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Motivation

= EPA — the legacy system

= reserve and book train seats operated by
Deutsche Bahn (German railway)

= T mio seat requests & 300,000 bookings

= first version: 1980s

= set of Pathway Services as part of HP NonStop system
= especially fault-tolerant and highly-available
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Motivation

but: difficult to adapt to new, unknown needs

= technological constraints
= programming languages: C, C++, Cobol, Java
= DBMS: Enscribe, SQL/MPm, SQL/MX

= specialized hardware
= tied to HP NonStop system

= long update cycles
= possibly multiple months

Highly-Available Applications on Unreliable
Infrastructure...
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Motivation

...Microservices in Practice
= small, iIndependent, autonomous services
= small, specific range of features

= encapsulates all its functions and data

= cooperation with other microservices (usually
ReST & message queues)

= DevOps
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Motivation

Aim: evaluate general properties of a microservice
and its dependability compared to the legacy
system

1. Benefits & Drawbacks of MSAs

2. Implementing a Seat Reservation System based
on Microservices

= Requirements, Definition of Domains

3. Operation of Microservice Architectures

= Containerization with Docker, Message-Driven
Communication Middleware

4. Evaluation: Dependability & Fault Tolerance
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Benefits and Drawbacks of Microservice Architectures I Hasso

Advantages

= small and independent services
= classification of domains
= decoupling & explicit separation of features

= free choice of technology
= use the technology that fits the needs best
= functionality and data

= scalability
= designed for horizontal scaling — multiple instances
= requires stateless services

= hardware independence
= usually self-contained virtual machines
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Advantages

= replaceability & versioning
= |oose coupling among microservices
* independent testing & deployment
= redundancy: multiple versions at the same time

= agutomation
= many steps for operation only differ in some minor
configuration options
= DevOps

= one single team involved in development (design,
Implementation, testing, deployment, maintenance)
and architectural layers (frontend, backend, database)
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Disadvantages

= complexity
= from implementation to execution environment
= provisioning & orchestration of many services
= monitoring
= service vs. container vs. infrastructure
= testing
= single service vs. combined services, communication

= communication overhead
= nter-process & remote

= consistency
= shared data across service boundaries
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Implementing a Seat Reservation System with Microservices I Hasso

Requirements

= functional:

» display available seats, book a seat reservation,
overview of existing bookings

= non-functional

= consistency, scalability & efficiency, load balancing,
portability, deployment & maintainability,
changeability, replacement & versioning, interfaces

= fault tolerance

= tolerate failure of several service instances, virtual machines,
or infrastructure components

= asynchronous communication between services
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Implementing a Seat Reservation System with Microservices I Hasso

Definition of Domains

partitioning into functionally connected domains,
each domain contains self-contained services with
iImited scope of operation

= Seat Management Domain

= Seat Overview Domain

= Booking Domain

= Customer Management Domain
= Price Computation Domain

* Front-end
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Domains + Booking Process
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Execution Environment

requirements: portability, load balancing,
fault tolerance, maintainability

= virtualized infrastructure
= AWS/EC2 Ubuntu 14.4 amazon

= containerization with Docker 1.11
= Docker Compose
= Docker Swarm
= Overlay Network

* message-driven communication middleware

docker
Q.etcd (' Consul
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Execution Environment

= services for seat reservation
= Java 8
= Spring Boot 1.3

= MySQL 5.7 « € spring
—

by Pivotal.

= Redis 3.2 =
= Cassandra 3.4 Javad é redis
My “’;/%
cassandra
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Operation of Microservice Architectures I Hasso

Basic Set-Up of a Microservice
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Recap: Requirements

= functional:

» display available seats, book a seat reservation,
overview of existing bookings

= non-functional

= consistency, scalability & efficiency, load balancing,
portability, deployment & maintainability,
changeability, replacement & versioning, interfaces
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Dependability & Fault-Tolerance

= instead of relying on specialized (and expensive)
highly-available infrastructure:
modularize the software system into self-
contained services published as containers and
execution as multiple redundant instances

Redundancy

= replicas of services, containers, virtual machines
= communication middleware

= service logic and databases
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Replicas of...

...services, containers, and virtual machines

= Overlay Network
= uniform host name, arbitrary number of replicas

= if service instance, RabbitMQ server, or even EC2
instance fails — redirect to another instance

= Docker Swarm

= "High Availability” feature: primary manager instance
+ multiple replica that will take over

= data storage (etcd, Consul) can be scaled and
connected
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Replicas of...

...services, containers, and virtual machines

= services
= state-less (state is stored into domain’s database)
= can be replaced by other instances

" messages
= distributed among all RabbitMQ servers

= conflict-free merging of message nodes (via master-
node)
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Evaluation: Dependability & Fault Tolerance I Hasso

Communication Middleware

= message queue is one of the most important
parts of the architecture

= tolerated faults: network failure, RabbitMQ server
fault, infrastructure failure, malformed messages

= clients can connect do different RabbitMQ
servers

= virtual hosts, exchanges, and message queues are
synchronized between servers by default
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Evaluation: Dependability & Fault Tolerance I Hasso

Service Logic & Databases

= services are state-less — the critical part is the
database

= use relaxed consistency guarantees (e.g. NoSQL)
= Cassandra with multiple replicas
= MySQL in master-slave-replication mode
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Conclusion

= prototypical architecture and implementation

* freedom to choose any technology is bigger than
before; several tools and frameworks for
execution environment. but; tied to Docker

= no hardware dependency — fully virtualized
infrastructure by AWS

= bring service modifications into production within
minutes; architectural changes last a few days

= experience for multiple tools have to be gained;
tools, libraries, and frameworks are still in
development and change quickly
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Conclusion

The results show a potential for microservice
architectures and the possibility for flexible
implementation, deployment, and advancement of
services. In terms of non-functional requirements,
the is no evidence that the new solution perform
better, though.
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