
Lab Manual - OS4 Scheduling and
Dispatch

1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS4: Scheduling and Dispatch
4.6. Lab Manual

3

Roadmap for Section 4.6.

Monitoring Processes with TaskManager

Process Explorer and Thread Monitoring

PsTools for gathering process information

Kernel debugger !process and !thread

Watching the scheduler: CPU boosts

Monitoring starvation avoidance

Lab Manual - OS4 Scheduling and
Dispatch

2

4

Task Manager: Processes vs
Applications Tabs

Processes tab: List of
processes

“Running” means
waiting for window
messages

Applications tab: List of top
level visible windows

Right-click on a
window and select
“Go to process”

5

Understand Task Managers “Applications”
A meaningless term at the OS level

Not a list of processes

Not a list of “tasks” (another
meaningless term)

It’s a list of top level visible windows in
your session that meet certain criteria

What does the status column mean?
Running:

Windows don’t run—threads do

Running displayed only when
owning thread is waiting for a
window message (e.g. not running!)

Not Responding: not waiting for window
messages

To map a window to a process, right-
click on a window and select “Go to
process”

Lab Manual - OS4 Scheduling and
Dispatch

3

6

Process Explorer (Sysinternals)
“Super Task Manager”

Shows full image path, command line, environment variables,
parent process, security access token, open handles, loaded DLLs
& mapped files

7

Process Explorer’s Process List

1. Run Process Explorer & maximize window

2. Run Task Manager – click on Processes tab

3. Arrange windows so you can see both

4. Notice process tree vs flat list in Task Manager
- If parent has exited, process is left justified

5. Sort on first column (“Process”) and note tree view disappears

6. Click on View->Show Process Tree (or CTRL+T) to bring it back

7. Notice description and company name columns

8. Hover mouse over image to see full path of image

9. Right click on a process and choose “Google”

Lab Manual - OS4 Scheduling and
Dispatch

4

8

Process Performance

• Click on Performance Tab of process properties
Note: all these numbers can be configured as columns

9

Thread Details

Process Explorer
“Threads” tab shows
which thread(s) are
running

Start address represents
where the thread began
running (not where it is
now)

Click Module to get details
on module containing
thread start address

Lab Manual - OS4 Scheduling and
Dispatch

5

10

Thread Start Functions

Process Explorer can map the addresses within a module to
the names of functions

This can help identify which component within a process is
responsible for CPU usage

Requires access to:
Symbol file for that module

Proper version of Dbghelp.dll

By default, Process Explorer looks for:
Dbghelp.dll: in the default Windows Debugging Tools install
directory

Symbols: _NT_SYMBOL_PATH environment variable

Can also specify with Options->Configure Symbols

11

Process Explorer Lab:
Environment Variables

Click on Environment Tab of process properties

Lab Manual - OS4 Scheduling and
Dispatch

6

12

Identify Jobs used by WMI
Jobs are used by WMI

Example: run Psinfo (Sysinternals) and pause output

13

Jobs created by RUNAS
1. In a command prompt:

RUNAS /USER:xxx CMD
(where xxx is some other local account)

2. In ProcExp, find newly created cmd.exe process
Who is the father?

3. Run Notepad from new CMD window

4. Double click on newly highlighted process & click on Job tab

Lab Manual - OS4 Scheduling and
Dispatch

7

14

Process Block (!process)

PROCESS ff704020 Cid: 0075 Peb: 7ffdf000 ParentCid: 005d
 DirBase: 0063c000 ObjectTable: ff7063c8 TableSize: 70.
 Image: Explorer.exe
 VadRoot ff70d6e8 Clone 0 Private 229. Modified 236. Locked 0.
 FF7041DC MutantState Signalled OwningThread 0
 Token e1462030
 ElapsedTime 0:01:19.0874
 UserTime 0:00:00.0991
 KernelTime 0:00:02.0613
 QuotaPoolUsage[PagedPool] 18317
 QuotaPoolUsage[NonPagedPool] 3824
 Working Set Sizes (now,min,max) (727, 20, 45) (2908KB, 80KB, 180KB)
 PeakWorkingSetSize 757
 VirtualSize 29 Mb
 PeakVirtualSize 31 Mb
 PageFaultCount 1396
 MemoryPriority FOREGROUND
 BasePriority 8
 CommitCharge 250

EPROCESS address Process ID Address of
 process environment block

Process ID of
parent process

Time the process
has been running,
divided into User
and Kernel time

Physical address
of Page Directory

root of the process’s
Virtual Address
Descriptor tree

15

Thread Block (!thread)

THREAD 83160f60 Cid 9f.3d Teb: 7ffdc000 Win32Thread: e153d2c8
WAIT: (WrUserRequest) UserMode Non-Alertable

808e9d60 SynchronizationEvent
Not impersonating
Owning Process 81b44880
WaitTime (seconds) 953945
Context Switch Count 2697 LargeStack
UserTime 0:00:00.0289
KernelTime 0:00:04.0664
Start Address kernel32!BaseProcessStart (0x77e8f268)
Win32 Start Address 0x020d9d98
Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0
Priority 14 BasePriority 8 PriorityDecrement 6 DecrementCount 13

Kernel stack not resident.

ChildEBP RetAddr Args to Child
f7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadExit
f7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KeWaitForSingleObject+0x2a0
f7817cc0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c
f7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504
f7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58
f7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KiSystemServiceEndAddress+0x4
0012fef0 00000000 00000001 00000000 00000000 user32!GetMessageW+0x30

Address of ETHREAD

Thread ID

Address of thread
environment block

Objects being
waited on

Thread
state

Address of system
service dispatch table

Priority Information

Actual thread start address

Stack trace

Address of user thread function

Process ID

Lab Manual - OS4 Scheduling and
Dispatch

8

16

lkd> dt nt!_EPROCESS
+0x000 Pcb : _KPROCESS
+0x06c ProcessLock : _EX_PUSH_LOCK
+0x070 CreateTime : _LARGE_INTEGER
+0x078 ExitTime : _LARGE_INTEGER
+0x080 RundownProtect : _EX_RUNDOWN_REF
+0x084 UniqueProcessId : Ptr32 Void
+0x088 ActiveProcessLinks : _LIST_ENTRY
+0x090 QuotaUsage : [3] Uint4B
+0x09c QuotaPeak : [3] Uint4B
+0x0a8 CommitCharge : Uint4B
+0x0ac PeakVirtualSize : Uint4B
+0x0b0 VirtualSize : Uint4B

.

.

Process Block Layout

NOTE: Add “-r” to recurse through substructures

17

Thread Block (!strct ethread)

lkd> dt nt!_ETHREAD
+0x000 Tcb : _KTHREAD
+0x1c0 CreateTime : _LARGE_INTEGER
+0x1c0 NestedFaultCount : Pos 0, 2 Bits
+0x1c0 ApcNeeded : Pos 2, 1 Bit
+0x1c8 ExitTime : _LARGE_INTEGER
+0x1c8 LpcReplyChain : _LIST_ENTRY
+0x1c8 KeyedWaitChain : _LIST_ENTRY
+0x1d0 ExitStatus : Int4B
+0x1d0 OfsChain : Ptr32 Void
+0x1d4 PostBlockList : _LIST_ENTRY
+0x1dc TerminationPort : Ptr32 _TERMINATION_PORT
+0x1dc ReaperLink : Ptr32 _ETHREAD

NOTE: Add “-r” to recurse through substructures

Lab Manual - OS4 Scheduling and
Dispatch

9

18

Watching the Scheduler
Performance Monitor - Options | Chart

Screen snapshot from: Performance Monitor
Options menu | Chart command

Set chart maximum
vertical scale to 16

Set update interval to
0.1 seconds or less

19

Watching the Scheduler (contd.)
Performance Monitor

Screen snapshot from:
PerfMon main window, setup from previous slide

Thread states are
indicated by numbers
(see thread state
transition diagram on
previous slide, or
Perfmon Explain
display for Thread State
counter)

5 = waiting
2 = running
1 = ready

Lab Manual - OS4 Scheduling and
Dispatch

10

20

Watching
Forground Priority
Boosts

Run: cpustres.exe
(Resource Kit)

Screen snapshot from:
Run… cpustres

21

Priority Boost and Decay (contd.)
Demo with CpuStres and PerfMon

CpuStres settings:
two active threads

activity level = busy (about
25% wait time)

normal process priority class,
normal thread priorities

Usually only visible in PerfMon if
target app owns foreground
window (hence longer quantum)

These are showing +2 boost
(from 8 to 10) for foreground
apps after wait completion

Lab Manual - OS4 Scheduling and
Dispatch

11

22

Priority Boosts on GUI Threads

Threads that own windows receive an additional
boost of 2 when they wake up because of
windowing activity, such as the arrival of window
messages.

The windowing system (Win32k.sys) applies
this boost when it calls KeSetEvent to set an
event used to wake up a GUI thread.

The reason for this boost is similar to the
previous one—to favor interactive applications.

23

CPU Starvation Resolution
CpuStres with two compute-bound
threads (“maximum” activity level)

One is at lower priority than the other

