
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS4: Scheduling and Dispatch
4.1. The Concept of Processes and Threads

2

Roadmap for Section 4.1.

The Process Concept

Thread States

Context Switches

Approaches to CPU Scheduling

Multithreading Models

2

3

Process Concept
An operating system executes programs:

Batch system – jobs
Time-shared systems – user programs or tasks

Process – a program in execution
Process execution must progress sequentially

A process includes:
CPU state (one or multiple threads)
Text & data section
Resources such as open files, handles, sockets

Traditionally, processes used to be units of scheduling
(i.e. no threads)

However, like most modern operating systems, Windows
schedules threads
Our discussion assumes thread scheduling

4

Thread States
Five-state diagram for thread scheduling:

init: The thread is being created

ready: The thread is waiting to be assigned to a CPU

running: The thread’s instructions are being executed

waiting: The thread is waiting for some event to occur

terminated: The thread has finished execution

init

ready

waiting

running

terminated

scheduler
dispatch

waiting for
I/O or event

I/O or event
completion

interrupt
quantum expired

admitted exit

3

5

Process and Thread Control Blocks
Information associated with each process: Process Control
Block (PCB)

Memory management information
Accounting information
Process-global vs. thread-specific

Information associated with each thread: Thread Control Block
(TCB)

Program counter
CPU registers
CPU scheduling information
Pending I/O information

6

Process Control Block (PCB)

Program Counter

Parent PID

…

Handle Table

Process ID (PID)

Registers

Next Process Block

Image File Name

PCB

List of Thread
Control Blocks

List of open files

…

This is an abstract view

Windows implementation of PCB is
split in multiple data structures

Next TCB

…

Thread Control Block (TCB)

4

7

CPU Switch from Thread to Thread
Thread T1

executing

executing

ready or
waiting

Save state into TCB2

Reload state from TCB1

Save state into TCB1

Reload state from TCB2

Interrupt or system call Thread T2

executing
Interrupt or system call

ready or
waiting

ready or
waiting

8

Context Switch

When CPU switches to another thread, the system must
save the state of the old thread and load the saved state
for the new thread
Context-switch time is overhead; the system does no
useful work while switching
Thread context-switching can be implemented in kernel
or user mode
Interaction with memory management (MMU) is required
when switching between threads in different processes

5

9

Thread Scheduling Queues

Ready queue
Maintains set of all threads ready and waiting to execute
There might be multiple ready queues, sorted by priorities

Device queue
Maintains set of threads waiting for an I/O device
There might be multiple queues for different devices

Threads migrate between the various queues

10

Ready Queue and I/O Device Queues

CPU

Ready queue

I/O 1 wait

I/O 2 wait

I/O n wait

I/O n queue

I/O 1 queue

I/O occurs

Time-out

ReleaseDispatch

6

11

Optimization Criteria

CPU scheduling uses heuristics to manage the tradeoffs
among contradicting optimization criteria.
Schedulers are optimized for certain workloads

Interactive vs. batch processing
I/O-intense vs. compute-intense

Common optimization criteria:
Maximize CPU utilization
Maximize throughput
Minimize turnaround time
Minimize waiting time
Minimize response time

12

Basic Scheduling Considerations

What invokes the scheduler?
Which assumptions should a scheduler rely on?
What are its optimization goals?

Rationale:
Multiprogramming maximizes CPU utilization
Thread execution experiences cycles of
compute- and I/O-bursts
Scheduler should consider CPU burst distribution

7

13

Alternating Sequence of CPU and I/O
Bursts
Threads can be described as either:

I/O-bound – spends more time doing
I/O than computations, many short
CPU bursts

CPU-bound – spends more time
doing computations; few very long
CPU bursts

…
load val
inc val
read file

wait for I/O

inc count
add data, val
write file

wait for I/O

load val
inc val
read from file

wait for I/O

…

CPU burst

CPU burst

CPU burst

I/O burst

I/O burst

I/O burst

14

Histogram of CPU-burst Times

Burst duration (msec)
0 10 20 30

di
st

rib
ut

io
n

Many short CPU bursts are typical

Exact figures vary greatly by process and computer

8

15

Schedulers

Long-term scheduler (or job scheduler)
Selects which processes with their threads should be
brought into the ready queue
Takes memory management into consideration
(swapped-out processes)
Controls degree of multiprogramming
Invoked infrequently, may be slow

Short-term scheduler (or CPU scheduler)
Selects which threads should be executed next and
allocates CPU
Invoked frequently, must be fast

Windows has no dedicated long-term scheduler

16

CPU Scheduler

Selects from among the threads in memory that are
ready to execute, and allocates the CPU to one of them

CPU scheduling decisions may take place when a
thread:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

9

17

Dispatcher
Dispatcher module gives control of the CPU to the
thread selected by the short-term scheduler; this
involves:

switching context

switching to user mode

jumping to the proper location in the user program to restart
that program

Dispatch latency – time it takes for the dispatcher to stop
one thread and start another running.

Windows scheduling is event-driven
No central dispatcher module in the kernel

18

Scheduling Algorithms:
First-In, First-Out (FIFO)
Also known as First-Come, First-Served (FCFS)

Thread Burst Time

T1 20
T2 5
T3 4

Suppose that the threads arrive in the order: T1 , T2 , T3

The Gantt Chart for the schedule is:

Waiting time for T1 = 0; T2 = 20; T3 = 25
Average waiting time: (0 + 20 + 25)/3 = 15
Convoy effect: short thread behind long threads experience long
waiting time

T1 T2 T3

20 25 290

10

19

FIFO Scheduling (Cont.)

Suppose that the threads arrive in the order

T2 , T3 , T1 .

The Gantt chart for the schedule is:

Waiting time for T1 = 9; T2 = 0; T3 = 5

Average waiting time: (9 + 0 + 5)/3 = 4.66

Much better than previous case

T1T3T2

95 290

20

Scheduling Algorithms:
Round Robin (RR)

Preemptive version of FIFO scheduling algorithm
Each thread gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds
After this time has elapsed, the thread is preempted and
added to the end of the ready queue
Each of n ready thread gets 1/n of the CPU time in chunks of
at most quantum q time units at once
Of n ready threads, no one waits more than (n-1)q time units

Performance
q large ⇒ FIFO
q small ⇒ q must be large with respect to context switch,
otherwise overhead is too high

11

21

Example of RR with Quantum = 10
Thread Burst Time

T1 23
T2 7
T3 38
T4 14

Assuming all threads have same priority, the Gantt chart is:

Round-Robin favors CPU-intense over I/O-intense threads
Priority-elevation after I/O completion can provide a
compensation
Windows uses Round-Robin with a priority-elevation scheme

T1 T2 T3 T4 T1 T3 T4 T1 T3 T3

0 10 17 27 37 47 57 61 64 74 82

22

Shorter quantum yields more
context switches

Thread execution time: 15

0 15

15

15

0

0

10

10

quantum
context

switches

20

10

1

0

1

14

Longer quantum yields shorter average turnaround times

12

23

Scheduling Algorithms:
Priority Scheduling

A priority number (integer) is associated with
each thread

The CPU is allocated to the thread with the
highest priority

Preemptive

Non-preemptive

24

Priority Scheduling - Starvation
Starvation is a problem:

low priority threads may never execute

Solutions
1) Decreasing priority & aging: the Unix approach

Decrease priority of CPU-intense threads
Exponential averaging of CPU usage to slowly
increase priority of blocked threads

2) Priority Elevation: the Windows/VMS approach
Increase priority of a thread on I/O completion
System gives starved threads an extra burst

13

25

Multilevel Queue
Ready queue is partitioned into separate queues:

Real-time (system, multimedia)
Interactive

Queues may have different scheduling algorithm,
Real-Time – RR
Interactive – RR + priority-elevation + quantum stretching

Scheduling must be done between the queues
Fixed priority scheduling (i.e., serve all from real-time threads
then from interactive)

Possibility of starvation

Time slice – each queue gets a certain amount of CPU time
which it can schedule amongst its threads;

CPU reserves

26

Multilevel Queue Scheduling

Real-time system threads

Real-time user threads

System threads

Interactive user threads

background threads

High priority

Low priority

Windows uses strict Round-Robin for real-time threads
Priority-elevation can be disabled for non-RT threads

14

27

Process Creation

Parent process creates children processes, which create
other processes, forming a tree of processes

Processes start with one initial thread

Resource sharing models
Parent and children share all resources

Children share subset of parent’s resources

Parent and child share no resources

Execution
Parent’s and children's’ threads execute concurrently

Parent waits until children terminate

28

Process Creation (Cont.)

How to set up an address space
Child can be duplicate of parent

Child may have a program loaded into it

UNIX example
fork() system call creates new process

exec() system call used after a fork to replace the process’
memory space with a new program

Windows example
CreateProcess() system call create new process and loads
program for execution

15

29

Processes Tree on a UNIX System

30

Process Termination

Last thread inside a process executes last statement
and returns control to operating system (exit)

Parent may receive return code (via wait)
Process’ resources are deallocated by operating system

Parent may terminate execution of
children processes (kill)

Child has exceeded allocated resources
Task assigned to child is no longer required
Parent is exiting

Operating system typically does not allow child to continue if its
parent terminates (depending on creation flags)
Cascading termination inside process groups

16

31

Single and Multithreaded
Processes

code data files

registers stack

Thread

single-threaded

code data files

registers

stack

Thread

multi-threaded

stack

registers

stack

registers

Thread Thread

32

Benefits of Multithreading

Higher Responsiveness
Dedicated threads for handling user events

Simpler Resource Sharing
All threads in a process share same address space

Utilization of Multiprocessor Architectures
Multiple threads may run in parallel

17

33

User Threads

Thread management within a user-level threads
library

Process is still unit of CPU scheduling from OS
kernel perspective

Examples
POSIX Pthreads

Mach C-threads

Solaris threads

Fibers on Windows

34

Kernel Threads

Supported by the Kernel
Thread is unit of CPU scheduling

Examples
Windows

Solaris

OSF/1

Linux - Tasks can act like threads by sharing kernel data structures

18

35

Multithreading Models
How are user-level threads mapped on kernel threads?

Many-to-One
Many user-mode threads are mapped on
a single kernel thread

One-to-One
Each user-mode thread is represented by
a separate kernel thread

Many-to-Many
A set of user-mode threads is being mapped on
another set of kernel threads

36

Many-to-One Model

Many user-level
threads are mapped
to a single kernel
thread

Used on systems
that do not support
kernel threads

Example:
POSIX Pthreads

Mach C-Threads

Windows Fibers
Kernel
thread

User
Thread

User
Thread

User
Thread

19

37

One-to-One Model

Each user-level
thread maps to
kernel thread

Examples
Windows threads

OS/2 threads

Kernel
thread

User
Thread

Kernel
thread

User
Thread

Kernel
thread

User
Thread

38

Many-to-Many Model

Allows many user
level threads to be
mapped to many
kernel threads.

Allows the operating
system to create a
sufficient number of
kernel threads.

Example
Solaris 2

Kernel
thread

User
Thread

User
Thread

User
Thread

Kernel
thread

20

39

Problems with Multithreading

Semantics of fork()/exec() or CreateProcess()
system calls

Coordinated termination

Signal handling

Global data, errno, error handling

Thread specific data

Reentrant vs. non-reentrant system calls

40

Pthreads

a POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

API specifies behavior of the thread library, not
an implementation

Implemented on many UNIX operating systems

Services for Unix (SFU) implement PThreads on
Windows

21

41

Further Reading

Abraham Silberschatz, Peter B. Galvin, Operating
System Concepts, John Wiley & Sons, 6th Ed., 2003;

Chapter 4 - Processes

Chapter 5 - Threads

Chapter 6 - CPU Scheduling

Mark E. Russinovich and David A. Solomon, Microsoft
Windows Internals, 4th Edition, Microsoft Press, 2004.

Chapter 6 - Processes, Thread, and Jobs
(from pp. 289)

