
1

Windows OS Internals - Copyright © 2005 David A. Solomon, Mark E. Russinovich, and Andreas Polze

Unit OS4: Scheduling and Dispatch
4.4. Windows Thread Scheduling

2

Roadmap for Section 4.4.

Windows Scheduling Principles

Windows API vs. NT Kernel Priorities

Scheduling Data Structures

Scheduling Scenarios

Priority Boosts and Priority Adjustments

2

3

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible
Throughput – # of processes/threads that complete
their execution per time unit
Turnaround time – amount of time to execute a
particular process/thread
Waiting time – amount of time a process/thread has
been waiting in the ready queue
Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output (i.e.; the hourglass)

4

How does the Windows scheduler
relate to the issues discussed:

Priority-driven, preemptive scheduling system
Highest-priority runnable thread always runs
Thread runs for time amount of quantum
No single scheduler – event-based scheduling code
spread across the kernel
Dispatcher routines triggered by the following events:

Thread becomes ready for execution
Thread leaves running state (quantum expires, wait state)
Thread‘s priority changes (system call/NT activity)
Processor affinity of a running thread changes

3

5

Windows Scheduling Principles

32 priority levels

Threads within same priority are scheduled
following the Round-Robin policy

Non-Realtime Priorities are adjusted dynamically
Priority elevation as response to certain I/O and
dispatch events

Quantum stretching to optimize responsiveness

Realtime priorities (i.e.; > 15) are assigned
statically to threads

6

Windows Scheduling-related APIs:
Get/SetPriorityClass
Get/SetThreadPriority
Get/SetProcessAffinityMask
SetThreadAffinityMask
SetThreadIdealProcessor
Suspend/ResumeThread

Scheduling
Multiple threads may be ready to run
“Who gets to use the CPU?”
From Windows API point of view:

Processes are given a priority class upon creation
Idle, Normal, High, Realtime
Windows 2000 added “Above normal” and “Below normal”

Threads have a relative priority within the class
Idle, Lowest, Below_Normal, Normal, Above_Normal, Highest, and
Time_Critical

From the kernel’s view:
Threads have priorities
0 through 31
Threads are scheduled,
not processes
Process priority class is not used
to make scheduling decisions

4

7

Kernel: Thread Priority Levels

16 “real-time” levels

15 variable levels

Used by zero page thread

Used by idle thread(s)

31

16

0

i

15

1

8

Windows vs. NT Kernel Priorities
Win32 Process Classes

Realtime High
Above
Normal Normal

Below
Normal Idle

Win32 Time-critical 31 15 15 15 15 15
Thread Highest 26 15 12 10 8 6

Priorities Above-normal 25 14 11 9 7 5
Normal 24 13 10 8 6 4

Below-normal 23 12 9 7 5 3
Lowest 22 11 8 6 4 2

Idle 16 1 1 1 1 1

Table shows base priorities (“current” or “dynamic” thread priority
may be higher if base is < 15)
Many utilities (such as Process Viewer) show the “dynamic priority” of
threads rather than the base (Performance Monitor can show both)
Drivers can set to any value with KeSetPriorityThread

5

9

Special Thread Priorities

Idle threads -- one per CPU
When no threads want to run, Idle thread “runs”

Not a real priority level - appears to have priority zero, but actually runs “below”
priority 0

Provides CPU idle time accounting (unused clock ticks are charged to the idle
thread)

Loop:
Calls HAL to allow for power management

Processes DPC list

Dispatches to a thread if selected

Server 2003: in certain cases, scans per-CPU ready queues for next thread

Zero page thread -- one per NT system
Zeroes pages of memory in anticipation of “demand zero” page faults

Runs at priority zero (lower than any reachable from Windows)

Part of the “System” process (not a complete process)

10

Thread Scheduling Priorities vs.
Interrupt Request Levels (IRQLs)

Passive_Level
APC

Dispatch/DPC
Device 1

.

.

.
Device n

Clock
Interprocessor Interrupt

Power fail
High

Hardware
interrupts

IRQLs (x86)

Software
interrupts

0
1
2

30
29
28

31

Thread
priorities

0-31

6

11

Single Processor Thread Scheduling
Priority driven, preemptive

32 queues (FIFO lists) of “ready” threads

UP: highest priority thread always runs

MP: One of the highest priority runnable thread will be running
somewhere

No attempt to share processor(s) “fairly” among processes, only
among threads

Time-sliced, round-robin within a priority level

Event-driven; no guaranteed execution period before
preemption

When a thread becomes Ready, it either runs immediately or is
inserted at the tail of the Ready queue for its current (dynamic)
priority

12

Thread Scheduling

No central scheduler!
i.e. there is no always-instantiated routine called “the scheduler”
The “code that does scheduling” is not a thread
Scheduling routines are simply called whenever events occur that
change the Ready state of a thread
Things that cause scheduling events include:

interval timer interrupts (for quantum end)
interval timer interrupts (for timed wait completion)
other hardware interrupts (for I/O wait completion)
one thread changes the state of a waitable object upon which other
thread(s) are waiting
a thread waits on one or more dispatcher objects
a thread priority is changed

Based on doubly-linked lists (queues) of Ready threads
Nothing that takes “order-n time” for n threads

7

13

Scheduling Data Structures

Process

thread thread

Process

thread thread

Default base prio
Default proc affinity
Default quantum

31

0

Ready summary Idle summary
31 (or 63) 0 31 (or 63) 0

Base priority
Current priority
Processor affinity
Quantum

Bitmask for non-empty
ready queues
Bitmask for idle CPUs

14

Scheduling Scenarios

Preemption
A thread becomes Ready at a higher priority than the running thread
Lower-priority Running thread is preempted
Preempted thread goes back to head of its Ready queue

action: pick lowest priority thread to preempt

Voluntary switch
Waiting on a dispatcher object
Termination
Explicit lowering of priority

action: scan for next Ready thread (starting at your priority & down)

Running thread experiences quantum end
Priority is decremented unless already at thread base priority
Thread goes to tail of ready queue for its new priority
May continue running if no equal or higher-priority threads are Ready

action: pick next thread at same priority level

8

15

Preemption is strictly event-driven
does not wait for the next clock tick
no guaranteed execution period before preemption
threads in kernel mode may be preempted (unless they raise IRQL to >= 2)

A preempted thread goes back to the head of its ready queue

Scheduling Scenarios
Preemption

18
17
16
15
14
13

Running Ready
from Wait state

16

If newly-ready thread is not of higher priority than the running thread…

…it is put at the tail of the ready queue for its current priority
If priority >=14 quantum is reset (t.b.d.)

If priority <14 and you’re about to be boosted and didn’t already have a
boost, quantum is set to process quantum - 1

Scheduling Scenarios
Ready after Wait Resolution

18
17
16
15
14
13

Running Ready

from Wait state

9

17

Scheduling Scenarios
Voluntary Switch

When the running thread gives up the CPU…
…Schedule the thread at the head of the next non-empty “ready” queue

to Waiting state

18
17
16
15
14
13

Running Ready

18

Scheduling Scenarios
Quantum End (“time-slicing”)
When the running thread exhausts its CPU quantum, it goes to the end
of its ready queue

Applies to both real-time and dynamic priority threads, user and kernel
mode

Quantums can be disabled for a thread by a kernel function
Default quantum on Professional is 2 clock ticks, 12 on Server

standard clock tick is 10 msec; might be 15 msec on some MP Pentium systems
if no other ready threads at that priority, same thread continues running
(just gets new quantum)
if running at boosted priority, priority decays by one at quantum end
(described later)

Running Ready18
17
16
15
14
13

10

19

Basic Thread Scheduling States

Ready (1) Running (2)

Waiting (5)

voluntary
switch

preemption,
quantum end

20

Priority Adjustments

Dynamic priority adjustments (boost and decay) are applied to threads in
“dynamic” classes

Threads with base priorities 1-15 (technically, 1 through 14)
Disable if desired with SetThreadPriorityBoost or SetProcessPriorityBoost

Five types:
I/O completion
Wait completion on events or semaphores
When threads in the foreground process complete a wait
When GUI threads wake up for windows input
For CPU starvation avoidance

No automatic adjustments in “real-time” class (16 or above)
“Real time” here really means “system won’t change the relative priorities of
your real-time threads”
Hence, scheduling is predictable with respect to other “real-time” threads (but
not for absolute latency)

11

21

Priority Boosting
To favor I/O intense threads:

After an I/O: specified by device driver
IoCompleteRequest(Irp, PriorityBoost)

Other cases discussed in the Windows Scheduling Internals Section
After a wait on executive event or
semaphore
After any wait on a dispatcher object by a thread in the foreground process
GUI threads that wake up to process windowing input (e.g. windows
messages) get a boost of 2

Common boost values (see NTDDK.H)
1: disk, CD-ROM, parallel, Video
2: serial, network, named
pipe, mailslot
6: keyboard or mouse
8: sound

22

Priority

Base
Priority

Run Wait Run

Preempt
(before
quantum
end)

Run

Priority decay
at quantum end

Boost
upon
wait
complete

Round-robin at
base priority

quantum

Time

Thread Priority Boost and Decay
Behavior of these boosts:

Applied to thread’s base priority
will not take you above priority 15

After a boost, you get one quantum
Then decays 1 level,
runs another quantum

12

23

Further Reading

Mark E. Russinovich and David A. Solomon, Microsoft Windows
Internals, 4th Edition, Microsoft Press, 2004.

Chapter 6 - Processes, Thread, and Jobs
(from pp. 289)

Thread Scheduling (from pp. 325)

Thread States (from pp. 334)

Scheduling Scenarios (from pp. 345)

24

Source Code References

Windows Research Kernel sources
\base\ntos\ke\i386, \base\ntos\ke\amd64:

Ctxswap.asm – Context Swap

Clockint.asm – Clock Interrupt Handler

\base\ntos\ke
procobj.c - Process object

thredobj.c, thredsup.c – Thread object

Idsched.c – Idle scheduler

Wait.c – quantum management, wait resolution

Waitsup.c – dispatcher exit (deferred ready queue)

\base\ntos\inc\ke.h – structure/type definitions

