Hasso
Plattner
Institut

. Digital Engineering » Universitat Potsdam

Highly-Available Applications on

Unreliable Infrastructure:
Microservice Architectures in Practice

Daniel Richter Marcus Konrad, Katharina Utecht,
and Andreas Polze

Operating Systems & Middleware Group
Hasso Plattner Institute at University of Potsdam, Germany



m Hasso
Plattner

Institut

Motivation

= EPA — the legacy system

= reserve and book train seats operated by
Deutsche Bahn (German railway)

= T mio seat requests & 300,000 bookings

= first version: 1980s

= set of Pathway Services as part of HP NonStop system
= especially fault-tolerant and highly-available

2 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



m Hasso
Plattner

Institut

Motivation

but: difficult to adapt to new, unknown needs

= technological constraints
= programming languages: C, C++, Cobol, Java
= DBMS: Enscribe, SQL/MPm, SQL/MX

= specialized hardware
= tied to HP NonStop system

= long update cycles
= possibly multiple months

Highly-Available Applications on Unreliable
Infrastructure...

3 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



m Hasso
Plattner

Institut

Motivation

e ™™
o= | [ [

e ledeleds] T ==
T = &

| dhrect PATHSEND Communication

——

T

Cogma™ |- HOSA | booking functions
l'| Interface

carrier

=] [ —— U_, S.Impla-(gvé'"ability

]

-

X
i

% |——- - train display
5 | : * inventory set up

and- data maintenance
control

f tndon Ill" )
Business }_-( Y [l | “Accounting and statistics
| Crnciay \.l ¥

o3

"
il
a
"
¥
E._
E._
E._
5

A 2

3

4 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



m Hasso
Plattner

Institut

Motivation

...Microservices in Practice
= small, iIndependent, autonomous services
= small, specific range of features

= encapsulates all its functions and data

= cooperation with other microservices (usually
ReST & message queues)

= DevOps

5 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



m Hasso
Plattner

Institut

Motivation

Aim: evaluate general properties of a microservice
and its dependability compared to the legacy
system

1. Benefits & Drawbacks of MSAs

2. Implementing a Seat Reservation System based
on Microservices

= Requirements, Definition of Domains

3. Operation of Microservice Architectures

= Containerization with Docker, Message-Driven
Communication Middleware

4. Evaluation: Dependability & Fault Tolerance

6 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Hasso
Plattner
Institut

Digital Engineering * Universitat Potsdam




Plattner
Institut

Benefits and Drawbacks of Microservice Architectures I Hasso

Advantages

= small and independent services
= classification of domains
= decoupling & explicit separation of features

= free choice of technology
= use the technology that fits the needs best
= functionality and data

= scalability
= designed for horizontal scaling — multiple instances
= requires stateless services

= hardware independence
= usually self-contained virtual machines

8 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Benefits and Drawbacks of Microservice Architectures I Hasso

Plattner
Institut

Advantages

= replaceability & versioning
= |oose coupling among microservices
* independent testing & deployment
= redundancy: multiple versions at the same time

= agutomation
= many steps for operation only differ in some minor
configuration options
= DevOps

= one single team involved in development (design,
Implementation, testing, deployment, maintenance)
and architectural layers (frontend, backend, database)

9 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Benefits and Drawbacks of Microservice Architectures I Hasso

Plattner
Institut

Disadvantages

= complexity
= from implementation to execution environment
= provisioning & orchestration of many services
= monitoring
= service vs. container vs. infrastructure
= testing
= single service vs. combined services, communication

= communication overhead
= nter-process & remote

= consistency
= shared data across service boundaries

10  Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Hasso
Plattner
Institut

Digital Engineering * Universitat Potsdam




Plattner
Institut

Implementing a Seat Reservation System with Microservices I Hasso

Requirements

= functional:

» display available seats, book a seat reservation,
overview of existing bookings

= non-functional

= consistency, scalability & efficiency, load balancing,
portability, deployment & maintainability,
changeability, replacement & versioning, interfaces

= fault tolerance

= tolerate failure of several service instances, virtual machines,
or infrastructure components

= asynchronous communication between services

12 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Plattner
Institut

Implementing a Seat Reservation System with Microservices I Hasso

Definition of Domains

partitioning into functionally connected domains,
each domain contains self-contained services with
iImited scope of operation

= Seat Management Domain

= Seat Overview Domain

= Booking Domain

= Customer Management Domain
= Price Computation Domain

* Front-end

13 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Implementing a Seat Reservation System with Microservices

Definition of Domains

m Hasso
Plattner

Institut

Booking Domain [blue]

Price Calculation Domain [green]

Price Calculation

1
1
[ |
i
e -
. Booking Service SN Service
' Booking - ; eat Latabase calculation of
' check, submission, Train ) current train d o
: Database cancellation and Connection oh 0 L [
- - utilization
1 change of bookins 1
! bookings 1 A
. . q . L]
' partial bookings list bookings ' Amount of
i | Seats
E ' Seat Domain [orange]
L}
1 P
i | Key-Value Store ] Seat Management
1 . s
i started bookings Seat, Train, 3 Seat Database Service
1 Time
i 5 seats, wagons, trains, data management,
B SRS S SO A T train connections, route map, insert booked seats,
cancelled train connections insert cancelled train
Customer Domain [yellow] customer IDs connections
Customer Mgmt —
Service Seat Overview
Customer Key-Value Store Service
management of
Database customer data,

customer data
account data

-

notification in case
of train connection
cancellation

proposed seats

proposal and selection
of train connections
and seats

14 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017




Implementing a Seat Reservation System with Microservices Hasso

Plattner
Institut

Domains + Booking Process

customer

begin booking

seat overview service

seat management service

- - seat is
co:mnnS:crttigr:::lnata — . unlock seat ye I(;Jcke:. for booking service
T T ooking . . .
. determine available _ . djsp\ay all price calculation service
train connections s available seats no :
T Yy T > customer management service
. display . select seats . set booking front-end
train connections lock
no
select actual
connection and .
r seat properties seat can customer is n customer has o= insert
no be locked signed in an account customer data

seat
available

es
yes o

l
[ ] lock seat . update sign in

yes \|, booking database
AL

\l/ no

. lock seat . display price . update
\L seat database

L yes

display finished N

bogng . finish booking %‘; accrcec::t

yes

customer wants
an account

display seat customer
proposal and accepts
associated price proposal

15 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter

28. Aug 2017



Hasso
Plattner
Institut

Digital Engineering * Universitat Potsdam




Operation of Microservice Architectures I Hasso

Plattner
Institut

Execution Environment

requirements: portability, load balancing,
fault tolerance, maintainability

= virtualized infrastructure
= AWS/EC2 Ubuntu 14.4 amazon

= containerization with Docker 1.11
= Docker Compose
= Docker Swarm
= Overlay Network

* message-driven communication middleware

docker
Q.etcd (' Consul

17 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Operation of Microservice Architectures

Execution Environment

m Hasso
Plattner

Institut

EC2 instance

OPERATOR

Q
O
()
~
Q
-

etcd

Docker Daemon

J

r

Docker Compose

Swarm Manager

Consul

(= Consul

amazon

webservices

EC2 instance EC2 instance EC2 instance

L

l&»’!docker

Docker Daemon

Swarm Node =

Container |-
Container =1

Container -

amazon

webservices

» Docker Daemon

Swarm Node

A 4

Docker Daemon

Container -
t--f Container
Container

“HaRabbit

» Swarm Node

-4 Container

-4 Container

l&»’!docker

amazon

webservices

18  Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Operation of Microservice Architectures I Hasso

Plattner
Institut

Execution Environment

= services for seat reservation
= Java 8
= Spring Boot 1.3

= MySQL 5.7 « € spring
—

by Pivotal.

= Redis 3.2 =
= Cassandra 3.4 Javad é redis
My “’;/%
cassandra

19  Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Plattner
Institut

Operation of Microservice Architectures I Hasso

Basic Set-Up of a Microservice

external
requests

vy Pivatal.

(_(g) & spring

Process data

bomain ———— —— —————— L 1
Microservice |
I A Setup | —
| i p ! Domain specific ~ |¢--- |
| /| Establish connection | processes : |
/| toother components i T : I Message queue access
I i Configuration : jsuse>> <<use>>§ |
I : . .
: i : :'" Publisher logic I:]—E*—I( :;art;t\);g\:g
| Data structures ‘-i Consumer logic o | (shared)
| Aers | : (
| Database logic ‘"%.-.} Client logic | |—4ﬁl O—[J other service
L Service access

| T

Java8 &B redis
My S
cassandra

20 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



\,},O'WCI‘SI}‘;}

. Hasso
.z @ﬁ@ Plattner

. dam

Institut

Digital Engineering » Universitdt Potsdam




Evaluation I Hasso
Platther

Institut

Recap: Requirements

= functional:

» display available seats, book a seat reservation,
overview of existing bookings

= non-functional

= consistency, scalability & efficiency, load balancing,
portability, deployment & maintainability,
changeability, replacement & versioning, interfaces

22 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Evaluation I Hasso
Platther

Institut

Dependability & Fault-Tolerance

= instead of relying on specialized (and expensive)
highly-available infrastructure:
modularize the software system into self-
contained services published as containers and
execution as multiple redundant instances

Redundancy

= replicas of services, containers, virtual machines
= communication middleware

= service logic and databases

23 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Evaluation: Dependability & Fault Tolerance I Hasso

Plattner
Institut

Replicas of...

...services, containers, and virtual machines

= Overlay Network
= uniform host name, arbitrary number of replicas

= if service instance, RabbitMQ server, or even EC2
instance fails — redirect to another instance

= Docker Swarm

= "High Availability” feature: primary manager instance
+ multiple replica that will take over

= data storage (etcd, Consul) can be scaled and
connected

24 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Evaluation: Dependability & Fault Tolerance I Hasso

Plattner
Institut

Replicas of...

...services, containers, and virtual machines

= services
= state-less (state is stored into domain’s database)
= can be replaced by other instances

" messages
= distributed among all RabbitMQ servers

= conflict-free merging of message nodes (via master-
node)

25 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Plattner
Institut

Evaluation: Dependability & Fault Tolerance I Hasso

Communication Middleware

= message queue is one of the most important
parts of the architecture

= tolerated faults: network failure, RabbitMQ server
fault, infrastructure failure, malformed messages

= clients can connect do different RabbitMQ
servers

= virtual hosts, exchanges, and message queues are
synchronized between servers by default

26 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



Plattner
Institut

Evaluation: Dependability & Fault Tolerance I Hasso

Service Logic & Databases

= services are state-less — the critical part is the
database

= use relaxed consistency guarantees (e.g. NoSQL)
= Cassandra with multiple replicas
= MySQL in master-slave-replication mode

2/ Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



m Hasso
Plattner

Institut

Conclusion

= prototypical architecture and implementation

* freedom to choose any technology is bigger than
before; several tools and frameworks for
execution environment. but; tied to Docker

= no hardware dependency — fully virtualized
infrastructure by AWS

= bring service modifications into production within
minutes; architectural changes last a few days

= experience for multiple tools have to be gained;
tools, libraries, and frameworks are still in
development and change quickly



m Hasso
Plattner

Institut

Conclusion

The results show a potential for microservice
architectures and the possibility for flexible
implementation, deployment, and advancement of
services. In terms of non-functional requirements,
the is no evidence that the new solution perform
better, though.

We would like to thank Lena Feinbube, Maxi Fischer, Jonas
Bounama, Nils Hennings, Timo Traulsen, Henry Hubler, Dr.
Stephan Gerberding, Dr. Clements Gantert, Wolfgang
Schwab, and Ingo Schwarzer for their support and
assistance with this project.

29 Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 2017



