
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS4: Scheduling and Dispatch
4.2. Windows Processes and Threads

2

Roadmap for Section 4.2.

Windows Processes and Threads

Performance Counters

Jobs

Process and Thread Lifetime

Windows APIs for Process and Thread creation

2

3

Windows Processes
What is a process?

Represents an instance of a running
program

you create a process to run a program
starting an application creates a
process

Process defined by:
Address space
Resources (e.g. open handles)
Security profile (token)

Every process starts with one thread
First thread executes the program’s
“main” function

Can create other threads in the same
process
Can create additional processes

Per-process
address space

Systemwide
Address Space

Thread

Thread

Thread

4

Windows Threads
What is a thread?

An execution context within a process
Unit of scheduling (threads run, processes don’t run)
All threads in a process share the same per-process address
space

Services provided so that threads can synchronize access to
shared resources (critical sections, mutexes, events,
semaphores)

All threads in the system are scheduled as peers to all others,
without regard to their “parent” process

System calls
Primary argument to CreateProcess()
is image file name (or command line)
Primary argument to CreateThread()
is a function entry point address

3

5

Processes & Threads
Why divide an application into multiple threads?

Perceived user responsiveness, parallel/background
execution

Examples: Word background print – can continue to edit
during print

Take advantage of multiple processors
On an MP system with n CPUs, n threads can literally run at
the same time
Question: given a single threaded application, will adding a
2nd processor make it run faster?

Does add complexity
Synchronization
Scalability well is a different question…

of multiple runnable threads vs # CPUs
Having too many runnable threads causes excess context
switching

6

Per-Process Data
Each process has its own…

Virtual address space (including program code,
global storage, heap storage, threads’ stacks)
processes cannot corrupt each other’s address
space by mistake
Working set (physical memory “owned” by the
process)
Access token (includes security identifiers)
Handle table for Windows kernel objects
Environment strings
Command line
These are common to all threads in the process, but
separate and protected between processes

4

7

Per-Thread Data
Each thread has its own…

User-mode stack (arguments passed to thread,
automatic storage, call frames, etc.)
Kernel-mode stack (for system calls)
Thread Local Storage (TLS) – array of pointers to
allocate unique data
Scheduling state (Wait, Ready, Running, etc.) and
priority
Hardware context (saved in CONTEXT structure if
not running)

Program counter, stack pointer, register values
Current access mode (user mode or kernel mode)

Access token (optional -- overrides process’s if
present)

8

Process and Thread Identifiers

Every process and every thread has an identifier

Generically: “client ID” (debugger shows as “CID”)
A.K.A. “process ID” and “thread ID”, respectively

Process IDs and thread IDs are in the same “number space”

These identify the requesting process or thread to its
subsystem “server” process, in API calls that need the server’s
help

Visible in PerfMon, Task Manager (for processes),
Process Viewer (for processes), kernel debugger, etc.

IDs are unique among all existing processes and threads
But might be reused as soon as a process or thread is deleted

5

9

Process-Related Performance
Counters

Number of threads in a processProcess: ThreadCount

PID – process IDs are re-usedProcess: ID Process

Total lifetime of process in secondsProcess: ElapsedTime

Percentage of time that the threads in the
process have run in user mode

Process:%UserTime

Percentage of CPU time that threads have
used during specified interval

%PrivilegedTime + %UserTime

Process:%ProcessorTime

Percentage of time that the threads in the
process have run in kernel mode

Process:%PrivilegedTime
FunctionObject: Counter

10

Thread-Related Performance
Counters

Base priority of process: starting priority for
thread within process

Process: Priority Base

Thread ID – re-usedThread: ID Thread

PID – process IDs are re-usedThread: ID Process

Total lifetime of process in secondsThread: ElapsedTime

Percentage of time that the thread has run in
user mode

Thread:%UserTime

Percentage of CPU time that the threads has
used during specified interval

%PrivilegedTime + %UserTime

Thread:%ProcessorTime

Percentage of time that the thread was run in
kernel mode

Thread:%PrivilegedTime

FunctionObject: Counter

6

11

Thread-Related Performance
Counters (contd.)

Base priority of thread: may differ from the
thread‘s starting priority

Thread: Priority Base

Value from 0 through 19 – reason why the
thread is in wait state

Thread: Thread Wait
Reason

Value from 0 through 7 – current state of
thread

Thread: Thread State

The thread‘s starting virtual address (the
same for most threads)

Thread: Start Address

The thread‘s current dynamic priorityThread: Priority Current

FunctionObject: Counter

12

Tools for Obtaining Process & Thread Information
Many overlapping tools (most show one item the others do not)
Built-in tools in Windows 2000/XP:

Task Manager, Performance Tool
Tasklist (new in XP)

Support Tools
pviewer - process and thread details (GUI)
pmon - process list (character cell)
tlist - shows process tree and thread details (character cell)

Resource Kit tools:
apimon - system call and page fault monitoring (GUI)
oh – display open handles (character cell)
pviewer - processes and threads and security details (GUI)
ptree – display process tree and kill remote processes (GUI)
pulist - lists processes and usernames (character cell)
pstat - process/threads and driver addresses (character cell)
qslice - can show process-relative thread activity (GUI)

Tools from www.sysinternals.com
Process Explorer – super Task Manager – shows open files, loaded DLLs, security info, etc.
Pslist – list processes on local or remote systems
Ntpmon - shows process/thread create/deletes (and context
switches on MP systems only)
Listdlls - displays full path of EXE & DLLs loaded in each process

7

13

Jobs

Jobs are collections of processes
Can be used to specify limits on CPU, memory, and security
Enables control over some unique process & thread settings
not available through any process or thread system call

E.g. length of thread time slice

How do processes become part of a job?
Job object has to be created (CreateJobObject)
Then processes are explicitly added (AssignProcessToJob)

Processes created by processes in a job automatically are part
of the job

Unless restricted, processes can “break away” from a job

Then quotas and limits are defined (SetInformationJobObject)
Examples on next slide…

Job

Processes

14

Process Lifetime

Created as an empty shell

Address space created with only ntdll and the
main image unless created by POSIX fork()

Handle table created empty or populated via
duplication from parent

Process is partially destroyed on last thread exit

Process totally destroyed on last dereference

8

15

Thread Lifetime

Created within a process with a CONTEXT
record

Starts running in the kernel but has a trap frame to
return to user mode

Threads run until they:
The thread returns to the OS

ExitThread is called by the thread

TerminateThread is called on the thread

ExitProcess is called on the process

16

Why Do Processes Exit?
(or Terminate?)

Normal: Application decides to exit
(ExitProcess)

Usually due to a request from the UI

or: C RTL does ExitProcess when
primary thread function (main,
WinMain, etc.) returns to caller

this forces TerminateThread on
the process’s remaining threads

or, any thread in the process can
do an explicit ExitProcess

Orderly exit requested from the
desktop (ExitProcess)

e.g. “End Task” from Task Manager
“Tasks” tab

Task Manager sends a WM_CLOSE
message to the window’s message
loop…

…which should do an ExitProcess
(or equivalent) on itself

Forced termination
(TerminateProcess)

if no response to “End Task” in five
seconds, Task Manager presents
End Program dialog (which does a
TerminateProcess)

or: “End Process” from Task
Manager Processes tab

Unhandled exception
Covered in Unit 4.3 (Process and
Thread Internals)

9

17

Job Settings
Quotas and restrictions:

Quotas: total CPU time, # active processes, per-
process CPU time, memory usage

Run-time restrictions: priority of all the processes in
job; processors threads in job can run on

Security restrictions: limits what processes can do
Not acquire administrative privileges

Not accessing windows outside the job, no reading/writing
the clipboard

Scheduling class: number from 0-9 (5 is default) -
affects length of thread timeslice (or quantum)

E.g. can be used to achieve “class scheduling” (partition
CPU)

18

Jobs
Examples where Windows OS uses jobs:

Add/Remove Programs (“ARP Job”)

WMI provider

RUNAS service (SecLogon) uses jobs to terminate
processes at log out

SU from NT4 ResKit didn’t do this

Process Explorer highlights processes that are
members of jobs

Color can be configured with Options->Configure
Highlighting

For processes in a job, click on Job tab in process
properties to see details

10

19

Programming Slides

NOTE: The remaining slides are for use in a
class that covers the programming aspects of
the OS (vs a class aimed at system
administrators who are not doing
programming)

20

Process Windows APIs
CreateProcess
OpenProcess
GetCurrentProcessId - returns a global ID
GetCurrentProcess - returns a handle
ExitProcess
TerminateProcess - no DLL notification
Get/SetProcessShutdownParameters
GetExitCodeProcess
GetProcessTimes
GetStartupInfo

11

21

Windows Thread APIs
CreateThread

CreateRemoteThread

GetCurrentThreadId - returns global ID

GetCurrentThread - returns handle

SuspendThread/ResumeThread

ExitThread

TerminateThread - no DLL notification

GetExitCodeThread

GetThreadTimes

Windows 2000 adds:
OpenThread

new thread pooling APIs

22

Fibers
Implemented completely in user mode

no “internals” ramifications
Fibers are still scheduled as threads
Fiber APIs allow different execution contexts within a thread

stack
fiber-local storage
some registers (essentially those saved and restored for a
procedure call)
cooperatively “scheduled” within the thread

Analogous to threading libraries under many Unix systems
Analogous to co-routines in assembly language
Allow easy porting of apps that “did their own threads” under
other systems

12

23

Process Creation

No parent/child relation in Win32
CreateProcess() – new process with primary thread

BOOL CreateProcess(
LPCSTR lpApplicationName,
LPSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation)

24

typedef struct _PROCESS_INFORMATION {
HANDLE hProcess;
HANDLE hThread;
DWORD dwProcessId;
DWORD dwThreadId;

} PROCESS_INFORMATION;

Parameters

fdwCreate:
CREATE_SUSPENDED, DETACHED_PROCESS,
CREATE_NEW_CONSOLE, CREATE_NEW_PROCESS_GROUP

lpStartupInfo:
Main window appearance

Parent‘s info: GetStartupInfo

hStdIn, hStdOut, hStdErr fields for I/O redirection

lpProcessInformation:
Ptr to handle & ID
of new proc/thread

13

25

UNIX & Win32 comparison

Windows API has no equivalent to fork()

CreateProcess() similar to fork()/exec()

UNIX $PATH vs. lpCommandLine argument
Win32 searches in dir of curr. Proc. Image; in curr. Dir.;

in Windows system dir. (GetSystemDirectory); in Windows dir.

(GetWindowsDirectory); in dir. Given in PATH

Windows API has no parent/child relations for processes

No UNIX process groups in Windows API
Limited form: group = processes to receive a console event

26

Windows API Thread Creation

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD cbStack,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpvThreadParm,
DWORD fdwCreate,
LPDWORD lpIDThread)

lpstartAddr points to function declared as
DWORD WINAPI ThreadFunc(LPVOID)

lpvThreadParm is 32-bit argument
LPIDThread points to DWORD that receives thread ID
non-NULL pointer !

cbStack == 0: thread‘s
stack size defaults to
primary thread‘s size

14

27

VOID ExitProcess(
UINT uExitCode);

BOOL TerminateProcess(
HANDLE hProcess,
UINT uExitCode);

BOOL GetExitCodeProcess(
HANDLE hProcess,
LPDWORD lpExitCode);

Exiting and Terminating a Process

Shared resources must be freed before exiting
Mutexes, semaphores, events
Use structured exception handling

But:
_finally, _except

handlers are not
executed on
ExitProcess;

no SEH on
TerminateProcess

28

Windows API Thread Termination

VOID ExitThread(DWORD devExitCode)

When the last thread in a process terminates, the process itself
terminates
(TerminateThread() does not execute final SEH)

Thread continues to exist until last handle is closed
(CloseHandle())

BOOL GetExitCodeThread (
HANDLE hThread, LPDWORD lpdwExitCode)

Returns exit code or STILL_ACTIVE

15

29

Suspending and Resuming
Threads

Each thread has suspend count

Can only execute if suspend count == 0

Thread can be created in suspended state

DWORD ResumeThread (HANDLE hThread)

DWORD SuspendThread(HANDLE hThread)

Both functions return suspend count or 0xFFFFFFFF on
failure

30

Synchronization & Remote Threads

WaitForSingleObject() and WaitForMultipleObjects()
with thread handles as arguments perform thread
synchronization

Waits for thread to become signaled
ExitThread(), TerminateThread(), ExitProcess() set thread
objects to signaled state

CreateRemoteThread() allows creation of thread in
another process

Not implemented in Windows 9x

C library is not thread-safe; use libcmt.lib instead
#define _MT before any include
Use _beginthreadex/_endthreadex instead of
Create/ExitThread

16

31

Further Reading

Mark E. Russinovich and David A. Solomon, Microsoft Windows Internals,
4th Edition, Microsoft Press, 2004.

Chapter 6 - Processes, Thread, and Jobs
(from pp. 289)

Jeffrey Richter, Programming Applications for Microsoft Windows,
4th Edition, Microsoft Press, September 1999.

Chapter 4 - Processes

Chapter 5 - Jobs

Chapter 6 - Thread Basics

32

Source Code References

Windows Research Kernel sources
\base\ntos\ke

procobj.c - Process object

thredobj.c, thredsup.c – Thread object

\base\ntos\inc\ke.h, ps.h – structure/type definitions

