
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS3: Concurrency
3.1. Concurrency, Critical Sections, Semaphores

3

Roadmap for Section 3.1.

The Critical-Section Problem

Software Solutions

Synchronization Hardware

Semaphores

Synchronization in Windows & Linux

2

4

The Critical-Section Problem

n threads all competing to use a shared
resource (i.e.; shared data)

Each thread has a code segment, called critical
section, in which the shared data is accessed

Problem:
Ensure that when one thread is executing in its
critical section, no other thread is allowed to
execute in its critical section

5

Solution to Critical-Section Problem

1. Mutual Exclusion
Only one thread at a time is allowed into its critical section, among all
threads that have critical sections for the same resource or shared
data.
A thread halted in its non-critical section must not interfere with other
threads.

2. Progress
A thread remains inside its critical section for a finite time only.
No assumptions concerning relative speed of the threads.

3. Bounded Waiting
It must no be possible for a thread requiring access to a critical
section to be delayed indefinitely.
When no thread is in a critical section, any thread that requests entry
must be permitted to enter without delay.

3

6

Initial Attempts to Solve Problem

Only 2 threads, T0 and T1

General structure of thread Ti (other thread Tj)
do {

enter section

critical section

exit section

reminder section

} while (1);

Threads may share some common variables to
synchronize their actions.

7

First Attempt: Algorithm 1

Shared variables - initialization
int turn = 0;

turn == i⇒ Ti can enter its critical section
Thread Ti

do {

while (turn != i) ;

critical section

turn = j;

reminder section

} while (1);

Satisfies mutual exclusion, but not progress

4

8

Second Attempt: Algorithm 2

Shared variables - initialization
int flag[2]; flag[0] = flag[1] = 0;

flag[i] == 1⇒ Ti can enter its critical section
Thread Ti

do {

flag[i] = 1;
while (flag[j] == 1) ;

critical section

flag[i] = 0;
remainder section

} while(1);

Satisfies mutual exclusion, but not progress requirement.

9

Third Attempt: Algorithm 3
(Peterson’s Algorithm - 1981)

Shared variables of algorithms 1 and 2 - initialization:
int flag[2]; flag[0] = flag[1] = 0;
int turn = 0;

Thread Ti

do {

flag[i] = 1;
turn = j;
while ((flag[j] == 1) && turn == j) ;

critical section

flag[i] = 0;

remainder section

} while (1);

Solves the critical-section problem for two threads.

5

10

Dekker’s Algorithm (1965)

This is the first correct solution proposed for the
two-thread (two-process) case.
Originally developed by Dekker in a different
context, it was applied to the critical section
problem by Dijkstra.

Dekker adds the idea of a favored thread and allows
access to either thread when the request is
uncontested.
When there is a conflict, one thread is favored, and
the priority reverses after successful execution of
the critical section.

11

Dekker’s Algorithm (contd.)

Shared variables - initialization:
int flag[2]; flag[0] = flag[1] = 0;
int turn = 0;

Thread Ti

do {
flag[i] = 1;

while (flag[j])
if (turn == j) {

flag[i] = 0;
while (turn == j);
flag[i] = 1;

}

critical section

turn = j;
flag[I] = 0;;

remainder section

} while (1);

6

12

Bakery Algorithm
(Lamport 1979)

A Solution to the Critical Section problem for n threads

Before entering its critical section, a thread receives a
number. Holder of the smallest number enters the critical
section.

If threads Ti and Tj receive the same number,
if i < j, then Ti is served first; else Tj is served first.

The numbering scheme generates numbers in
monotonically non-decreasing order;
i.e., 1,1,1,2,3,3,3,4,4,5...

13

Bakery Algorithm

Notation “<“ establishes lexicographical order
among 2-tuples (ticket #, thread id #)

(a,b) < (c,d) if a < c or if a == c and b < d

max (a0,…, an-1) = { k | k ≥ ai for i = 0,…, n – 1 }

Shared data
int choosing[n];

int number[n]; - the ticket

Data structures are initialized to 0

7

14

Bakery Algorithm

do {

choosing[i] = 1;

number[i] = max(number[0],number[1] ...,number[n-1]) + 1;

choosing[i] = 0;

for (j = 0; j < n; j++) {

while (choosing[j] == 1) ;

while ((number[j] != 0) &&
((number[j],j) ‘’<‘’ (number[i],i)));

}

critical section

number[i] = 0;

remainder section

} while (1);

15

Mutual Exclusion - Hardware Support

Interrupt Disabling
Concurrent threads cannot overlap on a uniprocessor
Thread will run until performing a system call or interrupt
happens

Special Atomic Machine Instructions
Test and Set Instruction - read & write a memory location
Exchange Instruction - swap register and memory location

Problems with Machine-Instruction Approach
Busy waiting
Starvation is possible
Deadlock is possible

8

16

Synchronization Hardware

Test and modify the content of a word atomically

boolean TestAndSet(boolean &target) {

boolean rv = target;

target = true;

return rv;

}

17

Mutual Exclusion with Test-and-Set

Shared data:
boolean lock = false;

Thread Ti

do {

while (TestAndSet(lock)) ;

critical section

lock = false;

remainder section

}

9

18

Synchronization Hardware

Atomically swap two variables.

void Swap(boolean &a, boolean &b) {

boolean temp = a;

a = b;

b = temp;

}

19

Mutual Exclusion with Swap

Shared data (initialized to 0):
int lock = 0;

Thread Ti
int key;

do {

key = 1;

while (key == 1) Swap(lock,key);

critical section

lock = 0;

remainder section

}

10

20

Semaphores

Semaphore S – integer variable

can only be accessed via two atomic operations
wait (S):

while (S <= 0);
S--;

signal (S):

S++;

21

Critical Section of n Threads

Shared data:

semaphore mutex; //initially mutex = 1

Thread Ti:
do {

wait(mutex);
critical section

signal(mutex);
remainder section

} while (1);

11

22

Semaphore Implementation

Semaphores may suspend/resume threads
Avoid busy waiting

Define a semaphore as a record
typedef struct {

int value;
struct thread *L;

} semaphore;

Assume two simple operations:
suspend() suspends the thread that invokes it.
resume(T) resumes the execution of a blocked thread T.

23

Implementation

Semaphore operations now defined as
wait(S):

S.value--;

if (S.value < 0) {

add this thread to S.L;
suspend();

}

signal(S):
S.value++;

if (S.value <= 0) {

remove a thread T from S.L;
resume(T);

}

12

24

Semaphore as a General
Synchronization Tool

Execute B in Tj only after A executed in Ti

Use semaphore flag initialized to 0

Code:

Ti Tj

… …

A wait(flag)

signal(flag) B

25

Two Types of Semaphores

Counting semaphore
integer value can range over an unrestricted
domain.

Binary semaphore
integer value can range only between 0 and 1;

can be simpler to implement.

Counting semaphore S can be implemented
as a binary semaphore.

13

26

Deadlock and Starvation

Deadlock – two or more threads are waiting indefinitely for an event
that can be caused by only one of the waiting threads.
Let S and Q be two semaphores initialized to 1

T0 T1

wait(S); wait(Q);
wait(Q); wait(S);

… …
signal(S); signal(Q);
signal(Q) signal(S);

Starvation – indefinite blocking. A thread may never be removed
from the semaphore queue in which it is suspended.
Solution - all code should acquire/release semaphores in same order

27

Windows Synchronization

Uses interrupt masks to protect access to global
resources on uniprocessor systems.

Uses spinlocks on multiprocessor systems.

Provides dispatcher objects which may act as mutexes
and semaphores.

Dispatcher objects may also provide events. An event
acts much like a condition variable.

14

28

Linux Synchronization

Kernel disables interrupts for synchronizing access to
global data on uniprocessor systems.

Uses spinlocks for multiprocessor synchronization.

Uses semaphores and readers-writers locks when
longer sections of code need access to data.

Implements POSIX synchronization primitives to support
multitasking, multithreading (including real-time threads),
and multiprocessing.

29

Further Reading

Ben-Ari, M., Principles of Concurrent Programming,
Prentice Hall, 1982

Lamport, L., The Mutual Exclusion Problem, Journal of
the ACM, April 1986

Abraham Silberschatz, Peter B. Galvin, Operating
System Concepts, John Wiley & Sons, 6th Ed., 2003;

Chapter 7 - Process Synchronization

Chapter 8 - Deadlocks

