Unit OS4: Scheduling and Dispatch

4.1. The Concept of Processes and Threads

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Roadmap for Section 4.1.

® The Process Concept

® Thread States

® Context Switches

©® Approaches to CPU Scheduling
® Multithreading Models




Process Concept

© An operating system executes programs:

©® Batch system — jobs

©® Time-shared systems — user programs or tasks
©® Process — a program in execution

©® Process execution must progress sequentially
® A process includes:

©® CPU state (one or multiple threads)

©® Text & data section

©® Resources such as open files, handles, sockets

©® Traditionally, processes used to be units of scheduling
(i.e. no threads)

©® However, like most modern operating systems, Windows
schedules threads

©® OQur discussion assumes thread scheduling

Thread States

©® Five-state diagram for thread scheduling:

[+

init: The thread is being created
ready: The thread is waiting to be assigned to a CPU

o

® running: The thread’s instructions are being executed
©® waiting: The thread is waiting for some event to occur
o

terminated: The thread has finished execution

interrupt
quantum expired

terminated

scheduler exit

dispatch running

I/O or event waiting for
completion I/O or event

admitted




Process and Thread Control Blocks

©® Information associated with each process: Process Control

Block (PCB)

® Memory management information
©® Accounting information

©® Process-global vs. thread-specific
@ |nformation associated with each thread: Thread Control Block

(TCB)

©® Program counter

CPU registers

e
® CPU scheduling information
® Pending I/O information

Process Control Block (PCB)

Process ID (PID)

Parent PID

Next Process Block

® This is an abstract view

©® Windows implementation of PCB is

split in multiple data structures

List of open files

PCB

Image File Name

List of Thread
Control Blocks

='| Handle Table

Thread Control Block (TCB)

Next TCB

o]

—>

Program Counter

Registers




CPU Switch from Thread to Thread

Thread T,

executin / .
xecuting J, Save state into TCB,

ready or
waiting

executing jf

Interrupt or system call

Reload state from TCB,

/’

Interrupt or system call

Save state into TCB, N\

Reload state from TCB,

‘/

Thread T,

ready or
waiting

executing

ready or
waiting

Context Switch

® When CPU switches to another thread, the system must
save the state of the old thread and load the saved state
for the new thread

©® Context-switch time is overhead; the system does no
useful work while switching

©® Thread context-switching can be implemented in kernel

or user mode

@ |nteraction with memory management (MMU) is required
when switching between threads in different processes




Thread Scheduling Queues

® Ready queue

® Maintains set of all threads ready and waiting to execute
® There might be multiple ready queues, sorted by priorities
® Device queue
©® Maintains set of threads waiting for an I/O device
® There might be multiple queues for different devices
® Threads migrate between the various queues

Ready Queue and I/0O Device Queues

Time-out
Ready queue
I — Dispatch Release
I/0 1 queue /0 1 wait
I/0O 2 wait
I/0 n wait

1/0 occurs
I/O n queue

10




Optimization Criteria

® CPU scheduling uses heuristics to manage the tradeoffs
among contradicting optimization criteria.
® Schedulers are optimized for certain workloads
® Interactive vs. batch processing

©® |/O-intense vs. compute-intense
® Common optimization criteria:

® Maximize CPU utilization

® Maximize throughput

©® Minimize turnaround time

® Minimize waiting time

® Minimize response time

11

Basic Scheduling Considerations

® What invokes the scheduler?
® Which assumptions should a scheduler rely on?
® What are its optimization goals?

Rationale:
@ Multiprogramming maximizes CPU utilization

©® Thread execution experiences cycles of
compute- and 1/O-bursts

@ Scheduler should consider CPU burst distribution

12




Alternating Sequence of CPU and 1/O

Bursts

Threads can be described as either:

©® 1/O-bound — spends more time doing
1/0 than computations, many short
CPU bursts

® CPU-bound — spends more time
doing computations; few very long
CPU bursts

load val
inc val
read file

wait for I/O

inc count
add data, val
write file

wait for I/O

load val
inc val
read from file

wait for I/O

CPU burst

1/0 burst

CPU burst

1/0 burst

CPU burst

1/0 burst

13

Histogram of CPU-burst Times

distribution

0 10 20

30

Burst duration (msec)

® Many short CPU bursts are typical

© Exact figures vary greatly by process and computer

14




Schedulers

©® Long-term scheduler (or job scheduler)

©® Selects which processes with their threads should be
brought into the ready queue

® Takes memory management into consideration
(swapped-out processes)

©® Controls degree of multiprogramming
©® Invoked infrequently, may be slow

® Short-term scheduler (or CPU scheduler)

©® Selects which threads should be executed next and
allocates CPU

©® Invoked frequently, must be fast

® Windows has no dedicated long-term scheduler

15

CPU Scheduler

® Selects from among the threads in memory that are
ready to execute, and allocates the CPU to one of them

©® CPU scheduling decisions may take place when a
thread:

1.
2.
3.
4.

Switches from running to waiting state
Switches from running to ready state
Switches from waiting to ready

Terminates

® Scheduling under 1 and 4 is nonpreemptive

® All other scheduling is preemptive

16




Dispatcher

©® Dispatcher module gives control of the CPU to the
thread selected by the short-term scheduler; this
involves:

@ switching context
©® switching to user mode

©® jumping to the proper location in the user program to restart
that program

® Dispatch latency — time it takes for the dispatcher to stop
one thread and start another running.

® Windows scheduling is event-driven

©® No central dispatcher module in the kernel

17

Scheduling Algorithms:
First-In, First-Out (FIFO)

® Also known as First-Come, First-Served (FCFS)

Thread Burst Time
T, 20
T, 5
T, 4

©® Suppose that the threads arrive in the order: T, , T, , T,
© The Gantt Chart for the schedule is:

Ty T, Ty

0 20 25 29
©® Waiting time for T, =0; T, =20; T,=25
©® Average waiting time: (0 + 20 + 25)/3 =15

® Convoy effect: short thread behind long threads experience long
waiting time

18




FIFO Scheduling (Cont.)

Suppose that the threads arrive in the order
T,, T3, T,
® The Gantt chart for the schedule is:

T, Ty T

® Waiting time for T,=9;T,=0.T;=5
©® Average waiting time: (9 + 0 + 5)/3 = 4.66
® Much better than previous case

19

Scheduling Algorithms:
Round Robin (RR)

©® Preemptive version of FIFO scheduling algorithm

©® Each thread gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds

© After this time has elapsed, the thread is preempted and
added to the end of the ready queue

©® Each of n ready thread gets 1/n of the CPU time in chunks of
at most quantum ¢ time units at once

® Of n ready threads, no one waits more than (n-1)q time units
©® Performance
® qlarge = FIFO

® g small = g must be large with respect to context switch,
otherwise overhead is too high

20

10



Example of RR with Quantum = 10

Thread Burst Time
T, 23
T, 7
T, 38
T, 14

® Assuming all threads have same priority, the Gantt chart is:

Ty | Ty | Tg | Ty | Ty | Ty | T, | Ty | T | Ty

0 10 17 27 37 47 57 61 64 74 82
® Round-Robin favors CPU-intense over |/O-intense threads

©® Priority-elevation after I/O completion can provide a
compensation

® Windows uses Round-Robin with a priority-elevation scheme

21

Shorter quantum yields more
context switches

Thread execution time: 15 context

quantum - gwitches

| | 20 0
| | | 10 1
HIERERREREREERER 1 14

©® Longer quantum yields shorter average turnaround times

22

11



Scheduling Algorithms:
Priority Scheduling

® A priority number (integer) is associated with
each thread

® The CPU is allocated to the thread with the
highest priority

@ Preemptive

® Non-preemptive

23

Priority Scheduling - Starvation

Starvation is a problem:
@ |ow priority threads may never execute

Solutions

1) Decreasing priority & aging: the Unix approach
@ Decrease priority of CPU-intense threads

@ Exponential averaging of CPU usage to slowly
increase priority of blocked threads

2) Priority Elevation: the Windows/VMS approach
@ Increase priority of a thread on 1/0O completion
@ System gives starved threads an extra burst

24

12



Multilevel Queue

©® Ready queue is partitioned into separate queues:

©® Real-time (system, multimedia)

©® Interactive
©® Queues may have different scheduling algorithm,

@ Real-Time - RR

©® Interactive — RR + priority-elevation + quantum stretching
©® Scheduling must be done between the queues

©® Fixed priority scheduling (i.e., serve all from real-time threads
then from interactive)

© Possibility of starvation

® Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its threads;

® CPU reserves

25

Multilevel Queue Scheduling

High priority

—* Real-time system threads b
—* Real-time user threads =
_* System threads "
_* Interactive user threads "
—* background threads b

Low priority

P

® Windows uses strict Round-Robin for real-time threads
® Priority-elevation can be disabled for non-RT threads

26

13



Process Creation

@ Parent process creates children processes, which create
other processes, forming a tree of processes

©® Processes start with one initial thread
@ Resource sharing models
©® Parent and children share all resources
® Children share subset of parent’s resources
©® Parent and child share no resources
@ Execution
® Parent’s and children's’ threads execute concurrently
©® Parent waits until children terminate

27

Process Creation (Cont.)

® How to set up an address space

©® Child can be duplicate of parent

©® Child may have a program loaded into it
® UNIX example

@ fork() system call creates new process

©® exec() system call used after a fork to replace the process’
memory space with a new program

® Windows example

©® CreateProcess() system call create new process and loads
program for execution

28

14



Processes Tree on a UNIX System

Prozess-ID Prozessname Threads v % CPU
0 kernel_task 32 1.40
1 v init 1 0,00
193 v WindowServer 2 4,40
1876 i\ PowerPoint 2 30,90
1874 Microsoft Word 1 15,40
358 viE Aktivitits-Anzeige 2 11,90
361 pmTool 1 2,90
1898 'ﬁ‘l Bildschirmfoto 3 59,90
356 vl Terminal 4 1,90
364 v legin 1 0,00
366 v tcsh 1 0,00
415 v su 1 0,00
416 tcsh 1 0,00

29

Process Termination

® Last thread inside a process executes last statement
and returns control to operating system (exit)

@ Parent may receive return code (via wait)
©® Process’ resources are deallocated by operating system
©® Parent may terminate execution of
children processes (kill)
©® Child has exceeded allocated resources
® Task assigned to child is no longer required
©® Parent is exiting

© Operating system typically does not allow child to continue if its
parent terminates (depending on creation flags)

® Cascading termination inside process groups

30

15



Single and Multithreaded

Processes
’ code H data H files ‘ ’ code H data H files ‘
’registers‘ registereregisters‘
’ stack ‘ stack H stack ‘
Thread
Thread Thread Thread
single-threaded multi-threaded

31

Benefits of Multithreading

® Higher Responsiveness

® Dedicated threads for handling user events
©® Simpler Resource Sharing

® All threads in a process share same address space
® Utilization of Multiprocessor Architectures

©® Multiple threads may run in parallel

32

16



User Threads

® Thread management within a user-level threads
library

® Process is still unit of CPU scheduling from OS
kernel perspective

©® Examples
@ POSIX Pthreads
® Mach C-threads
® Solaris threads

@ Fibers on Windows

33

Kernel Threads

® Supported by the Kernel

©® Thread is unit of CPU scheduling
® Examples

@ Windows

@ Solaris
@ OSF/1

@ Linux - Tasks can act like threads by sharing kernel data structures

34

17



Multithreading Models

How are user-level threads mapped on kernel threads?
® Many-to-One

® Many user-mode threads are mapped on
a single kernel thread

@ One-to-One

® Each user-mode thread is represented by
a separate kernel thread

@ Many-to-Many

©® A set of user-mode threads is being mapped on
another set of kernel threads

35

Many-to-One Model

User> User(> User
® Many user-level Threa Threa Threa

threads are mapped
to a single kernel
thread

® Used on systems
that do not support
kernel threads >

® Example:
@ POSIX Pthreads
@ Mach C-Threads Kernel
® Windows Fibers thread

36

18



One-to-One Model

User User User
® Each user-level Threa Threa Threa
thread maps to
kernel thread
©® Examples
® Windows threads O D) D)
® OS/2 threads

Kernel Kernel Kernel
thread thread thread

37

Many-to-Many Model

User User User
Threa Threa Threa

® Allows many user
level threads to be
mapped to many

kernel threads.

® Allows the operating
system to create a
sufficient number of

kernel threads.
Kernel
® Example

® Solaris 2

Kernel
thread

38

19



Problems with Multithreading

©® Semantics of fork()/exec() or CreateProcess()
system calls

® Coordinated termination

® Signal handling

® Global data, errno, error handling
® Thread specific data

©® Reentrant vs. non-reentrant system calls

39

Pthreads

® a POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

©® API specifies behavior of the thread library, not
an implementation

® Implemented on many UNIX operating systems

® Services for Unix (SFU) implement PThreads on
Windows

40

20



Further Reading

® Abraham Silberschatz, Peter B. Galvin, Operating
System Concepts, John Wiley & Sons, 6th Ed., 2003;

@ Chapter 4 - Processes
@ Chapter 5 - Threads
@ Chapter 6 - CPU Scheduling

® Mark E. Russinovich and David A. Solomon, Microsoft
Windows Internals, 4th Edition, Microsoft Press, 2004.

@ Chapter 6 - Processes, Thread, and Jobs
(from pp. 289)

41

21



