Hatebefi:
Hybrid Applications Testbed for Fault Injection

Arne Boockmeyer*, Jossekin Beilharz', Lukas Pirl’ and Prof. Dr. Andreas Polze'
Operating Systems and Middleware Chair, Hasso Plattner Institute
Potsdam, Germany
Email: *{firstname.lastname } @student.hpi.uni-potsdam.de, '{firstname.lastname } @hpi.uni-potsdam.de

Abstract—Hybrid testbeds are popular for testing distributed
software systems, like network protocols and distributed appli-
cations, since the beginning of the 2000s. Combining physical
and virtual resources for testing these networked computer
systems allows to leverage the advantages and mitigate the
disadvantages of either one. However, hybrid testbeds introduce
novel challenges, e.g. regarding plausibility, heterogeneity, and
controllability. To counter these challenges, we introduce the
Hybrid Applications Testbed for Fault Injection (Hatebefi) which
combines two approaches: On the one hand, Hatebefi aims to
increase the plausibility by integrating hybrid testbeds with
domain-specific simulators (e.g. for traffic simulation). This
integration also addresses the heterogeneity of contemporary dis-
tributed applications. On the other hand, our framework allows
for efficient creation and execution of complex test scenarios
with a high degree of controllability by offering an event-based
execution model. To demonstrate the feasibility of our approach,
we implemented a basic set of arbitrarily combinable events to
cover the most common scenarios. Both features combined pave
the way to test distributed software systems, like Internet of
Things applications involving connected vehicles or smart cities.

Index Terms—hybrid, testbed, ns-3, domain-specific simula-
tion, vehicular-to-everything, IoT, fault tolerance, reliability

I. INTRODUCTION

With the advent of networked computer systems and dis-
tributed applications, developers became aware of the prob-
lems when testing applications on production networks like
the Internet. Therefore, separate networks with physical nodes
were set up for testing applications in controlled environments
before integrating them into the production systems. While
this approach protects the production systems, it is still hard
to handle the manifold external influences on the test envi-
ronment [1]]. Furthermore, hardware testbeds cannot easily be
scaled, since this requires physical resources to be acquired
(e.g. network and computer hardware).

Software-based testbeds allow to mitigate the aforemen-
tioned limitations by virtualising nodes and simulating net-
works. As a result, less hardware needs to be acquired
and less interaction with the hardware is required to allow
the testing of a large-scale distributed system with many
nodes. Those circumstances simplify, the composition (e.g.
network topologies), parametrisation (e.g. network bandwidth
and delay), scaling (e.g. number of nodes) and control (e.g.
full automation) of tests and experiments. On the downside,
the behaviour of virtualisations and simulations often don’t

match the reality in all characteristics, since they inherently
incorporate abstractions and simplifications [/1]] [2].

The idea to combine the advantages of hardware and soft-
ware testbeds to hybrid testbeds suggests itself and indeed is a
popular approach. Hybrid testbeds are formed from a mixture
of hardware and software resources (e.g. nodes, network
connections). While the hardware resources are intended to
increase the plausibility of the investigations (e.g. electro-
magnetic interference), the software resources are intended
to maintain flexibility (e.g. scaling) and controllability (e.g.
event-drivenness).

With the pervasion of Internet of Things (IoT) applications,
the requirements for testbeds shift towards large, widely dis-
tributed and rapidly changing systems. We therefore propose
a novel approach which unburdens the investigation of such
scenarios with manageable complexity. Our vision is to create
an event-based hybrid testbed connected to specialised simu-
lators, such as for traffic. The event-based approach allows to
create dynamic, flexible and well-controllable test scenarios
to expose the software under consideration to fluctuating
conditions. The connection to specialised simulators (like
in [5]) increases the plausibility since they contribute the
expert knowledge for a certain domain. For example, this
offers the possibility to investigate intelligent transportation
systems, where vehicles move realistically (e.g. routes, speeds,
amounts) through urban areas and communicate wirelessly
in an ad hoc fashion. The Hybrid Applications Testbed for
Fault Injection (Hatebefi) enables test designers to encode the
overall test setup (e.g. nodes and network topologies) and test
scenarios (e.g. changing network conditions).

II. HATEBEFI - A HYBRID TESTBED

Hatebefi is implemented as a Python extension framework
to the network simulator ns-ﬂ Using the framework is
straightforward and does not require specialised tools: import
the Hatebefi library into a ns-3 Python project and execute ns-
3 with the included Python bindings. The framework offers
abstractions for common tasks regarding orchestration and
simulation. For features not covered by those abstractions, the
native Python bindings of ns-3 can still be used.

Hatebefi consists of four major components. The first com-
ponent is the node (hardware or software) orchestration which

Uhttps://www.nsnam.org


https://www.nsnam.org

abstracts node creation (e.g. operating system) and manage-
ment (e.g. start, stop, freeze). The abstractions for ns-3 are
implemented by the second component which provides a con-
sistent and intuitive interface to the network simulation. The
third component implements the connection to the domain-
specific simulation which can be used to obtain coordinates of
realistically moving nodes. The fourth component provides the
events API which allows developers to create events and react
to changes of the system state with fine granularity. Therewith,
it facilitates control during runtime over the test cases which
have been built using the three components mentioned first.

A. Node Orchestration and Network Abstraction

A requirement for Hatebefi is to combine several different
back ends for Virtual Machines (VMs) and containers with
hardware nodes. For both, hardware and software nodes,
Hatebefi provides an abstraction layer for their creation, man-
agement and for connecting them to ns-3 effortlessly. For
hardware nodes — which of course have to be reachable
over the network from the host — another abstraction layer is
provided, so that those can be connected to ns-3 likewise. An
advantageous side effect of this architecture is that it is also
possible to connect Hatebefi to remote hypervisors.

In analogy to managing nodes, there is also a layer to
abstract from the details of the network configuration. Using
these abstractions, creating a ns-3-managed network requires
just a few lines of code.

B. Connection to a Domain-Specific Simulator

To increase the plausibility of results, Hatebefi connects
the hybrid testbed to domain-specific simulators. Currently we
focus on the traffic simulator “Simulation of Urban Mobility”
(SUMO) [4]]. Our vision is to represent every vehicle in such a
simulation with a node in the simulated network. This allows
us to run test scenarios like assessing the communication be-
tween wirelessly communicating cars, trains and infrastructure
elements.

C. Events API

To control the test scenario dynamically during runtime,
Hatebefi introduces an expressive events API. It allows the
test developer to perform the operations as described in
dynamically during the simulation. It bases on three different
event types which can be queued in any order:

o« after: The after event waits a given amount of time.

e when: The when event takes a condition as Python
lambda. Once the result of this condition matches an
expected result, the processing continues. It uses an
active expression implementation for Pythorﬂ to get all
dependencies of the condition.

e check—-if: The check-if event takes a Python
lambda expression and it only continues the processing if
the lambda returns an expected value. It is also possible
to make this periodic and check it in a given interval.

Zhttps://github.com/active-expressions/active-expressions-static-python

The execution of the script which describes the test scenario
is continued once the respective event occurs. Events can be
combined arbitrarily and can hence express complex scenarios.
The processing of an event can start directly when creating the
event or at the beginning of the simulation.

III. OPERATIONS FOR FAULT INJECTION EXPERIMENTS

Currently there are several operations supported:

e Create and modify the network topology: Create new
networks during the simulation, connect nodes to existing
networks and disconnect nodes from networks. Also
managing IP addresses is supported.

o Change network configuration: Change the bandwidth or
latency of a network on the fly.

o Manage nodes: Start, stop or restart nodes and execute
commands on the nodes during the simulation to adjust
the configuration of the nodes.

These operations allow test designers to perform several
different scenarios to test network applications especially in
the perspective of fault injection. For example, it could be
assessed how distributed file systems react to node failures. Or,
in an IoT context, to test the reliability of data transmissions
over connections with a very high latency towards the edge.

IV. CONCLUSION

Hatebefi is a modern hybrid testbed integrated as a frame-
work into the network simulator ns-3. It can use different back
ends for VMs, containers and hardware nodes. Currently, a
proof of concept is implemented for LXD and hardware nodes,
while the support for Docker is near completion. The vision
to connect domain-specific simulators is not implemented yet.
We expect the use either SUMO’s trace files or traCl API for
the connection the testbed. Hatebefi allows to test distributed
applications with regard to, e.g., fault tolerance or behaviour
under altered network conditions. The framework offers an
events API to make authoring the test cases as flexible as
possible. To increase the plausibility we connect Hatebefi to
domain-specific simulators, like SUMO for traffic simulations
to control the network nodes’ movements realistically. Es-
pecially in the era of IoT, this opens up new ways to test
distributed applications in a controlled and scaled fashion.

REFERENCES

[1] A. Zimmermann, M. Gunes, M. Wenig, U. Meis and J. Ritzerfeld,
“"How to Study Wireless Mesh Networks: A hybrid Testbed Approach,”
21st International Conference on Advanced Information Networking and
Applications (AINA ’07), Niagara Falls, ON, 2007, pp. 853-860.

[2] T. Miyachi, K. Chinen, and Y. Shinoda, “StarBED and SpringOS:
Large-scale General Purpose Network Testbed and Supporting Software”
in Proceedings of the 1st International Conference on Performance
Evaluation Methodologies and Tools VALUETOOLS ’06, Pisa, Italy,
2006, p. 30.

[3] H. Kim et al., "IoT-TaaS: Towards a Prospective IoT Testing Frame-
work,” in IEEE Access, vol. 6, pp. 15480-15493, 2018.

[4] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO —
Simulation of Urban MObility: An Overview,” in Proceedings of SIMUL
2011, The Third International Conference on Advances in System
Simulation, Barcelona, 2011.

[5] B. Schiinemann, ”V2X simulation runtime infrastructure VSimRTI:
An assessment tool to design smart traffic management systems”, in
Comput. Netw. 55, 14, pp. 3189-3198, 2011.


https://github.com/active-expressions/active-expressions-static-python

	Introduction
	self - A Hybrid Testbed
	Node Orchestration and Network Abstraction
	Connection to a Domain-Specific Simulator
	Events API

	Operations for Fault Injection Experiments
	Conclusion
	References

