
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS3: Concurrency
3.3. Advanced Windows Synchronization

3

Roadmap for Section 3.3.

Deferred and Asynchronous Procedure Calls

IRQLs and CPU Time Accounting

Wait Queues & Dispatcher Objects

2

4

Deferred Procedure Calls (DPCs)
Used to defer processing from higher (device) interrupt level to a lower
(dispatch) level

Also used for quantum end and timer expiration

Driver (usually ISR) queues request
One queue per CPU. DPCs are normally queued to the current
processor, but can be targeted to other CPUs

Executes specified procedure at dispatch IRQL (or “dispatch level”, also
“DPC level”) when all higher-IRQL work (interrupts) completed

Maximum times recommended: ISR: 10 usec, DPC: 25 usec

See http://www.microsoft.com/whdc/driver/perform/mmdrv.mspx

queue head DPC object DPC object DPC object

5

DPC

Delivering a DPC

DPC routines can call kernel functions
but can‘t call system services, generate
page faults, or create or wait on objects

DPC routines can‘t
assume what
process address
space is currently
mapped

Interrupt
dispatch table

high
Power failure

Dispatch/DPC
APC
Low

DPC
1. Timer expires, kernel
queues DPC that will
release all waiting threads
Kernel requests SW int.

DPCDPC

DPC queue

2. DPC interrupt occurs
when IRQL drops below
dispatch/DPC level

dispatcher

3. After DPC interrupt,
control transfers to
thread dispatcher

4. Dispatcher executes each DPC
routine in DPC queue

3

6

Asynchronous Procedure Calls
(APCs)

Execute code in context of a particular user thread
APC routines can acquire resources (objects), incur page faults,
call system services

APC queue is thread-specific
User mode & kernel mode APCs

Permission required for user mode APCs

Executive uses APCs to complete work in thread space
Wait for asynchronous I/O operation
Emulate delivery of POSIX signals
Make threads suspend/terminate itself (env. subsystems)

APCs are delivered when thread is in alertable wait state
WaitForMultipleObjectsEx(), SleepEx()

7

Asynchronous Procedure Calls
(APCs)

Special kernel APCs
Run in kernel mode, at IRQL 1

Always deliverable unless thread is already at IRQL 1 or above

Used for I/O completion reporting from “arbitrary thread context”

Kernel-mode interface is linkable, but not documented

“Ordinary” kernel APCs
Always deliverable if at IRQL 0, unless explicitly disabled
(disable with KeEnterCriticalRegion)

User mode APCs
Used for I/O completion callback routines (see ReadFileEx, WriteFileEx); also,
QueueUserApc
Only deliverable when thread is in “alertable wait”

Thread
Object

K

U
APC objects

4

8

IRQLs and CPU Time Accounting

Interval clock timer ISR keeps track of time
Clock ISR time accounting:

If IRQL<2, charge to thread’s user or kernel time
If IRQL=2 and processing a DPC, charge to DPC time
If IRQL=2 and not processing a DPC, charge to thread kernel time
If IRQL>2, charge to interrupt time

Since time servicing interrupts are NOT charged to interrupted
thread, if system is busy but no process appears to be running, must
be due to interrupt-related activity

Note: time at IRQL 2 or more is charged to the current thread’s
quantum (to be described)

9

Interrupt Time Accounting
Task Manager includes interrupt and DPC time with the Idle
process time

Since interrupt activity is not charged to any thread or process,
Process Explorer shows these as separate processes (not really
processes)

Context switches for these are really number of interrupts and DPCs

5

10

Time Accounting Quirks
Looking at total CPU time for each process may not reveal where
system has spent its time

CPU time accounting is driven by programmable interrupt timer
Normally 10 msec (15 msec on some MP Pentiums)

Thread execution and context switches between clock intervals NOT
accounted

E.g., one or more threads run and enter a wait state before clock fires

Thus threads may run but never get charged

View context switch activity with Process Explorer
Add Context Switch Delta column

11

Looking at Waiting Threads
For waiting threads, user-mode utilities only display the wait reason
Example: pstat

To find out what a thread is waiting on, must use kernel debugger

6

12

Wait Internals 1:
Dispatcher Objects

Size Type
State

Wait listhead

Object-type-
specific data

Dispatcher
Object

Any kernel object you can wait for is a “dispatcher object”
some exclusively for synchronization

e.g. events, mutexes (“mutants”), semaphores, queues, timers

others can be waited for as a side effect of their prime function
e.g. processes, threads, file objects

non-waitable kernel objects are called “control objects”

All dispatcher objects have a common header
All dispatcher objects are in one of two states

“signaled” vs. “nonsignaled”
when signalled, a wait on the object is satisfied
different object types differ in terms of what changes
their state
wait and unwait implementation is
common to all types of dispatcher objects

(see \ntddk\inc\ddk\ntddk.h)

13

Object-type-
specific data

Wait Internals 2:
Wait Blocks

Size Type
State

Wait listhead

Size Type
State

Wait listhead

Represent a thread’s reference to
something it’s waiting for (one per handle
passed to WaitFor…)
All wait blocks from a given wait call are
chained to the waiting thread
Type indicates wait for “any” or “all”
Key denotes argument list position for
WaitForMultipleObjects

Object-type-
specific data

Dispatcher
Objects

Thread Objects

WaitBlockListWaitBlockList

Wait blocks

Key Type
Next link

List entry

Object
Thread

Key Type
Next link

List entry

Object
Thread

Key Type
Next link

List entry

Object
Thread

7

14

Further Reading

Mark E. Russinovich and David A. Solomon,
Microsoft Windows Internals, 4th Edition,
Microsoft Press, 2004.

Chapter 3 - System Mechanisms
Kernel Event Tracing (from pp. 175)

DPC Interrupts (from pp. 104)

15

Source Code References

Windows Research Kernel sources
\base\ntos\ke

Dpcobj.c, dpcsup.c – Deferred Procedure Calls

Apcobj.c, apcsup.c – Asynchronous Procedure Calls

interobj.c - Interrupt Object

wait.c, waitsup.c – Wait support

\base\ntos\ke\i386 (similar files for amd64)
Clockint.asm – Clock Interrupt Handler

\base\ntos\inc\ke.h – structure/type definitions

