Unit OS5: Memory Management

5.1. Memory Management for Multiprogramming

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Roadmap for Section 5.1.

® Memory Management Principles

® Logical vs Physical Address Space
©® Swapping vs Segmentation

® Paging

Memory Management Principles

©® Memory is central to the operation of a modern

computer system

® Memory is a large array of words/bytes

® CPU fetches instructions from memory
according to the value of the program counter

® Instructions may cause additional loading from
and storing to specific memory addresses

Address Binding

® Addresses in source other
programs are symbolic object

. . . module:
@ Compiler binds symbolic to
relocatable addresses
@ Linkage editor/loader binds System

relocatable addresses to libraries
absolute addresses

Binding can be done at any step:

. . dynamically

6 i.e., compiler may generate loaded
absolute code (as for MS- system
DOS .COM programs) libraries

Source
program

Compiler or
assembler

Object
module

Linkage
editor

Load
module

loader

In-mtemory
binary
memory
image

Compile
time

load
time

execution
time
(run time)

5

Logical vs. Physical
Address Space

©® Address generated by CPU is called a logical address
@ Memory unit deals with physical addresses

® compile-time and load-time address-binding:
® Logical and physical addresses are identical

@ execution-time address-binding:
© Logical addresses are different from physical addresses
© Logical addresses are also called virtual addresses

©® Run-time mapping from virtual to physical addresses is done by
Memory Management Unit (MMU) — a hardware device

® The concept of a logical address space that is bound
to a different physical address space is central to
Memory Management!

Memory-Management Unit (MMU)

® Hardware device that maps virtual to physical address.

® The MMU is part of the processor

® Re-programming the MMU is a privileged operation that can
only be performed in privileged (kernel) mode

@ In MMU scheme, the value in the relocation register is
added to every address generated by a user process at
the time it is sent to memory.

©® The user program deals with logical addresses; it never sees
the real physical addresses.

Dynamic relocation using a
relocation register

relocation

register
ogical hvsical memory
CPU ogica + physical
address address
642 7642
MMU

Dynamic Loading

® A routine is not loaded until it is called
@ All routines are kept on disk in a relocatable load format

® When a routine calls another routine:
@® [t checks, whether the other routine has been loaded

® |f not, it calls the relocatable linking loader to load desired
routine

©® Loader updates program's address tables to reflect change
©® Control is passed to newly loaded routine

©® Better memory-space utilization
@ Unused routines are never loaded

® No special OS support required

Dynamic Linking

® Similar to dynamic loading:

© Rather than loading being postponed until run time,
linking is postponed

© Dynamic libraries are not statically attached to
a program's object modules (only a small stub is attached)

©® The stub indicates how to call (load) the appropriate library
routine

@ All programs may use the same copy of a library (code)
(shared libraries - .DLLS)

® Dynamic linking requires operating system support

©® OS is the only instance which may locate a library in another
process's address space

10

Memory Allocation Schemes

® Main memory must accommodate OS + user processes
©® OS needs to be protected from changes by user processes
©® User processes must be protected from each other

® Single patrtition allocation:
©® User processes occupy a single memory partition

© Protection can be implemented by limit and relocation register
(OS in low memory, user processes in high memory, see

below)
limit relocation
register register
cpu |__logical yes /_'lﬁ physical | memory
address address

no

(ON]

trap, addressing error

11

Memory Allocation Schemes (contd.)

© Multiple-Partition Allocation

©® Multiple processes should reside in memory simultaneously

® Memory can be divided in multiple partitions (fixed vs. variable size)
Problem: What is the optimal partition size?

©® Dynamic storage allocation problem

© Multiple partitions with holes in between

® Memory requests are satisfied from the set of holes

® Which hole to select?

@

First-fit: allocate the first hole that is big enough

Best-fit: allocate the smallest hole that is big enough

Worst-fit: allocate the largest hole (produces largest leftover hole)

e
e
© First-fit & best-fit are better than worst-fit (time & storage-wise)
e

First-fit is generally faster than best-fit

12

Overlays

® Size of program and data
may exceed size of memory

Concept:
® Separate program in modules
® Load modules alternatively

©® Overlay driver locates
modules on disk

@ Qverlay modules are kept as
absolute memory images

® Compiler support required

Example:
multi-pass compiler

Symbol
table

Common
Pass 1 routines

Overlay

driver

Pass 2

13

Swapping

In a multiprogramming environment:

©® Processes can temporarily be

swapped out of memory to backing Main memory
store in order to allow for execution of
other processes Operating

system Backing store

Y

©® Then, processes will be swapped in \—/
into same memory space that they

On the basis of physical addresses:

occupied previously Swap||process
On the basis of logical addresses: User out 1l p,
©® What current OSes call swapping is space
- Swap, Process
rather paging out whole processes. = P,
® Then, processes can be swapped in \—/

at arbitrary physical addresses.

14

Segmentation

® What is the programmer‘s view of memory?

©® Collection of variable-sized segments (text, data, stack,
subroutines,..)

® No necessary ordering among segments
® Logical address: <segment-number, offset>
@ Hardware:
©® Segment table containing base address and limit for each segment

Segment
s table
—limit| base
Physical
CPU S d memory
yes
y Y,
no Trap, addressing error

15

Fragmentation

©® External Fragmentation — total memory space exists to satisfy a
request, but it is not contiguous.

® Internal Fragmentation — allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used.

©® Reduce external fragmentation by compaction

©® Shuffle memory contents to place all free memory together in one
large block.

© Compaction is possible only if relocation is dynamic, and is done at
execution time.

® /O problem
@ Latch job in memory while it is involved in 1/O.
@ Do /O only into OS buffers.

16

Paging

® Dynamic storage allocation algorithms for varying-sized
chunks of memory may lead to fragmentation

® Solutions:
@ Compaction — dynamic relocation of processes

©® Noncontiguous allocation of process memory in
equally sized pages (this avoids the memory fitting
problem)

©® Paging breaks physical memory into fixed-sized blocks
(called frames)

@ | ogical memory is broken into pages (of the same size)

17

Paging: Basic Method

® When a process is executed, its pages are loaded into
any available frames from backing store (disk)

©® Hardware support for paging consists of a page table

@ | ogical addresses consist of page number and offset

T

.~ Logical Physical
B) address address Physical
"/of'fsei/ p memory
Page number Page frames
are typically
Page table 2-4 kb
18
Paging Example
frame
number
0
> 0 1 | Page 1l
age 0 4 5
Page 1 1
1 3 | Page 3
Page 2 2 6
3 4 | Page O
Page 3 3
5
. page
logical table 6 | Page 2
memory
7
physical

memory

19

Free Frames

7 Free frame list frame 7
8 7,8,10,11,13, 16 number 8 | page 1
9 9
] Process creation
10 10
11 0l 11| Page 0
1 8
12 T 12
13 3| 13 13| Page 3
14 14
New process
15 page table 15
Page 2
1o Free frame list 16 g
17 7,10 17
Before allocation After allocation Physical
memory

20

Paging: Hardware Support

@ Every memory access requires access to page table
©® Page table should be implemented in hardware
©® Page tables exist on a per-user process basis

@ Small page tables can be just a set of registers
©® Problem: size of physical memory, # of processes

©® Page tables should be kept in memory
©® Only base address of page table is kept in a special register
©® Problem: speed of memory accesses

@ Translation look-aside buffers (TLBS)
©® Associative registers store recently used page table entries
©® TLBs are fast, expensive, small: 8..2048 entries
® TLB must be flushed on process context switches

21

10

Associative Memory

® Associative memory — parallel search

Page #

Frame #

Address translation (A", A™)

O |f A’ is in associative register, get frame # out.

©® Otherwise get frame # from page table in memory

22

Paging Hardware With TLB

cPU —-’T'—c‘i—‘
" 1|~ Logical
address
) Offsef/ Page #
Page number
p

TLB hit

Frame #

Physical
address

B

TLB miss

Page table

Physical
memory

23

11

Effective Access Time with TLB

©® Associative Lookup in TLB = ¢ time unit
® Assume memory cycle time is 1 microsecond

® Hit ratio — percentage of times that a page number is
found in the associative registers;

® ratio related to number of associative registers.
® Let us assume a hit ratio = o

© Effective Access Time (EAT)
EAT=(1+ga+(2+e)(l—w)

=2+ec—a

24

Memory Protection

® Memory protection implemented by associating control
bits with each frame

©® |solation of processes in main memory

© Valid-invalid bit attached to each entry in the page table:

@ “valid” indicates that the associated page is in the
process’ logical address space, and is thus a legal
page

@ “invalid” indicates that the page is not in the
process’ logical address space

25

12

Valid (v) or Invalid (i) Bit in a Page

frame
Table number
0
1 | Page1l
Page 0 o[4]v] 2
Page 1 1
2 ! v 3 | Page 3
Page 2 216 |V
3|y 4 | Page O
Page 3 3
4 i 5
logical 5 i 6 | Page 2
memory page
table !
) physical
® Invalid pages may be paged out memory

26

Page Table Structure

® Hierarchical Paging
©® Hashed Page Tables

9 |Inverted Page Tables

27

13

Hierarchical Page Tables

® Break up the logical address space into multiple
page tables

® A simple technique is a two-level page table
© Used with 32-bit CPUs

28

Two-Level Paging Example

® A logical address (on 32-bit machine with 4K page size)
is divided into:
©® a page number consisting of 20 bits.
® a page offset consisting of 12 bits.

® Since the page table is paged, the page number is
further divided into:

© a 10-bit page number page number page offset

© a 10-bit page offset

’pi!pz d

® Thus, a logical address is as follows:
10 10 12

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

29

14

Two-Level Page-Table Scheme

outer page table
(page directory)

/

page tables

memory

30

Address-Translation Scheme

® Address-translation scheme for a two-level 32-

bit paging architecture

Main
memory|

page number page offset
e e | 0]
10 10 12
b
page
directory
page
table

31

15

Hashed Page Tables

® Common in address spaces > 32 bits
©® |A64 supports hashed page tables

® The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing to
the same location

® Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted

32

Hashed Page Table

.~ Logical Physical
address address Physical
memory

] 7 offset
Page number

e e

Page table

33

16

Inverted Page Table

® One entry for each real page of memory

® Entry consists of the virtual address of the page
stored in that real memory location, with
information about the process that owns that

page

® Decreases memory needed to store each page
table, but increases time needed to search the
table when a page reference occurs

® Use hash table to limit the search to one — or at
most a few — page-table entries

34

Inverted Page Table Architecture

CPU—ﬁp’ivdlr‘plcli‘

-~ Logical
address
P "/,/,x"/offset"
Page number
Process ID

search pid I p

T
Physical
address Physical
memory
}f
Page table

35

17

Shared Pages

©® Shared code

©® One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems)

©® Shared code must appear in same location in the logical
address space of all processes

©® Private code and data
©® Each process keeps a separate copy of the code and data

©® The pages for the private code and data can appear anywhere
in the logical address space

36

Shared Pages Example .

number
Process 1 p 1 tabl
virtual memory rocess 1 page table 0
cpp 1 1 cpp
ccl 4 2
cc2 11 3
datal 7 4 ccl
5
_Process 2 Process 2 page table 6
virtual memory 7 datal
cpp 1 8 | data2
ccl 4 9
cc2 11 10
data2 8 11 | cc2
memory

37

18

Segmentation with Paging
- paged segmentation on the GE 645 (Multics)

The innovative MULTICS operating system introduced:

(o]

(&)
o
o

S d

logical address

segment table

Logical addresses: 18-bit segment no, 16-bit offset
(relatively) small number of 64k segments

To eliminate fragmentation, segments are paged
A separate page table exists for each segment

(D—» segment| page-table

length base

segment table

base register

o

physical
memory

f] d

Trap
Lé}]

physical address

page table for segment s

38

’ selector‘ offset ‘ Intel logical
Address
selector l
descriptor
s table
limit| base

offs

31

Intel Linear
Address

et

Intel 80386
Address Translation

Physical Address

cr3

operand
4 Kb page
4Kb PDE PTE 4kb pagel——— P29
| [~ . frame
Page table L_22bit , operand
1024 entries offset
4Mb PDE 4 Mb page
4MB page frame
Page directory

1024x4byte entries
(one per process)

Physical address

Physical Memory

The Intel 386
uses
segmentation
with paging
for memory
management
with a two-
level paging
scheme.

39

19

Summary

@ |n a multiprogrammed OS, every memory address
generated by the CPU must be checked for legality and
possibly mapped to a physical address

©® Checking cannot be implemented (efficiently) in software
©® Hardware support is essential

@ A pair of registers is sufficient for single/multiple partition
schemes

©® Paging/segmentation need mapping tables to define address maps
©® Paging and segmentation can be fast
©® Tables have to be implemented in fast registers (Problem: size)

O Set of associative registers (TLB) may reduce performance
degradation if tables are kept in memory

@ Most modern OS combine paging and segmentation

40

Further Reading

® Abraham Silberschatz, Peter B. Galvin,
Operating System Concepts, John Wiley &
Sons, 6th Ed., 2003;

©® Chapter 9 - Memory Management
@ Chapter 10 - Virtual Memory

41

20

