
VAX

Agenda

 VAX and its History
 VAX ISA
 VAX Virtual Address
 Microcode

 What is VAX?

 Developed by Digital Equipment Corporation
(DEC) in the mid-1970s

 A 32-bit CISC orthogonal instruction set
 A commercial pioneer in using virtual address
 Replace 16-bit PDP-11 ISA
 15 – 20 year architecture life span
 Compatible with PDP-11 software

Virtual Address eXtension

VAX History

A single ISA with diversified and evolved hardware implementations

1977 – VAX 11/780 TTL
1980 – VAX 11/750 TTL
1980 – VAX 11/730 TTL
1984 – VAX 8600 ECL
1985 – MicroVAX II
 MicroVAX chip
1986 – VAX 8800 ECL
1987 – MicroVAX 3600
 CVAX chip
 VAX station 2000
1989 – VAX6600
 NVAX chip
1989 – VAX9000 ECL

First VAX 11/780, installed in CMUVAX 8800MicroVAX IIVAX station 2000

VAX ISA Summary

 32-bit CISC Architecture
 16 32-bit registers (r0, r1, .., r15)

 r12, r13, r14, r15 reserved for AP, FP, SP, PC
 300+ variable length instructions
 22 addressing modes
 ISA Designed for Compiler Simplicity and

Reduced Code Size

Note that the VAX
concept of a word
differs from the word
we refer to in MIPS
or class.

A VAX Longword is
equivalent to one of
our 4 byte words.

Though VAX is a 32-bit
Architecture, the
instructions can
operate on multiple
other data formats.

Most familiarly:
• Integers/Floats of
 varying sizes
• Character String

Data Types

Rich hardware data types to simplify compiler

Sample Instructions (1/3)

Sample Instructions (2/3)

Sample Instructions (3/3)

Instruction Variants

 Instruction Variants
 Operation + Data type + # of Operands

 Operation – add, sub …
 Data type – byte, word, dword,
 # of operands – 1 ~ 3 register and 1~3 memory (depends on

operations)
 One Sample ── ADD

The total combination of instructions is 304+, not including address
mode variances!

Addressing Modes
 General Register Addressing

 Literal (3 types)
 Register
 Register deferred
 Autodecrement and

Autoincrement
 Autoincrement deferred
 Byte, Word, Longword

displacement
 Byte, Longword displacement

deferred
 Indexed

 Program Counter Addressing
 Immediate
 Absolute
 Byte relative
 Byte relative deferred
 Word relative
 Word relative deferred
 Longword relative
 Longword relative deferred

Register – Register Register–Memory Memory – Memory

Total 22 Addressing Modes

Address mode syntax examples

Figure E.2 From Appendix E

Instruction Encoding

 A one to two byte OPCODE specifies the
operation, number of operands, and data type

 After the OPCODE has indicated the number of
operands, each operand is represented by an
Operand Specifier.

 The Operand Specifier indicates the addressing
mode for the operand and the first parameter.
Any further parameters must then be read in
following their designated Operand Specifier.

Instruction Encoding
1 or 2 byte OPCODE determines the
number of Operand Specifiers.
- VAX’s 300+ instructions require 9 bits
 - The most popular instructions use only
 OPCODE of 1 byte length

Each Operand Specifier is
also a variable length field
with an Address Mode
Specifier followed by any
of the mode specific
required information.

Mode Parameter M

Address Mode Specifier

Mode Parameter 1
.
.
.

OPCODE

Operand Specifier 1
.
.
.

Operand Specifier 3

V
A
X

I
n
s
t
r
u
c
t
i
o
n

Byte

0
.
.
1
.
.
.
.
.
.
.
.
.
.
N

VAX is variable length encoding

Instruction Encoding - LOAD
MIPS: lw r5, 6(r1)

LW OPCODE

MOVL OPCODE (r1) 6 r5

1 byte 1 byte 1 byte 1 byte = 32 bits

r5 r1 6
6 bits 5 bits 5 bits 16 bits = 32 bits

VAX: movl 6(r1), r5

Call/Ret Instructions
 “calls” VAX Instruction

 Multi-cycle instruction
 Intended to automate and

regulate the methods for
preserving state before a
call

 Uses user-defined bitmask
to determine which
registers to save

 Updates AP and FP to
point to current frame’s
parameters

 Updates PC to exec new
procedure

 “ret” VAX Instruction
 Multi-cycle instruction
 Intended to automate and

regulate the restoration of
saved state after the return
of a call

 Does the opposite of the
“calls” VAX Instruction

These instructions can be highly inefficient.

Total Code Size: MIPS = 15*4 = 60 bytes VAX = 2+4+4+4+5+5+4 = 27 bytes

Code Density

Heavy code density due to CALL/RET inst and Addressing mode

MIPS:
int v[] = $4
int k = $5

VAX:
int v[] = 4(ap)
int k = 8(ap)

Procedure Body Memory Access: MIPS = 4 VAX = 7

Virtual Address Layout

4GB Virtual Address Space (2GB Shared), 512Bytes Page Size

Virtual Address Extension Space

 Using mem. management
with page tables,
protection, and page
faults VAX maps physical
memory to a 32-bit (4GB)
address space

 It is divided as shown in
the figure to the right: System Space

P1 P2 P3
0

7FFFFFFF
80000000

FFFFFFFF

heap

stack stack

heap

stack

heap

Application Space

Recreated using Figure 6-1 from VAX Architecture Handbook

Virtual Address Translation

Each Region (S, P0, P1) has One-Level Page Table.
System Page Table (S) is stored in physical memory directly.
User Page Tables (P0, P1) are stored in S Region virtual address space.

PTE

PTE Address

Microcode - How to Control Circuit?

Find a generic & simple way to control circuit?
Each instruction will be translated to a sequence of control signals.

Combination Logic

An Accumulator Example

0 0

7
3

42 2

1

4

6

5

6 7

Microcode - Concept

Transform control signals sequence to data

0
123

4567

Horizontal & Vertical Microcode
Horizontal Microcode
Control field for each control point in the machine

 Vertical Microcode (two-level)
Compact & simple microinstructions
Local decoded to generate all control points

µseq µaddr A-mux B-mux bus enables register enables …

Load Operand 1
 …
Load Operand n
Opcode Operation

ISA Instruction Local Control
Signals

Same ISA can have different microcode designs

Microcode - Programming
Sample microcode for MicroVAX:

 Use microcode routines to implement ISA instructions

Microprogrammed Pipeline

Microcode optimization, no hardware cost,
horizontal microcode only.

Micropipeline

Translate every CISC instruction to RISC-like
microinstructions. Pipeline microinstructions like MIPS

ADDL2 byte-disp(R1), R2

 FIRST OPERAND: VA ← R1+disp, READ to MD0, New Decode
SECOND OPERAND: Rptr ← 2, MD1 ← R[Rptr], New Decode
 ADDL2: R[Rptr] ← MD0 + MD1, New Decode
Start of next Instruction: …

Macropipeline

First, pipeline at VAX instruction level
Second, pipeline at microcode instruction level in some macro stages.

Instruction Flow

Execution Macro Stages

Microcode &
Micropipeline Stage

Summary

 VAX and its history
Virtual Address eXtension, classic VAX 11-780

 VAX ISA
32-bit Variable length CISC ISA

 VAX Virtual Address
4GB VA, 1GB PA, 512bytes page size

 Microcode
A generic way to control circuit

 Microcode Pipeline
Microprogrammed pipeline, Micropipeline, Macropipeline

Thank you. 

Project References

Hennessy, John L., and David A. Patterson.
Computer Architecture A Quantitative
Approach. 3. San Francisco: Morgan
Kaufmann Publishers, 2003.

VAX Architecture Handbook. Digital
Equipment Corporation, 1981.

