Unit OS2:
Operating System Principles

2.3. Windows on Windows - OS Personalities

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Roadmap for Section 2.3.

® Environment Subsystems

® System Service Dispatching
® Windows on Windows - 16bit
® Windows on Windows - 64bit

Multiple OS Personalities

Environment Subsystems

System User —
& Service Application POSIX ’
Processes 0Ss/2 Windows -
User Subsystem DLL ’
Mode
Kernel E ti
xecutive
Mode Windows
Device Drivers | Kernel User/GDI
. Device
Hardware Abstraction Layer (HAL) .
Driver

What about .NET and WIinFX?

® WinFX is the .NET Framework that will ship with

Longhorn

® Both .NET and WinFX are built on standard Windows

APls

©® They are not a subsystem

©® They do not call undocumented Windows system calls

User
Mode

.NET/WinFX
Application

| NET/WinFX Frameworkl

Windows API DLLs

Kernel
Mode

¥

Windows Kernel

Environment Subsystems

® Environment subsystems provide exposed, documented interface
between application and Windows native API

® Each subsystem defines a different set of APIs & semantics
® Subsystems implement these by invoking native APIs

© j.e., subsystem “wraps” and extends Windows native API
@ Example: Windows CreateFile in Kernel32.DlI calls native NtCreateFile

® _exe’s and .dlII's you write are associated with a subsystem
® Specified by LINK /SUBSYSTEM option

©® Cannot mix calls between subsystems

Environment Subsystems

® Three environment subsystems originally provided with NT:
© Windows —Windows API (originally 32-bit, now also 64-bit)
9@ (OS/2 - 1.x character-mode apps only
©® Removed in Windows 2000

© Posix - only Posix 1003.1 (bare minimum Unix services - no networking,
windowing, threads, etc.)

® Removed in Windows XP/Server 2003 — enhanced version ships with Services For
Unix 3.0

® Ships with Windows Server 2003 R2
©® Of the three, Windows provides access to the majority of OS native
functions
® Of the three, Windows is required to be running
® System crashes if Windows subsystem process exits
B POSIX and OS/2 subsystems are actually Windows applications

@ POSIX & 0S/2 start on demand (first time an app is run)
©® Stay running until system shutdown

ﬂ Subsystem Information in Registry

©® Subsystems configuration and startup information is in:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control
\Session Manager\SubSystems

Values:

© Required - list of value names for subsystems to load at boot time

@ Optional - list of value names for subsystems to load when needed

2 Windows - value giving filespec of Windows subsystem (csrss.exe)
csrss.exe Windows APIs required - always started when Windows boots

@ Kmode - value giving filespec of Win32K.Sys
(kernel-mode driver portion of Windows subsystem)

@ Posix - file name of POSIX subsystem
psxss.exe Posix APIs optional - started when first Posix app is run
® Some Windows API DLLs are in “known DLLS” registry entry:
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs
© Files are opened as mapped files
@ Improves process creation/image startup time

Subsystem Components

@ APIDLLs

© for Windows: Kernel32.DLL, Gdi32.DLL, User32.DLL, etc.
@ Subsystem process

® for Windows: CSRSS.EXE (Client Server Runtime SubSystem)
©® For Windows only: kernel-mode GDI code

® Win32K.SYS - (this code was formerly part of CSRSS)

Environment Subsystems

e

System User
& Service Application 0s/i2 POSIX
| Processes | Windows
User Subsystem @E
Mode l l l l
Kernel :
Executive 3
Mode Windows|
Device Drivers I Kernel User/GDI

Hardware Abstraction Layer (HAL)

Role of Subsystem Components

@ APIDLLs
® Export the APIs defined by the subsystem

® Implement them by calling Windows “native” services, or by asking the subsystem process to
do the work

@ Subsystem process
® Maintains global state of subsystem

® Implements a few APIs that require subsystem-wide state changes
& Processes and threads created under a subsystem
@ Drive letters
2 Window management for apps with no window code of their own (character-mode apps)
@ Handle and object tables for subsystem-specific objects

(® Win32K.Sys

©® Implements Windows User & GDI functions; calls routines in GDI drivers
® Also used by Posix and OS/2 subsystems to access the display

10

Simplified Architecture
(3.51 and earlier)

' L Environment Subsystems

System User I
& Service Application
Processes Subsystem DLL 0S/2 Windows POSIX
|
User 4
1 2
Vode | neoion @ @1 I
Kernel |K|SystemSerV|ce - ,/
Mode Executive | -PC [
Device Drivers | Kernel

Hardware Abstraction Layer (HAL)
@ most Windows Kernel APIs
@ all other Windows APIs, including User and GDI APIs

11

Windows Simplified Architecture

|] Environment Subsystems

]]
System User I
& Service L | Application
{Processes - Subsystem DLL| | OS/2 ﬂ POSIX
User | Windows
Mode | e Il ©) L@
1 N,
Kernel |KiSystemService Hr—-\—l—
Mode Executive LPC Windows
User/GDI
Device Drivers | Kernel

Hardware Abstraction Layer (HAL)

(D most Windows Kernel APIs
(@ most Windows User and GDI APIs (these were formerly part of CSRSS)
a few Windows APIs

12

Role of CSRSS.EXE
(Windows Subsystem Process)

® A few Windows APlIs are implemented in this separate process
@ |n 3.51 and earlier:
® Nearly all User and GDI APIs were implemented in CSRSS
® CSRSS had a thread for every application thread that created a window
©® GDI drivers (video, printer) were user mode, mapped into this process
©® This was done for protection, esp. to keep GDI drivers in user mode
©® CSRSS in NT 4.0 and later: role is greatly diminished
@ Maintains system-wide state information for all Windows “client” processes
8 Several Windows services LPC to CSRSS for “setup and teardown” functions
® Process and thread creation and deletion
® Get temporary file name
©® Drive letters
8 Security checks for file system redirector
@ Wwindow management for console (character cell) applications ...
® ... including NTVDM.EXE

13

Header of Executable File
Specifies Subsystem Type

©® Subsystem for each .exe specified in image header

® see winnt.h (in Platform SDK)

IMAGE_SUBSYSTEM_UNKNOWN 0 // Unknown subsystem
IMAGE_SUBSYSTEM_NATIVE 1 // Image doesn"t require a subsystem
IMAGE_SUBSYSTEM_WINDOWS_GUI 2 // Windows subsystem (graphical app)
IMAGE_SUBSYSTEM_WINDOWS_CUlI 3 // Windows subsystem (character cell)
IMAGE_SUBSYSTEM_0S2_CUl 5 // 0S/2 subsystem
IMAGE_SUBSYSTEM_POSIX_CUI 7 // Posix subsystem

©® or exetype image.exe (2000 Resource Kit)

fif% Command Prompt =1ax]

-

SVWINDOWSYSYSTEMI 2: exetype notepad. exe A
File "notepad.exe" is of the following type:

wWindows NT

32 bit machine

Built for the Intel 20386 processor
Runs under the Windows GUT subsystem

SYWINDOWSSSYSTEM3Z2:
14

Native Images

® EXEs not linked against any subsystem

@ Interface to Windows executive routines directly via
NTDLL.DLL

® Two examples:

® smss.exe (Session Manager -- starts before
subsystems start)

® csrss.exe (Windows subsystem)

Enmmand Prompt 1ol x|
-
SWINDOWSS SYSTEMIZnexetype smss.exe ﬂ
File "smss.exe" is of the following type:
Windows NT

32 bit machine
Built for the Intel 20386 processor
Requires no subsystem to run (Mative to Windows NT)

SWINDOWSHSYSTEM3 20

15

Lab: Subsytems & Images

® Look at subsystem startup information in registry
® Using EXETYPE, look at subsystem types for:

@ \windows\system32\notepad.exe, cmd.exe,
csrss.exe

16

POSIX.1 Subsystem

® Original POSIX subsystem implemented only POSIX.1
©® |SO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990
® POSIX.1 compliance as specified in Federal Information Processing
Standard (FIPS) 151-2 (NIST)
©® POSIX Conformance Document in \HELP in Platform SDK
©® Support for impl. of POSIX.1 subsystem was mandatory for NT
® fork service in NT executive
® hard file links in NTFS
©® Limited set of services

® such as process control, IPC, simple character cell /O

©® POSIX subsystem alone is not a complete programming environment
® POSIX.1 executable cannot

® create a thread or a window

® use remote procedure calls (RPCs) or sockets

17

Invoking (a few) Windows Services

& Some system calls still require communication with the Windows

subsystem process

Application
Process

LPCis an
undocumented
system service in
NtDII.DII

CSRSS.EXE
(Windows
subsystem

process)

l (not exposed directly
in Windows API)

Subsystem DLL |

Executive K

Local
Procedure
Call

System Call Dispatching

® NTDLL.DLL provides interface for native system calls

Dependency Walker - [notepad.exe] = (O] x]
B File Edit Miew 'Window Help =18 x|
EEEEEE W]
=] NOTEPAD.EXE Ordinal * [Hint | Furction]

-] COMDLG32.DLL @ N 1 [0=0001) CsrAIIUcaleCaptureBuffe—'

] SHELL32.0LL & N 3 [0=0003] CsrdllocateMessagePoir
T MSVCRT.DLL & Mea 4 [0=0004] CsrCaptureMessageBuff
- & N/ 5 [0«0005] CarCapturebeszageStir
E ADVAPI3ZDLL (IR T INW00N71 CarClientT alSener i
E_ KERNEL3ZDLL 4] >
B I TDLLDLL
= GJDm Ordinal ™ | Hint | Funclion :I
O USERZ20LL E 1 (00007 0 [0+0000] ?Allocate@CE uffertlloc —
e 2 (0=0002) 266 [0x0108) PropertyLengthés arian
e 3 (0=0003) 310 [0«0136) RUCompare' ariants
e 4 [0=0004) 316 [0:013B] RtConvertFropertyTola
= F_(Ma0nni! 20 00 A [][P ORRPRT N ENTTRy ot m I
<] | »i
Module ~ Tirne Stamp Size Attributes Machine Subspstem AI
] GDIZ2.DLL 05/01/97 1:00a| 1656484 Intel 86 Mative
] KERNEL32DLL | 05/01/97 1:00a| 372,496 | 4 Intel 86 Iwfin32 consoIeJ
] MSYCRT.DLL | 05/09/97 1:00a| 280576 |4 Intel 86 win32 GUI
] NOTEPAD.EXE | 10/13/96 9:38p 45,3268 | & Intel %56 wind2 GUI _lj
4 »
For Help, press F1 2

Example: Invoking a Windows Kernel

API

Windows application call WriteFile(...)

WriteFile call NtWriteFile Windows-

in Kernel32.DlI return to caller specific

NtWriteFile Int 2E or SYSCALL or SYSENTER used by all

in NtDIL.DII return to caller subsystems U
software interrupt K

KiSystemService call NtWriteFile

in NtosKrnl.Exe dismiss interrupt

NtWriteFile do the operation

in NtosKrnl.Exe return to caller

20

o

Invoking System Functions from
User Mode

©® Kernel-mode functions (“services”) are invoked from user mode via a protected

mechanism

©® x86: INT 2E (as of XP, faster instructions are used where available: SYSENTER on x86,
SYSCALL on AMD)

® j.e., onacalltoan OS service from user mode, the last thing that happens in user mode is this
“change mode to kernel” instruction

©® Causes an exception or interrupt, handled by the system service dispatcher (KiSystemService)
in kernel mode

5]

Return to user mode is done by dismissing the interrupt or exception

©® The desired system function is selected by the “system service number”

[}
o

<]

Every Windows function exported to user mode has a unique number

This number is stored in a register just before the “change mode” instruction
(after pushing the arguments to the service)

This number is an index into the system service dispatch table

Table gives kernel-mode entry point address and argument list length for each exported
function

21

10

ﬂ Invoking System Functions from
User Mode

©® All validity checks are done after the user to kernel transition

<]

o
(<}

KiSystemService probes argument list, copies it to kernel-mode stack, and calls the executive
or kernel routine pointed to by the table

Service-specific routine checks argument values, probes pointed-to buffers, etc.
Once past that point, everything is “trusted”

® This is safe, because:

(<]
&)

(<]

The system service table is in kernel-protected memory; and

The kernel mode routines pointed to by the system service table are in kernel-protected
memory; therefore:

User mode code can't supply the code to be run in kernel mode; it can only select from among
a predefined list

Arguments are copied to the kernel mode stack before validation; therefore:
Other threads in the process can't corrupt the arguments “out from under” the service

22
Posix application call write(...)
write call NtWriteFile Posix-
in psxdll.dll return to caller specific
NtWriteFile Int 2E used by all
in NtDII.DII return to caller subsystems U
software interrupt K
KiSystemService call NtWriteFile
in NtosKrnl.Exe dismiss interrupt
NtWriteFile do the operation
in NtosKrnl.Exe return to caller
23

11

Ntdll.dll

® Interface to Windows system calls (285 calls starting with “Nt"-some
have “Zw” aliases)
@ These user-mode routines have the same function names and arguments as the
kernel mode routines they invoke
® e.g. NtWriteFile in NtDIL.DIl invokes NtWriteFile in NtosKrnl.Exe
@ Majority are not supported or documented
® 7 are (partially) documented in the Platform SDK:

@ NtQuerySysteminformation, NtQuerySystemTime, NtQuerylnformationProcess,
NtQuerylnformationThread, NtCreateFile, NtOpenFile, NtWaitForSingleObject

® The DDK describes 25 of them as “Zw” routines (such as ZwReadFile)

@ These entry points call the corresponding “Nt” interface via the system call
interface

® Thus, “previous mode” is kernel mode, which means no security checks
& Kernel mode code could also call NtReadFile directly
©® Other user-mode support routines

@ Image loader (“Ldr”)

@ Debug infrastructure (“Dbg”)
@ Csrss support routines (“Csr”)
@ RTL routines (“Rtl")
@ Tracing routines (“Etw”) [new as of Windows Server 2003]
24
. 1 . ”
Calling a “Native” API from User
native application call NtWriteFile(...)
(smss.exe, csrss.exe)
NtWriteFile Int 2E used by all
in NtDII.DII return to caller subsystems U
software interrupt K
KiSystemService call NtWriteFile
in NtosKrnl.Exe d|sm|SS Interrupt
NtWriteFile do the operation
in NtosKrnl.Exe return to caller
25

12

Invoking (most) User and GDI

Services

application call user or GDI service(...)
Gdi32.Dll Int 2E Windows-
or User32.DIl return to caller specific U
software interrupt K
KiSystemService call Windows routine
in NtosKrnl.Exe dismiss interrupt
service entry point do the operation
in Win32K.Sys return to caller
26
on 32-bit Windows| [#sos sicaion |
640K
16-bit MS-DOS emulation 16-bit
1MB
©® Windows runs NTVDM.EXE MS-DOS ext. memory | o
(NT Virtual Dos Machine)
® NTVDM is a Windows image 32-bit MS-DOS emulation 32-bit
® No “DOS subsystem” or Virtual device drivers
“Winl16 subsystem” (COM, LPT, keyboard)
indows Subsystem DLLS| 7eprrrEE

Environment Subsystems

System User
oot Application 05| | (o ouel) PO
Subsystem DLL Windows
User l
Mode 1 lr 1
Kernel f
Mode Executive

Device Drivers

I Kernel

Hardware Abstraction Layer (HAL)

Windows
User/GDI

27

13

ﬂ DOS 16-bit Applications
e.g. command.com, edit.com (NT4 had
gbasic.exe)

©® Windows runs NTVDM.EXE (NT Virtual DOS Machine)
©® See \System\CurrentControlSet\Contro\WOW\cmdline

© Each DOS app has a separate process running NTVDM
® DOS & Windows 16-bit drivers not supported
® Note: Windows “command prompt” is not a “DOS box”, despite icon; it's a Windows console

Example:
three DOS
apps
running in
three NTVDM
processes

appli

cation (CMD.EXE)
I

MS-DOS application

16-bit MS-DOS emulation

extended memory

32-bit MS-DOS emulation

Virtual device drivers
COM, LPT, keyboard

indows Subsystem DLLs

640K
16-bit
1vB

16MB
32-bit

/

Windows

\

7FFEFFFEF

28

o

Windows 16-Bit Applications

e.g. sysedit.exe, winhelp.exe

© Windows also runs NTVDM.EXE
© See \CurrentControlSet\Contro\WOW\wowcmdline
©® NTVDM loads wowexec.exe
@ WOW = “Windows on Windows”
B Winl6 calls are translated to Win32 (Windows API)

example:
three Winl6
apps (and
wowexec.ex
€) running in
one NTVDM
process

| Win16 app |0
| Win16 app | 16-bit
Winl16 app
16MB
| Win16 API | 32-pit

Virtual Device Drivers

[Windows Subsystem DLLS | SFFrrrer |

Windows

29

14

Shortcut to sysedit.exe Properties 2=l

WI n d OoOwS 1 6 = b It General Shorteut | Securiy |

Ap p I I Catl O n S m Sharicut to sysedit sxe
Multitasking Details = == swioun

Target location: system32

© By default:

@ Each Win16 app runs in
a separate thread in the common
NTVDM process
@ They cooperatively multitask
among themselves
(Win16 Yield API)...
Type the name of a progran, folder, or document, and
@ __.and the one (if any) that wants “windows wil open it for you.
to run, preemptively multitasks

with all other threads on Windows Oper: [FEEED
® necessary to meet serialization ™ Fiun in Separate Memary Space

assumptions of some Win16 apps
R . R Ok I Cancel | Browsze... |
© Option to run Win16 apps in separate VDN

™ Funin Separate Memory Space

NT4 only:
Run i 3

|

© “Run in Separate Memory Space” = run in separate process
6 default set by \CurrentControlSet\ControN\WOW\DefaultSeparate VDM

8 Winl16 apps run this way preemptively multitask with all other threads, including the un-Yield’ed
thread in a shared Win16 NTVDM (if any)

30

ﬂ Monitoring 16-bit Applications

® To most of Windows, an NTVDM process is just another process

©® Task Manager

® “tasks” are simply the names of top-level windows - Win16 windows
included

© “processes” display identifies Win16 apps within NTVDM processes

@ by reading the NTVDM process’s private memory (undocumented
interface)

©® does not identify the DOS apps within each NTVDM process
® TLIST (resource kit)

©® does identify the DOS apps within each NTVDM process (by window
title)

® but for a shared Win16 NTVDM process, only shows one window title
® QuickView, exetype
©® dentifies DOS, Win16, etc., application .exe’s

31

15

Lab: 16-bit Applications

® DOS applications:

o
o

(&)

Run command.com and edit.com

look at process list in Task Manager Process tab - cannot
differentiate which NTVDM.EXE is which

From Applications tab, right click on window -> goto process (how
can map which NTVDM.EXE process is which)

® Windows 3.1 applications:

(&]

(S]
(S]

Run winhelp.exe twice (do not check “run in separate memory
space”)

Run winhelp.exe once and check “run in separate memory space”

Bring up Task Manager Process tab - make sure “Show 16-bit Tasks”
is checked on the View menu

Look at Task Manager Process tab and see 16-bit applications
identified inside the two NTVDMs

32

Wow64

©® Allows execution of Win32 binaries on 64-bit Windows
® Wowb64 intercepts system calls from the 32-bit application

a
a
a

Converts 32-bit data structure into 64-bit aligned structures
Issues the native 64-bit system call
Returns any data from the 64-bit system call

® |sWowb64Process() function can tell a 32-bit process if it is running
under Wow64

® Performance

©® On x64, instructions executed by hardware

® On IA6G4, instructions have to be emulated

a

New Intel IA-32 EL (Execution Layer) does binary translation of Itanium to x86
to speed performance

@ Downloadable now — bundled with Server 2003 SP1

33

16

Wow64 Components

® Wow64.dll - provides
core emulation 32-bit EXE, DLLs

infrastructure and thunks

for Ntoskrnl.exe entry- 32-bit ntdll.dll '
point functions; -
exception dispatching
@ Wows64win.dll - provides
thunks for Win32k.sys
entry-point functions ﬁ
64-bit ntdll.dll
6 WOW64CpUd" - User Mode

manages thread ﬁ
contexts, Supports mode- Executive ' Win32k.sys
switch instructions

Kernel
Mode

34

Wow64 Limitations

@ Cannot load 32-bit DLLs in 64-bit process and vice versa

@ Does not support 32-bit kernel mode device drivers
©® Drivers must be ported to 64-bits

©® Special support required to support 32-bit applications using
DeviceloControl to driver

® Driver must convert 32-bit structures to 64-bit

Platforms
Wow64 Feature Support on 64-bit Windows A4 x64
16-bit Virtual DOS Machine (VDM) support N/A N/A
Physical Address Extension (PAE) APIs N/A Yes
GetWriteWatch() API N/A Yes
Scatter/Gather 1/0 APIs N/A Yes
Hardware accelerated with DirectX version 7,8 and 9 Software- Yes
Emulation
Only

17

Wow64 File Locations

® | ocation of system files
©® 64-bit system files are in \windows\system32
©® 32-hit system files are in \windows\syswow64
©® 32-hit applications live in “\Program Files (x86)"
©® 64-bit applications live in “\Program Files”
® File access to %windir%\system32 redirected to
%windir%\syswow64

® Two areas of the registry redirected (see next slide)

36

Wow64 Registry Redirection

® Two registry keys have 32-bit T G on Tarates 4

4) MCEY_LSEES_POOT] [osna

: .

- #-) ey _Cu [_UGER: - /] EG_ST

sections: ¢ S T
=i

2 HKEY_LOCAL_MACHINE\Software
8 HKEY_CLASSES_ROOT
©® Everything else is shared

© 32-bit data lives under
\Wow6432Node

® When a Wow64 process
opens/creates a key, it is
redirected to be under
Wow6432Node

37

18

Example: Cmd.exe on 64-bit System

® 32-bit Cmd.exe process:

2 explorer.sve 440 4 Windows Explorer Microsoft Corporation
= Bl cmd exe 296 Windows Command Processor Miciosaft Corporation
P
o 100401 A i 12D Eucl, i I
Marng | Description | Compary Mame | “ersion | Path ~ |
CMD EXE “wiindows Command Processor Microzoft Corporation 5.01.2600.0000 shmr-xeonted i ND OWSASYSTEM32ACMD. EXE
ctype.nls CHWINDOW S system32hctype.nls
locale.nls ChwIND D' S haystem32ilacale. nls
ntdl.dil NT Layer DLL Microsoft Corporation 5.02.3790.1063 CwIND OV S spstem32intdll dil
sontkey nls CAWINDOWS system32sorkey nks
sorttbls.nls CAWINDOWS wapstem32hsorttbls. nis
unicode nls CwINDOW S system32hunicode. nls
wowBd.dil Win3Z Emulation on NTG4 Micrazoft Carporation 5.02.3790.1069 CAwINDOWS spstem32wowEd. dil
wowBdcpudl AMDES WowE4 CPU Microsoft Corporation 5.02.3790.1063 CHwINDOWS system32hwomBdcpu di
wowBdwindll Wwowtd Console and Win3d2 API L... Microsoft Corporation 5.02.3790,1063 CNwINDOWS vsystem32wowBdwin. dil

® 64-bit Cmd.exe process:

e

=] . exe 296 i Mic loh
‘ B3 CMD.EXE 2460 ‘windows Command Processar Microsoft Corporation
tan 1 Lo Brasans Eurl .
Hame |_Deseription | Company Mame [Wersion [Path + |
advapi32.dl Advanced Windows 32 Base &4F1 Miciosoft Corporation 5.02.3730.1089 CAWINDOWS eystem32hadvapi32.di
cmd.exe ‘windows Command Processor Microsoft Corporation 5.02.3790.1063 C:AWINDOWS aystem32hemd.exe
chype.nls CAWINDOWS system32hclype.nls
adi32 dl GDI Client DLL Microsoft Corporation 5.02.3790.1063 C:AWINDOWS aystern32hgdia 2 dll
kemel32.dl Windows NT BASE AP Client DLL Microsoft Corporation 5.02.3790.1069 CAwWINDOWwWS haystem32bieemel 32,41l
locale.nls C:AWINDOWS aystem32hlocale nls
mpr.dil Multiple Provider Router DLL Microsoft Carporation 5.02.3790.1069 CAWIND OwS epstem32impr.dil
mavcit.dl ‘Wwindows NT CRT DLL Miciosoft Coporation 7.00.3790.1083 C:AWINDOWS system32hmevert.dil
nidlldll NT Layer DLL Microsoft Carporation 5.02.3730.1069 CAWIND OWwS apstem32intdiLdil
nerd dll Remnte Prcedure Call Rontime: Mirtnsnft Cnmoration 5 12 3790 10RS CAWINDNW S sustem 32t d dll
38
® Full process and thread context:
@ User applications
8 Windows Services
® Environment subsystem processes
B System startup processes
©® Have thread context but no “real” process:
® Threads in “System” process
©® Routines called by other threads/processes:
8 Subsystem DLLs
® Executive system services (NtReadFile, etc.)
8 GDI32 and User32 APIs implemented in Win32K.Sys (and graphics drivers)
©® No process or thread context
@ (“arbitrary thread context”)
B Interrupt dispatching
@ Device drivers
39

19

Windows Architecture

Applications Environment

System Processes Services
Service L . Subsystems
Control Mgr.
Windows
Task Manager

WinL I Explorer
inLogon
SpoolSv.Exe — User 0s/2
— Application H
User i —l
Mode Session Manager Services Exe POSIX
Subsystem DLLs Windows DLLsS
System | NTDLL.DLL |
Threads
Kernel
Mode System Service Dispatcher
(kernel mode callable interfaces) Windows
USER,
1/0 Mgr GDI
I3 Fo 4 2| 529 R
= L@ = =]
) 9% | =28 | 85 | =9 | 888 | 85 | 3.8 | €82 | 085
Device & o2T Q5 =5 Q= 23 < 3g S0 0 z& 229 .
File Sys gS Q a3 e 33Z Ss 2 o S&¢< =g Graphics
[IJ’ yS. = a =< < o 2 ==3 H Drivers
rivers
Kernel |
Hardware Abstraction Layer (HAL) |
hardware interfaces (buses, I/O devices, interrupts, Original copyright by Microsoft
interval timers, DMA, memory cache control, etc., etc.) Corporation. Used by permission.
40

Further Reading

® Mark E. Russinovich and David A. Solomon,
Microsoft Windows Internals, 4th Edition,
Microsoft Press, 2004.

©® Chapter 2 - System Architecture

® Environment Subsystems and Subsystem DLLs
(from pp. 53)
® NTDLL.DLL (from pp. 63)

® Executive (from pp. 65)

41

20

