent state
– but not persistent objects

– Tools could hard-code component assembly; but object graph might

be easier to modify at runtime

AP 04/07

Persistent Objects

• Only supported in two contexts:
– object-oriented databases, still restricted to a small niche of the

database market.

– CORBA-based objects.

• Object identity is preserved when storing objects.
– Cannot be used to save state and topology but not identity.

– Expensive deep copy of the saved graph required to undo the
effort of saving the universal identities of the involved objects.

• Persistent identity is a heavyweight concept.
– can always be added where needed.

AP 04/07

Persistent Objects (contd.)

• Neither COM nor JavaBeans support persistent objects.
– Emphasis on saving the state and topology of a graph of objects.

– Java terminology: “object serialization.”

(object graph serialization would be more precise.)

– COM says „persistence“ although object identity is not preserved.

– COM’s persistence mechanisms is equivalent to a deep copy of the

object graph.

• COM monikers are objects that resolve to other objects.
– Monikers may carry a stable unique identifier (a surrogate) and the

information needed to locate that particular instance.

– Java does not yet offer a standard like COM monikers.

AP 04/07

Component Objects

• Components carry instances that act at run time:
– As prescribed by their generating component.

– In the simplest case, a component is a class and the carried instances
are objects of that class.

– Most components will consist of many classes.

• JavaBeans are externally represented by a single class:
– One kind of object representing all possible uses of that component.

• COM components are more flexible:
– Arbitrary collection of objects; clients see sets of unrelated interfaces.

• JavaBeans and CORBA merge multiple interfaces:
– One implementing class only.

– Important cases not properly handled (i.e.; multiple versions of an
interface).

– The OMG’s CORBA Components proposal fixes this problem.

AP 04/07

The Ultimate Difference

• Components capture the static nature of

a software fragment.

• Objects capture its dynamic nature.
– Simply treating everything as dynamic can eliminate this distinction.

• Good software engineering practices strengthen the

static description of systems as much as possible.
– Dynamics can always be superimposed where needed.

– Meta-programming and just-in-time compilation simplify

this soft treatment of the boundary between static and dynamic.

AP 04/07

The Ultimate Difference (Contd.)

• It is advisable to explicitly capture as many static
properties of a design or architecture as possible.

• This is the role of components and architectures that
assign components their place.

• The role of objects is to capture the dynamic nature of
the arising systems built out of components.

• Component objects are objects carried by identified
components.
– Both components and objects together will enable the construction of

next-generation software.

Back to overview

