
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS2:
Operating System Principles
2.3. Windows on Windows - OS Personalities

3

Roadmap for Section 2.3.

Environment Subsystems

System Service Dispatching

Windows on Windows - 16bit

Windows on Windows - 64bit

2

4

Multiple OS Personalities

OS/2 Windows POSIX

Environment Subsystems

User
Application
Subsystem DLL

Windows
User/GDI
Device
Driver

Executive
Device Drivers Kernel

Hardware Abstraction Layer (HAL)

User
Mode

Kernel
Mode

System
& Service
Processes

Windows

5

What about .NET and WinFX?

WinFX is the .NET Framework that will ship with
Longhorn
Both .NET and WinFX are built on standard Windows
APIs

They are not a subsystem
They do not call undocumented Windows system calls

.NET/WinFX
Application

Windows API DLLsUser
Mode

Windows KernelKernel
Mode

.NET/WinFX Framework

3

6

Environment Subsystems

Environment subsystems provide exposed, documented interface
between application and Windows native API

Each subsystem defines a different set of APIs & semantics

Subsystems implement these by invoking native APIs
i.e., subsystem “wraps” and extends Windows native API

Example: Windows CreateFile in Kernel32.Dll calls native NtCreateFile

.exe’s and .dll’s you write are associated with a subsystem
Specified by LINK /SUBSYSTEM option

Cannot mix calls between subsystems

7

Environment Subsystems

Three environment subsystems originally provided with NT:
Windows –Windows API (originally 32-bit, now also 64-bit)
OS/2 - 1.x character-mode apps only

Removed in Windows 2000

Posix - only Posix 1003.1 (bare minimum Unix services - no networking,
windowing, threads, etc.)

Removed in Windows XP/Server 2003 – enhanced version ships with Services For
Unix 3.0
Ships with Windows Server 2003 R2

Of the three, Windows provides access to the majority of OS native
functions
Of the three, Windows is required to be running

System crashes if Windows subsystem process exits
POSIX and OS/2 subsystems are actually Windows applications
POSIX & OS/2 start on demand (first time an app is run)

Stay running until system shutdown

4

8

Subsystem Information in Registry
Subsystems configuration and startup information is in:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control
\Session Manager\SubSystems

Values:
Required - list of value names for subsystems to load at boot time
Optional - list of value names for subsystems to load when needed
Windows - value giving filespec of Windows subsystem (csrss.exe)
csrss.exe Windows APIs required - always started when Windows boots
Kmode - value giving filespec of Win32K.Sys

(kernel-mode driver portion of Windows subsystem)
Posix - file name of POSIX subsystem
psxss.exe Posix APIs optional - started when first Posix app is run

Some Windows API DLLs are in “known DLLs” registry entry:
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs

Files are opened as mapped files
Improves process creation/image startup time

9

OS/2
Windows

POSIX

Environment Subsystems

User
Application

Subsystem DLL

Windows
User/GDI

User
Mode

Executive
Device Drivers Kernel

Hardware Abstraction Layer (HAL)

Kernel
Mode

System
& Service
Processes

Subsystem Components
API DLLs

for Windows: Kernel32.DLL, Gdi32.DLL, User32.DLL, etc.

Subsystem process
for Windows: CSRSS.EXE (Client Server Runtime SubSystem)

For Windows only: kernel-mode GDI code
Win32K.SYS - (this code was formerly part of CSRSS)

3

2

1

3

2

1

5

10

Role of Subsystem Components

API DLLs
Export the APIs defined by the subsystem

Implement them by calling Windows “native” services, or by asking the subsystem process to
do the work

Subsystem process
Maintains global state of subsystem

Implements a few APIs that require subsystem-wide state changes
Processes and threads created under a subsystem

Drive letters

Window management for apps with no window code of their own (character-mode apps)

Handle and object tables for subsystem-specific objects

Win32K.Sys
Implements Windows User & GDI functions; calls routines in GDI drivers

Also used by Posix and OS/2 subsystems to access the display

3

2

1

11

NtDll.Dll

Simplified Architecture
(3.51 and earlier)

OS/2 Windows POSIX

Environment Subsystems

User
Mode

Kernel
Mode

System
& Service
Processes

Executive
Device Drivers Kernel

Hardware Abstraction Layer (HAL)

KiSystemService

LPC

User
Application
Subsystem DLL

1 2

most Windows Kernel APIs

all other Windows APIs, including User and GDI APIs2
1

6

12

NtDll.Dll

OS/2
Windows

POSIX

Environment Subsystems

Windows
User/GDI

User
Mode

Executive
Device Drivers Kernel

Hardware Abstraction Layer (HAL)

Kernel
Mode

System
& Service
Processes

1 3 2

KiSystemService

User
Application
Subsystem DLL

LPC

Windows Simplified Architecture

most Windows Kernel APIs
most Windows User and GDI APIs (these were formerly part of CSRSS)
a few Windows APIs3

2
1

13

Role of CSRSS.EXE
(Windows Subsystem Process)

A few Windows APIs are implemented in this separate process
In 3.51 and earlier:

Nearly all User and GDI APIs were implemented in CSRSS
CSRSS had a thread for every application thread that created a window
GDI drivers (video, printer) were user mode, mapped into this process
This was done for protection, esp. to keep GDI drivers in user mode

CSRSS in NT 4.0 and later: role is greatly diminished
Maintains system-wide state information for all Windows “client” processes
Several Windows services LPC to CSRSS for “setup and teardown” functions

Process and thread creation and deletion
Get temporary file name
Drive letters

Security checks for file system redirector
Window management for console (character cell) applications …
… including NTVDM.EXE

7

14

Header of Executable File
Specifies Subsystem Type

Subsystem for each .exe specified in image header
see winnt.h (in Platform SDK)

or exetype image.exe (2000 Resource Kit)

IMAGE_SUBSYSTEM_UNKNOWN 0 // Unknown subsystem
IMAGE_SUBSYSTEM_NATIVE 1 // Image doesn't require a subsystem
IMAGE_SUBSYSTEM_WINDOWS_GUI 2 // Windows subsystem (graphical app)
IMAGE_SUBSYSTEM_WINDOWS_CUI 3 // Windows subsystem (character cell)
IMAGE_SUBSYSTEM_OS2_CUI 5 // OS/2 subsystem
IMAGE_SUBSYSTEM_POSIX_CUI 7 // Posix subsystem

15

Native Images
.EXEs not linked against any subsystem

Interface to Windows executive routines directly via
NTDLL.DLL

Two examples:
smss.exe (Session Manager -- starts before
subsystems start)

csrss.exe (Windows subsystem)

8

16

Lab: Subsytems & Images

Look at subsystem startup information in registry

Using EXETYPE, look at subsystem types for:
\windows\system32\notepad.exe, cmd.exe,
csrss.exe

17

POSIX.1 Subsystem

Original POSIX subsystem implemented only POSIX.1
ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990
POSIX.1 compliance as specified in Federal Information Processing
Standard (FIPS) 151-2 (NIST)
POSIX Conformance Document in \HELP in Platform SDK

Support for impl. of POSIX.1 subsystem was mandatory for NT
fork service in NT executive
hard file links in NTFS

Limited set of services
such as process control, IPC, simple character cell I/O
POSIX subsystem alone is not a complete programming environment

POSIX.1 executable cannot
create a thread or a window
use remote procedure calls (RPCs) or sockets

9

18

Invoking (a few) Windows Services

Application
Process

CSRSS.EXE
(Windows
subsystem
process)

Subsystem DLL

Executive
Local
Procedure
Call

LPC is an
undocumented

system service in
NtDll.Dll

(not exposed directly
in Windows API)

U

K

Some system calls still require communication with the Windows
subsystem process

19

System Call Dispatching
NTDLL.DLL provides interface for native system calls

10

20

Example: Invoking a Windows Kernel
API

call WriteFile(…)

call NtWriteFile
return to caller

do the operation
return to caller

Int 2E or SYSCALL or SYSENTER
return to caller

call NtWriteFile
dismiss interrupt

Windows application

WriteFile
in Kernel32.Dll

NtWriteFile
in NtDll.Dll

KiSystemService
in NtosKrnl.Exe

NtWriteFile
in NtosKrnl.Exe

Windows-
specific

used by all
subsystems

software interrupt

U

K

21

Invoking System Functions from
User Mode

Kernel-mode functions (“services”) are invoked from user mode via a protected
mechanism

x86: INT 2E (as of XP, faster instructions are used where available: SYSENTER on x86,
SYSCALL on AMD)

i.e., on a call to an OS service from user mode, the last thing that happens in user mode is this
“change mode to kernel” instruction

Causes an exception or interrupt, handled by the system service dispatcher (KiSystemService)
in kernel mode

Return to user mode is done by dismissing the interrupt or exception

The desired system function is selected by the “system service number”
Every Windows function exported to user mode has a unique number

This number is stored in a register just before the “change mode” instruction
(after pushing the arguments to the service)

This number is an index into the system service dispatch table

Table gives kernel-mode entry point address and argument list length for each exported
function

11

22

Invoking System Functions from
User Mode

All validity checks are done after the user to kernel transition
KiSystemService probes argument list, copies it to kernel-mode stack, and calls the executive
or kernel routine pointed to by the table

Service-specific routine checks argument values, probes pointed-to buffers, etc.

Once past that point, everything is “trusted”

This is safe, because:
The system service table is in kernel-protected memory; and

The kernel mode routines pointed to by the system service table are in kernel-protected
memory; therefore:

User mode code can’t supply the code to be run in kernel mode; it can only select from among
a predefined list

Arguments are copied to the kernel mode stack before validation; therefore:

Other threads in the process can’t corrupt the arguments “out from under” the service

23

call write(…)

call NtWriteFile
return to caller

do the operation
return to caller

Int 2E
return to caller

call NtWriteFile
dismiss interrupt

Posix application

write
in psxdll.dll

NtWriteFile
in NtDll.Dll

KiSystemService
in NtosKrnl.Exe

NtWriteFile
in NtosKrnl.Exe

Example: Invoking a Posix API

Posix-
specific

used by all
subsystems

software interrupt

U

K

12

24

Ntdll.dll
Interface to Windows system calls (285 calls starting with “Nt”-some
have “Zw” aliases)

These user-mode routines have the same function names and arguments as the
kernel mode routines they invoke

e.g. NtWriteFile in NtDll.Dll invokes NtWriteFile in NtosKrnl.Exe

Majority are not supported or documented
7 are (partially) documented in the Platform SDK:

NtQuerySystemInformation, NtQuerySystemTime, NtQueryInformationProcess,
NtQueryInformationThread, NtCreateFile, NtOpenFile, NtWaitForSingleObject

The DDK describes 25 of them as “Zw” routines (such as ZwReadFile)
These entry points call the corresponding “Nt” interface via the system call
interface

Thus, “previous mode” is kernel mode, which means no security checks
Kernel mode code could also call NtReadFile directly

Other user-mode support routines
Image loader (“Ldr”)
Debug infrastructure (“Dbg”)
Csrss support routines (“Csr”)
RTL routines (“Rtl”)
Tracing routines (“Etw”) [new as of Windows Server 2003]

25

call NtWriteFile(…)

do the operation
return to caller

Int 2E
return to caller

call NtWriteFile
dismiss interrupt

native application
(smss.exe, csrss.exe)

NtWriteFile
in NtDll.Dll

KiSystemService
in NtosKrnl.Exe

NtWriteFile
in NtosKrnl.Exe

Calling a “Native” API from User
Mode

used by all
subsystems

software interrupt

U

K

13

26

call user or GDI service(…)

do the operation
return to caller

call Windows routine
dismiss interrupt

application

Gdi32.Dll
or User32.Dll

KiSystemService
in NtosKrnl.Exe

service entry point
in Win32K.Sys

Invoking (most) User and GDI
Services

Windows-
specific

software interrupt

U

K

Int 2E
return to caller

27

16-bit Applications
on 32-bit Windows

16-bit MS-DOS emulation

MS-DOS application

16-bit

Virtual device drivers
(COM, LPT, keyboard)

32-bit MS-DOS emulation
32-bit

640K
0

16MB

1MB
MS-DOS ext. memory

Windows Subsystem DLLs

OS/2
Windows

POSIX

Environment Subsystems

User
Application

Subsystem DLL

Windows
User/GDI

User
Mode

Executive
Device Drivers Kernel

Hardware Abstraction Layer (HAL)

Kernel
Mode

System
& Service
Processes

Windows runs NTVDM.EXE
(NT Virtual Dos Machine)

NTVDM is a Windows image

No “DOS subsystem” or
“Win16 subsystem”

7FFFFFFF

14

28

Windows runs NTVDM.EXE (NT Virtual DOS Machine)

See \System\CurrentControlSet\Control\WOW\cmdline

Each DOS app has a separate process running NTVDM
DOS & Windows 16-bit drivers not supported

Note: Windows “command prompt” is not a “DOS box”, despite icon; it’s a Windows console
application (CMD.EXE)

DOS 16-bit Applications
e.g. command.com, edit.com (NT4 had
qbasic.exe)

16-bit MS-DOS emulation

MS-DOS application

16-bit

Virtual device drivers
COM, LPT, keyboard

32-bit MS-DOS emulation 32-bit

Windows
Example:
three DOS
apps
running in
three NTVDM
processes

640K
0

16MB

1MB

Windows Subsystem DLLs

extended memory

7FFFFFFF

29

Windows 16-Bit Applications
e.g. sysedit.exe, winhelp.exe

Windows also runs NTVDM.EXE
See \CurrentControlSet\Control\WOW\wowcmdline

NTVDM loads wowexec.exe
WOW = “Windows on Windows”
Win16 calls are translated to Win32 (Windows API)

Windows
Win16 app

Win16 app

Win16 appexample:
three Win16
apps (and
wowexec.ex
e) running in
one NTVDM
process Win16 API

Windows Subsystem DLLs
Virtual Device Drivers

16-bit

32-bit

7FFFFFFF

16MB

0

15

30

Windows 16-bit
Applications
Multitasking Details

By default:
Each Win16 app runs in
a separate thread in the common
NTVDM process
They cooperatively multitask
among themselves
(Win16 Yield API)...
…and the one (if any) that wants
to run, preemptively multitasks
with all other threads on Windows
necessary to meet serialization
assumptions of some Win16 apps

Option to run Win16 apps in separate VDMs
“Run in Separate Memory Space” = run in separate process

default set by \CurrentControlSet\Control\WOW\DefaultSeparateVDM
Win16 apps run this way preemptively multitask with all other threads, including the un-Yield’ed
thread in a shared Win16 NTVDM (if any)

NT4 only:

31

Monitoring 16-bit Applications
To most of Windows, an NTVDM process is just another process
Task Manager

“tasks” are simply the names of top-level windows - Win16 windows
included
“processes” display identifies Win16 apps within NTVDM processes

by reading the NTVDM process’s private memory (undocumented
interface)

does not identify the DOS apps within each NTVDM process

TLIST (resource kit)
does identify the DOS apps within each NTVDM process (by window
title)
but for a shared Win16 NTVDM process, only shows one window title

QuickView, exetype
identifies DOS, Win16, etc., application .exe’s

16

32

Lab: 16-bit Applications
DOS applications:

Run command.com and edit.com
look at process list in Task Manager Process tab - cannot
differentiate which NTVDM.EXE is which
From Applications tab, right click on window -> goto process (now
can map which NTVDM.EXE process is which)

Windows 3.1 applications:
Run winhelp.exe twice (do not check “run in separate memory
space”)
Run winhelp.exe once and check “run in separate memory space”
Bring up Task Manager Process tab - make sure “Show 16-bit Tasks”
is checked on the View menu
Look at Task Manager Process tab and see 16-bit applications
identified inside the two NTVDMs

33

Wow64
Allows execution of Win32 binaries on 64-bit Windows

Wow64 intercepts system calls from the 32-bit application
Converts 32-bit data structure into 64-bit aligned structures
Issues the native 64-bit system call
Returns any data from the 64-bit system call

IsWow64Process() function can tell a 32-bit process if it is running
under Wow64
Performance

On x64, instructions executed by hardware
On IA64, instructions have to be emulated

New Intel IA-32 EL (Execution Layer) does binary translation of Itanium to x86
to speed performance

Downloadable now – bundled with Server 2003 SP1

17

34

Wow64 Components

64-bit ntdll.dll

Wow64.dll Wow64win.dll

Wow64cpu.dll

Win32k.sysExecutive

Kernel
Mode

User Mode

32-bit ntdll.dll

32-bit EXE, DLLs
Wow64.dll - provides
core emulation
infrastructure and thunks
for Ntoskrnl.exe entry-
point functions;
exception dispatching

Wow64win.dll - provides
thunks for Win32k.sys
entry-point functions

Wow64cpu.dll –
manages thread
contexts, supports mode-
switch instructions

35

Wow64 Limitations

Platforms

Wow64 Feature Support on 64-bit Windows

N/AN/A16-bit Virtual DOS Machine (VDM) support

YesSoftware-
Emulation

Only

Hardware accelerated with DirectX version 7,8 and 9

YesN/AScatter/Gather I/O APIs

YesN/AGetWriteWatch() API

YesN/APhysical Address Extension (PAE) APIs

x64IA64

Cannot load 32-bit DLLs in 64-bit process and vice versa

Does not support 32-bit kernel mode device drivers
Drivers must be ported to 64-bits

Special support required to support 32-bit applications using
DeviceIoControl to driver

Driver must convert 32-bit structures to 64-bit

18

36

Wow64 File Locations

Location of system files
64-bit system files are in \windows\system32
32-bit system files are in \windows\syswow64
32-bit applications live in “\Program Files (x86)”
64-bit applications live in “\Program Files”

File access to %windir%\system32 redirected to
%windir%\syswow64
Two areas of the registry redirected (see next slide)

37

Wow64 Registry Redirection

Two registry keys have 32-bit
sections:

HKEY_LOCAL_MACHINE\Software
HKEY_CLASSES_ROOT

Everything else is shared

32-bit data lives under
\Wow6432Node

When a Wow64 process
opens/creates a key, it is
redirected to be under
Wow6432Node

19

38

Example: Cmd.exe on 64-bit System
32-bit Cmd.exe process:

64-bit Cmd.exe process:

39

Four Contexts for Executing Code
Full process and thread context:

User applications
Windows Services
Environment subsystem processes
System startup processes

Have thread context but no “real” process:
Threads in “System” process

Routines called by other threads/processes:
Subsystem DLLs
Executive system services (NtReadFile, etc.)
GDI32 and User32 APIs implemented in Win32K.Sys (and graphics drivers)

No process or thread context
(“arbitrary thread context”)
Interrupt dispatching
Device drivers

20

40

hardware interfaces (buses, I/O devices, interrupts,
interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Task Manager

Explorer

SvcHost.Exe

WinMgt.Exe

SpoolSv.Exe

Service
Control Mgr.

LSASS

O
bject

M
gr.

Windows
USER,

GDI

File
System
C

ache

I/O Mgr

Environment
Subsystems

User
Application

Subsystem DLLs

System Processes Services Applications

Original copyright by Microsoft
Corporation. Used by permission.

System
Threads

User
Mode

Kernel
Mode

NTDLL.DLL

Device &
File Sys.
Drivers

WinLogon

Session Manager Services.Exe POSIX

Windows DLLs

Plug and
Play M

gr.

Pow
er

M
gr.

Security
R

eference
M

onitor

Virtual
M

em
ory

Processes
&

Threads

Local
Procedure

C
all Graphics

Drivers

Kernel

Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

Windows Architecture

C
onfigura-
tion M

gr
(registry)

OS/2

Windows

41

Further Reading

Mark E. Russinovich and David A. Solomon,
Microsoft Windows Internals, 4th Edition,
Microsoft Press, 2004.

Chapter 2 - System Architecture
Environment Subsystems and Subsystem DLLs
(from pp. 53)

NTDLL.DLL (from pp. 63)

Executive (from pp. 65)

