
Dynami Aspet-Weaving with .NET

Wolfgang Shult and Andreas Polze

Hasso-Plattner-Institute

14440 Potsdam, Germany

fwolfgang.shultjandreas.polzeg�hpi.uni-potsdam.de

September 12, 2002

Abstrat

Besides design and implementation of omponents,

software engineering for omponent-based systems

has to deal with omponent integration issues whose

impat is not restrited to separate omponents but

rather a�ets the system as a whole. Aspet-oriented

programming (AOP) addresses those ross-utting,

multi-omponent onerns. AOP desribes system

properties and omponent interations in terms of so-

alled aspets. Often, aspets express non-funtional

omponent properties, suh as resoure usage (CPU,

memory, network bandwidth), omponent and objet

(o-) loations, fault-tolerane, timing behavior, or

seurity settings. Typially, these properties do not

manifest in the omponents' funtional interfaes.

Like objets, aspets an be used at any stage of

the software lifeyle, inluding requirements spei-

�ation, design, implementation, on�guration, and

even run-time. Appliable aspets often onstrain the

design spae for a given software omponents. This

may have severe impliations on the implementation

of a omponent, espeially if tradeo�s between mul-

tiple, possibly ontraditing aspets for same ompo-

nent have to be made (e.g.; the fault-tolerane aspet

may require repliation of omponent data, whereas

the seurity aspet may prohibit it).

Components may be deployed in di�erent ontexts,

may be requiring emphasis on only a few of the aspets

onsidered during design and implementation. Stati

interonnetion of aspet ode and funtional ode

(aspet weaving) often requires ompromises with re-

spet to the the generality of servies provided by a

omponent.

Within this paper, we fous on dynami manage-

ment of aspet information during program runtime.

We introdue a new approah alled "dynami aspet

weaving" to interonnet aspet ode and funtional

ode. Using our approah, it is possible to deide

at runtime whether objets living inside a omponent

should be instantiated with support for a partiular

aspet or not. We have implemented our approah in

ontext of the language C# and the Mirosoft .NET

environment.

1 Introdution

There exists a variety of appliation areas for Aspet-

Oriented Programming (AOP). Generally, it is very

aeptable to have a preproessor-like aspet-weaver

to interonnet funtional ode and aspet ode.

However, sometimes it is desirable to postpone the

deision about whether aspet information is to be

added or not to a partiular omponent until program

runtime. For instane, one may have a huge resoure

onsuming image proessing algorithm loated in a

omponent, and depending on system load and avail-

able omputing nodes a trade-o� between data distri-

bution, memory alloation sheme, and utilization of

omputing power at runtime has to be made and per-

haps one wants to distribute the alulations for bet-

ter performane or one wants to optimize loal mem-

ory usage. Both are rossutting onerns. One may

1

Eagle

Tomcat Raptor

Delegate

Call function

Delegate

Figure 1: Distributing Calulations

de�ne an aspet whih distributes invoation of the

omponents' funtions alls and another aspet whih

optimizes loal and remote memory utilization during

a distributed omputation. Figure 1 illustrates the

situation of a distributed omputation. Eagle gets a

request for a servie in the omponent. Depending

on its own utilization, the deision is whether to del-

egate it to the neighbors (Tomat and Raptor), or

to exeute the servie loally. However, in the ase

of loal omputation, no aspet information at all is

needed. Emphasis is on servie exeution with as lit-

tle overhead as possible.

The same with the seond aspet. If memory usage

is not of a onern, the aspet an safely be ignored.

At this point, our example identi�es a weakness of

traditional approahes to aspet oriented program-

ming. Typially, one has to deide at ompile time

whether an aspet should be interwoven with a om-

ponent or not and at the runtime one an neither

'swith o�' the aspet nor interweave another aspet

with the omponent.

Within this paper, we present a solution to this

problem and and demonstrate how to interweave pre-

viously de�ned aspets with funtional omponent

ode. This 'Dynami Weaving' is promising beause

of its exibility: neither at design nor at ompilation

time a de�nite deision has to be made whether a

partiular aspet should be applied to a omponent.

Aspets speialized for a partiular situation an be

de�ned and an be interwoven depending on atual

runtime requirements. Furthermore one an param-

eterize the aspets during the runtime. We disuss

how all is done without the need of any tool support.

The remainder of the paper is organized as follows:

Setion 2 presents related work. Setion 3 desribes

the dynami weaving. In Setion 4 we demonstrate

a simple ase study with the sample desribed above

and �nally, Setion 5 summarizes our onlusions.

2 Related Work

The onept of aspet-oriented programming (AOP)

o�ers an interesting alternative for spei�ation of

non-funtional omponent properties (suh as fault-

tolerane properties or timing behavior). There ex-

ists a variety of language extensions to deal with

AOP. One of whih, AspetJ [7℄, a Java extension,

an be ited as a prominent example. The en-

tral onept of most AOP-frameworks is a joinpoint

model desribed in [6℄[4℄.

Dynami joinpoints are an extension of the original

AOP model whih allow dealing with dynami infor-

mations during the runtime [5℄. A dynami joinpoint

allows one to de�ne onditions whih are ompared

during the runtime. Depending on the result the ode

may be exeuted or not.

Mehmet Aksit has developed the omposition �l-

ters objet model, whih provides ontrol over mes-

sages reeived and sent by an objet whih provides

ontrol over messages reeived and sent by an objet

[2℄[1℄. In this work, the omponent language follows

traditional objet-oriented programming tehniques,

the omposition �lters mehanism provides an aspet

language that an be used to ontrol a number of as-

pets inluding synhronization and ommuniation.

Most of the weaving happens during runtime.

The authors have implemented a stati aspet

weaver, whih uses the unmanaged metadata inter-

faes from .NET to interweave aspet ode [11℄.

A similar approah towards dynami weaving for

2

.NET is desribed in [8℄. However, this solution uses

the urrent internal debug interfaes of the .NET

framework implementation to interweave aspet ode

during the runtime and is therefore less general and

portable than our approah.

3 Dynami Weaving

Dynami weaving means that a omponent (a tar-

get lass) and an aspet lass will beome interwo-

ven during runtime. There is no need for the aspet

lass to know something about the target lass and

vie versa. To understand how the weaving proess

works, some notions have to be de�ned.

3.1 What is an Aspet Class?

An aspet desribes rossutting onerns. In this

ase an aspet is a simple lass derived from Aspet.

It will be alled aspet lass. One an de�ne meth-

ods, properties, and members as well. In every ase

an aspet lass works in onjuntion with another in-

stane of a lass (the target lass). This means, that

it makes no sense to instantiate an aspet lass alone.

It has to be instantiated together with a lass. This

proess is alled weaving. It will be desribed later in

this setion.

3.2 Connetion Points

As mentioned above, an AspetClass works only in

onjuntion with another instane of a lass. At a

onnetion point both will beome interwoven. If one

wants to de�ne a method as a onnetion point, one

simply writes the all attribute above the method

de�nition in the aspet lass. The all attribute is

de�ned as follows:

[all(Invoke InvokeOrder {, Alias=AliasName })℄

If one interweaves a lass (target lass) with an As-

petClass eah onnetion point will beome interwo-

ven with a target lass method if one of the following

requirements are met:

1. The method names and the signature are the

same

2. If there is an AliasName de�ned and the method

name from the target lass is the same as the

alias and - the signature of both are the same

3. If there is an AliasName and the alias ontains

a wildard at the end, or the signature of the

Aspet lass method ontains wildards and the

target method �t.

In any ase, if a funtion is interwoven with a

onnetion point. Requirement 1 is easy, if one

de�nes a method:

[all(Invoke.Instead)℄

void mymethod(int i) { /� ... �/ }

then every method mymethod with one int as pa-

rameter and void as result will interweave with this

method.

Now, requirement 2 is if one de�nes

Alias="myspeialmethod" on this method,

only methods named myspeialmethod with an

int parameter and a void return value will beome

interwoven.

Requirement basially says that if one modi�es the

alias to Alias="my*" every method beginning with

"my" and the same parameters will beome involved.

Furthermore one an use signature wildards. A

wildard for the result type is objet, and for the

parameters params objet[℄, this is like a method

with variable arguments. But in every ase one has

to de�ne an alias. If not params objet[℄ will not

be handled as wildard. I.e. the following onnetion

point:

[all(Invoke.Instead, Alias="*")℄

objet athall(params objet[℄ args)

will beome interwoven with every method in the tar-

get lass and args will ontain eah parameter, one

passes through the method. For instane, if the tar-

get lass has a method void f(int i, double d), then

args[0℄ will ontain i and args[1℄ will ontain d after

the method is alled.

It has been shown, when a onnetion point will in-

terweave, now the fous will be on how to interweave.

This is desribed by the InvokeOrder parameter of

the all attribute. There are three possibilities:

� Invoke.Before: The aspet method of the on-

netion point will be invoked before the objet

method will be alled.

3

� Invoke.After: As to be expeted, the aspet

method will be invoked after the objet method

has been alled.

� Invoke.Instead: The objet method will not be

alled automatially. The aspet method has to

do it.

The �rst two ases are useful if one wants to trae

method alls only. The last ase is to be used in

order to get full ontrol over the method.

3.3 Aspet Context

When one de�nes an Invoke.Instead onnetion

point, one needs a mehanism to all the appropriate

target lass method. The problem is that neither

the type of the target lass (the aspet an beome

interwoven with any type) nor, in some ases, the

signature of the alled method (this is when one

uses signature wildards) are known. The solution

is to de�ne an Context property in the Aspet base

lass. With this property one gets an objet of type

AspetContext whih has the needed information.

There are two methods de�ned:

publi objet Invoke(params objet[℄ args)

publi objet InvokeOn(objet target , params

objet[℄ args)

The �rst simply invokes the target lass method with

the given parameters. With the seond, one an in-

voke one's own instane (target) of the target lass.

This is useful if there are speial instanes of the tar-

get lass stored in the aspet, and one wants to invoke

these.

3.4 Implementation Issues

In the setions above it has been desribed what an

aspet lass is, how onnetion points are de�ned,

and what objet ontext means. The question is how

to implement it. A language is needed whih has the

following requirements:

� a way to de�ne attributes

� reetion to analyse the target lass and the as-

pet lass signature (this means methods and

method parameters)

TARGET
CLASS

ASPECT
CLASS

CreateWovenInstance

TARGET
CLASS

ASPECT
CLASS

Connection Points

Woven Type

Figure 2: The Weaving Proess

� last, but not least, a possibility to emit the in-

terwoven lass

We implemented our solution in Mirosoft .NET be-

ause it ful�lls all these requirements. MS .NET is

a framework like Java whih provides a runtime en-

vironment to run a system independent ode. This

ode is present in an intermediate language (IL). Un-

like java, .NET has the apability of working with

a variety of languages. So it has the big advantage

that one gets the ability to interweave an aspet writ-

ten in C++, with a omponent written in pasal, for

example.

Now our solution is a library for .NET

_

This library

provides several lasses and attributes de�ned in the

namespae Aspets:

� Aspet is the base lass for all de�ned aspets

� Weaver is a lass whih inludes the weaving

funtionality

� Call is an attribute to de�ne onnetion points.

� AspetContext aessible via the As-

pet.Instane, to invoke instane methods.

3.5 Dynami vs. Stati Weaving

Most aspet frameworks use a ompiler (aspet

weaver) approah. This is �ne as long as all system

4

parameters are well known at ompile time. Dynami

weaving desribes a proess where a lass will beome

interwoven with an aspet lass during the runtime.

3.6 The Dynami Aspet Weaver

As desribed above, the Aspets namespae

ontains a lass alled Weaver. It provides a speial

funtion with whih to interweave an AspetClass

with a spei�ed lass:

stati objet Weaver.CreateInstane(

Type lasstype)

stati objet Weaver.CreateInstane(

Type lasstype ,

params objet[℄ args)

stati objet Weaver.CreateInstane(

Type lasstype ,

params objet[℄ args ,

Aspet aspet)

stati objet Weaver.CreateInstane(

Type lasstype ,

params objet[℄ args ,

Aspet[℄ aspetarr)

The �rst and the seond version generate an instane

of a lass lasstype. The objets in arg are the

onstutor parameters for the target lass. The last

two versions have an additional parameter aspet

resp. aspetarr where one has to ommit an instane

of the AspetClass(es). A possible all would be:

A a=Weaver.CreateInstane(typeof(A), null, new

MyAspet()) as A;

In the �rst two versions, there is no aspet. This is

when one wants to de�ne the aspet as attribute. The

following lines have the same meaning as the sample

above:

[MyAspet℄

lass A

{ /� ... �/ }

/� ... �/

A a=Weaver.CreateInstane(typeof(A), ...) as A;

The �rst way is more exible. One an determine

the Aspet and its parameters during runtime. First

the weaver looks for a ustom attribute derived

from Aspet. If there is no aspet, the all is

the same as new A(args). What happens during

CX

CY

Memory Hard disk

Calculate(...)

Figure 3: Mandelbrot Funtion Call

the reation is illustrated in �gure 2. The weaver

looks for onnetion points and tries to join them

with the target lass as desribed above. With this

information, it builds a new type, and reates a

new instane of this type. At the end the method

Aspet.tor will alled. This method is overridable

and has the following form:

virtual void tor(Weaver weaver , objet

target , params objet[℄ args)

� weaver the aspet weaver itself

� target is the new interwoven instane

� args are the onstrutor parameters

After that, the newly built instane will be returned

to the aller.

4 An Example

Now going bak to the situation in the introdution,

listing 1 shows a lass whih alulates a Mandelbrot

set [9℄. The input for the algorithm is a �lename, a

bounding box, and the resolution.

publi lass Mandelbrot

{

onst int m_iLimit=255; // alulation limit

publi Mandelbrot(){}

// this method alulates the mandelbrot and returns the

// result in matrix

private void InternalCalulate(double x1, double y1, double

dAddx, double dAddy, int line, ref Byte[℄ matrix)

{

int iPos=0;

while(iPos<matrix.Length)

{

double dCr=x1;

for(int iPosLine=0;iPosLine<line;iPosLine++)

{

Byte =0;

5

double

dZr = 0.0, // real omponent of Z

dZi = 0.0, // imaginary omponent of Z

dZiSqr = 0.0, // Zi squared

dZrSqr = 0.0, // Zr squared

dZr1; // temporary holder for Zr

while (< m_iLimit && dZiSqr + dZrSqr < 4)

{

dZr1 = dZrSqr - dZiSqr + dCr;

dZi = 2 * dZr * dZi + y1;

dZr = dZr1;

dZiSqr = dZi * dZi;

dZrSqr = dZr * dZr;

++;

}

if (>= m_iLimit)

matrix[iPos℄=0;

else

matrix[iPos℄=;

dCr+=dAddx;

iPos++;

}

y1+=dAddy;

}

}

// only this method is aessible from outside

// It alls the InternalCalulate funtion and

// stores the result to the hard disk

publi virtual void Calulate(string filename, double x1,

double y1, double x2, double y2, int x, int y)

{

double dAddx=(x2-x1)/((double)x);

double dAddy=(y2-y1)/((double)y);

// memory alloation and alulate

Byte[℄ matrix=new Byte[y*x℄;

Calulate(x1,y1,dAddx,dAddy,xRes,ref matrix);

// store the result

FileStream fs=new FileStream(filename, FileMode.Create,

FileAess.Write);

fs.Write(matrix,0,matrix.Length);

fs.Close();

}

}

Listing 1: The Mandelbrot Class

Figure 3 shows what happens: The algorithm �rst

alulates the whole Mandelbrot set in memory and

then stores it to the hard disk. For small resolutions

this algorithm works well. But what happens if the

resolution is inreased? The amount of onsuming

memory will inrease polynomial (one needs x*y

memory storage). A possible solution is to rewrite the

algorithm. But under ertain irumstanes, there

is not the possibility to do that (i.e. the algorithm

is only as binary available), so another solution is

needed.

4.1 The Save Memory Aspet

The idea is that the funtion alls are split so that

only single lines will be written to the hard disk.

After that one an join these �les together to the

requested �le. Figure 2 shows this approah. This

an be done by an aspet lass (it should be left

transparent to the lient). Listing 2 shows a possible

implementation of this aspet.

CX

Hard disk

Memory

1

Memory

1

Memory

1

...

Calculate(...)

Calculate(...)

Calculate(...)

Calculate(...)1
st

2
nd

CY
th

Figure 4: Funtion Call with the SaveMemory Aspet

publi lass SaveMemory:Aspet

{

[Call(Invoke.Instead)℄ // onnetion point

publi void Calulate(string filename, double x1, double y1

, double x2, double y2, int xRes, int yRes)

{

// split up in lines

double dStep=(y2-y1)/((double)yRes);

for(int i=0;i<yRes;i++)

{

// all original funtion

Context.Invoke(filename+i.ToString(),x1,y1,x2,y1,xRes,1)

;

y1+=dStep;

}

// join the �les together

Byte[℄ data=new Byte[xRes℄;

FileStream fsdst=new FileStream(filename, FileMode.Create

, FileAess.Write);

for(int i=0;i<yRes;i++)

{

FileStream fssr=new FileStream(filename+i.ToString(),

FileMode.Open, FileAess.Read);

fssr.Read(data,0,data.Length);

fssr.Close();

fsdst.Write(data,0,data.Length);

}

fsdst.Close();

}

}

Listing 2: The Save Memory Aspet

As one sees in the aspet lass the funtion alulate

is de�ned as a onnetion point. As desribed in Se-

tion 3, if the target lass ontains a funtion Calulate

with the same signature (and in this ase it has) then

both will beome interwoven. The for loop simply in-

6

vokes, via the Aspet Context, the algorithm line by

line. For n lines it will generate n �les on the hard

disk. At the end, these n �les will beome joined to

a new �le whih was originally requested.

4.2 The Distribution Aspet

The seond goal was to distribute the funtion alls

to several omputers. For that problem, too, one an

de�ne an aspet. Figure 5 shows what one has to do:

On every funtion all one splits the alulation up

and delegates eah part to the omputers Eagle and

Tomat

1

. Both write the result to a entral loation

(a �le Server). The aspet lass now gets the result

�les and joins them together. Listing 3 shows an

extrat.

CX

CY1

Memory

Calculate(...)

Calculate(...)

Tomcat

Falcon hard disk

CX

CY2

Memory

Calculate(...)

Raptor

InvokeOn(Raptor)
InvokeOn(Tomcat)

distributed file system

Figure 5: Funtion Call with the Distribution Aspet

publi lass Distribution:Aspet

{

// instanes on remote omputers

private objet eagle;

private objet tomat;

publi override void tor(Weaver weaver, objet o, objet

[℄ args)

{

/� Create remote instanes for Eagle and Tomat �/

}

// the onnetion point

[Call(Invoke.Instead, Alias="Calulate")℄

publi void Distribute(string filename, double x1, double

y1, double x2, double y2, int xRes, int yRes)

{

// alulate boundaries for both omputers

int yRes2=yRes/2;

1

At this point both omputer names are hard oded in our

aspet lass. However, the algorithm skethed out here an

easily be extended to use dynamially assigned omputers. In

fat, this would be an example of the next aspet desribing

system on�guration.

double yStep=(y2-y1)/((double)yRes);

double y12=y1+yStep*yRes2;

double y21=y12+yStep;

// Prepare event for asyn all

AutoResetEvent ev=new AutoResetEvent(false);

workount=2;

// Queue funtion alls

System.Threading.ThreadPool.QueueUserWorkItem(

new WaitCallbak(Distributing.Calulate),

new WorkItem(this, ev, eagle,temppath+"/eagle.raw",x1,y1

,x2,y12,xRes,yRes2));

System.Threading.ThreadPool.QueueUserWorkItem(

new WaitCallbak(Distributing.Claulate),

new WorkItem(this, ev, tomat,temppath+"/tomat.raw",x1,

y21,x2,y2,xRes,yRes-yRes2));

// wait until ready

while(workount!=0) ev.WaitOne();

// join �les together

FileStream fsdst=new FileStream(filename, FileMode.Create

, FileAess.Write);

Copy(temppath+"/eagle.raw",fsdst,xRes,yRes2);

Copy(temppath+"/tomat.raw",fsdst,xRes,yRes-yRes2);

fsdst.Close();

}

/� ... �/

publi stati void Calulate(objet para)

{

WorkItem item=(WorkItem)para;

item.aspet.Context.InvokeOn(item.target, item.filename,

item.x1, item.y1, item.x2, item.y2, item.xRes, item.

yRes);

// ready

item.aspet.workount--;

item.readyevent.Set();

}

}

Listing 3: The Distribution Aspet

The aspet lass here ontains three important fun-

tions. The �rst is tor, whih will be alled from the

Weaver when the instane is reated. It is used to re-

ate further instanes of the same type on whih one

an distribute the funtion alls. The seond is Dis-

tribution. This method ontains the all attribute,

whih de�nes it as onnetion point as well. Here the

funtion alls are we distributed to the instanes at

the omputers tomat and eagle. To do that a previ-

ously de�ned WorkItem is generated and put in a

thread pool. The asynhronous allbak will happen

in Calulate where the target lass is invoked.

4.3 The Client Side

In the lient only the instantiation of the Mandelbrot

lass hanges. Depending on what is needed one of

both of the aspets will beome interwoven to the

lass (Listing 4). The funtion all itself does not

hange.

7

Mandelbrot mb;

// we need less memory usage

if(opt_memory.Cheked)

mb=Aspets.Weaver.CreateInstane(typeof(Mandelbrot),null,

new SaveMemory()) as Mandelbrot;

// we more performane

else if(opt_speed.Cheked)

mb=Aspets.Weaver.CreateInstane(typeof(Mandelbrot),null,

new Distributing("d:/temp")) as Mandelbrot;

// we need nothing of both

else mb=new Mandelbrot();

Listing 4: The Client Side

5 Conlusions

Aspet-oriented programming (AOP) is a relatively

new approah for separation of onerns in software

development. AOP makes it possible to modularize

rossutting aspets of a system.

We have presented our approah to dynami man-

agement of aspet-information at program runtime.

We have introdued a new approah alled "dynami

weaving" whih allows for late binding (weaving) of

aspet ode and funtional ode. Using our approah,

it is possible to deide at runtime whether a ompo-

nent should be instantiated with support for a par-

tiular aspet or not. We have implemented our ap-

proah in ontext of the language C# and the .NET

environment. Relying on the .NET support for a va-

riety of programming languages, our approah is not

restrited to C#, but works for all of the .NET lan-

guages.

Our urrent implementation has some onstraints

for the programmer of a omponent. Currently, only

virtual methods an be interwoven dynamially. The

reason for this lies in our implementation of late bind-

ing of the funtion alls. Currently the Weaver "over-

rides" the funtion so that the virtual method table

maintained inside the .NET virtual mahine points

to the woven funtion (the version enrihed with as-

pet information). Other members of a lass, suh as

�elds, properties, stati, and lass funtions urrently

annot be aessed this way. However, reursively ap-

plying the AOP tehniques desribed here and in [11℄,

it is a simple task to generate proxy lasses whih sub-

stitute non virtual member funtions and �elds with

their virtual ounterparts.

Referenes

[1℄ M. Aksit and L. Bergmans. Composing multible

onerns using omposition �lters. Communia-

tions of the ACM, 44, Issue 10:51{57, Oktober

2001.

[2℄ M. Aksit and B. Tekinerdogan. Solving the mod-

eling problems of objet-oriented languages by

omposing multiple aspets using omposition

�lters. AOP'98 workshop position paper, 1998.

[3℄ T. Arher. Inside Mirosoft C#. Mirosoft

Press, 1 edition, 2001.

[4℄ AspetJ Hompage. http://www.aspetj.org/,

2002.

[5℄ K. Gybels. Using a logi language to express

ross-utting through dynami joinpoints. In

Seond Workshop on Aspet-Oriented Software

Development, Bonn, Germany, February 21-22

2002.

[6℄ G. Kizales, E. Hilsdale, J. Hugunin, M. Ker-

sten, J. Palm, and W. G. Griswold. Getting

started with aspetj. Communiations of the

ACM, 44, Issue 10:59{65, Otober 2001.

[7℄ G. Kizales, J. Lamping, A. Mendhekar,

C. Maeda, C. V. Lopes, J.-M. Loingtier, and

J. Irwin. Aspet oriented programming. In Eu-

ropean Conferene on Objet-Oriented Program-

ming (ECOOP), Finnland, June 1997. Springer

Verlag LNCS 1241.

[8℄ J. Lam. http://www.iunknown.om, 2002.

[9℄ B. Mandelbrot. The Fratal Geometry of Nature.

Freeman, San Franiso, 1982.

[10℄ Mirosoft. Common Language Infrastruture.

Internal Working Doument.

[11℄ W. Shult and A. Polze. Aspet-oriented pro-

gramming with C# and .NET. In Interna-

tional Symposium on Objet-oriented Real-time

distributed Computing (ISORC), pages 241{248,

Crystal City, VA, USA, April 29 - May 1 2002.

8

