
VAX

Agenda

 VAX and its History
 VAX ISA
 VAX Virtual Address
 Microcode

 What is VAX?

 Developed by Digital Equipment Corporation
(DEC) in the mid-1970s

 A 32-bit CISC orthogonal instruction set
 A commercial pioneer in using virtual address
 Replace 16-bit PDP-11 ISA
 15 – 20 year architecture life span
 Compatible with PDP-11 software

Virtual Address eXtension

VAX History

A single ISA with diversified and evolved hardware implementations

1977 – VAX 11/780 TTL
1980 – VAX 11/750 TTL
1980 – VAX 11/730 TTL
1984 – VAX 8600 ECL
1985 – MicroVAX II
 MicroVAX chip
1986 – VAX 8800 ECL
1987 – MicroVAX 3600
 CVAX chip
 VAX station 2000
1989 – VAX6600
 NVAX chip
1989 – VAX9000 ECL

First VAX 11/780, installed in CMUVAX 8800MicroVAX IIVAX station 2000

VAX ISA Summary

 32-bit CISC Architecture
 16 32-bit registers (r0, r1, .., r15)

 r12, r13, r14, r15 reserved for AP, FP, SP, PC
 300+ variable length instructions
 22 addressing modes
 ISA Designed for Compiler Simplicity and

Reduced Code Size

Note that the VAX
concept of a word
differs from the word
we refer to in MIPS
or class.

A VAX Longword is
equivalent to one of
our 4 byte words.

Though VAX is a 32-bit
Architecture, the
instructions can
operate on multiple
other data formats.

Most familiarly:
• Integers/Floats of
 varying sizes
• Character String

Data Types

Rich hardware data types to simplify compiler

Sample Instructions (1/3)

Sample Instructions (2/3)

Sample Instructions (3/3)

Instruction Variants

 Instruction Variants
 Operation + Data type + # of Operands

 Operation – add, sub …
 Data type – byte, word, dword,
 # of operands – 1 ~ 3 register and 1~3 memory (depends on

operations)
 One Sample ── ADD

The total combination of instructions is 304+, not including address
mode variances!

Addressing Modes
 General Register Addressing

 Literal (3 types)
 Register
 Register deferred
 Autodecrement and

Autoincrement
 Autoincrement deferred
 Byte, Word, Longword

displacement
 Byte, Longword displacement

deferred
 Indexed

 Program Counter Addressing
 Immediate
 Absolute
 Byte relative
 Byte relative deferred
 Word relative
 Word relative deferred
 Longword relative
 Longword relative deferred

Register – Register Register–Memory Memory – Memory

Total 22 Addressing Modes

Address mode syntax examples

Figure E.2 From Appendix E

Instruction Encoding

 A one to two byte OPCODE specifies the
operation, number of operands, and data type

 After the OPCODE has indicated the number of
operands, each operand is represented by an
Operand Specifier.

 The Operand Specifier indicates the addressing
mode for the operand and the first parameter.
Any further parameters must then be read in
following their designated Operand Specifier.

Instruction Encoding
1 or 2 byte OPCODE determines the
number of Operand Specifiers.
- VAX’s 300+ instructions require 9 bits
 - The most popular instructions use only
 OPCODE of 1 byte length

Each Operand Specifier is
also a variable length field
with an Address Mode
Specifier followed by any
of the mode specific
required information.

Mode Parameter M

Address Mode Specifier

Mode Parameter 1
.
.
.

OPCODE

Operand Specifier 1
.
.
.

Operand Specifier 3

V
A
X

I
n
s
t
r
u
c
t
i
o
n

Byte

0
.
.
1
.
.
.
.
.
.
.
.
.
.
N

VAX is variable length encoding

Instruction Encoding - LOAD
MIPS: lw r5, 6(r1)

LW OPCODE

MOVL OPCODE (r1) 6 r5

1 byte 1 byte 1 byte 1 byte = 32 bits

r5 r1 6
6 bits 5 bits 5 bits 16 bits = 32 bits

VAX: movl 6(r1), r5

Call/Ret Instructions
 “calls” VAX Instruction

 Multi-cycle instruction
 Intended to automate and

regulate the methods for
preserving state before a
call

 Uses user-defined bitmask
to determine which
registers to save

 Updates AP and FP to
point to current frame’s
parameters

 Updates PC to exec new
procedure

 “ret” VAX Instruction
 Multi-cycle instruction
 Intended to automate and

regulate the restoration of
saved state after the return
of a call

 Does the opposite of the
“calls” VAX Instruction

These instructions can be highly inefficient.

Total Code Size: MIPS = 15*4 = 60 bytes VAX = 2+4+4+4+5+5+4 = 27 bytes

Code Density

Heavy code density due to CALL/RET inst and Addressing mode

MIPS:
int v[] = $4
int k = $5

VAX:
int v[] = 4(ap)
int k = 8(ap)

Procedure Body Memory Access: MIPS = 4 VAX = 7

Virtual Address Layout

4GB Virtual Address Space (2GB Shared), 512Bytes Page Size

Virtual Address Extension Space

 Using mem. management
with page tables,
protection, and page
faults VAX maps physical
memory to a 32-bit (4GB)
address space

 It is divided as shown in
the figure to the right: System Space

P1 P2 P3
0

7FFFFFFF
80000000

FFFFFFFF

heap

stack stack

heap

stack

heap

Application Space

Recreated using Figure 6-1 from VAX Architecture Handbook

Virtual Address Translation

Each Region (S, P0, P1) has One-Level Page Table.
System Page Table (S) is stored in physical memory directly.
User Page Tables (P0, P1) are stored in S Region virtual address space.

PTE

PTE Address

Microcode - How to Control Circuit?

Find a generic & simple way to control circuit?
Each instruction will be translated to a sequence of control signals.

Combination Logic

An Accumulator Example

0 0

7
3

42 2

1

4

6

5

6 7

Microcode - Concept

Transform control signals sequence to data

0
123

4567

Horizontal & Vertical Microcode
Horizontal Microcode
Control field for each control point in the machine

 Vertical Microcode (two-level)
Compact & simple microinstructions
Local decoded to generate all control points

µseq µaddr A-mux B-mux bus enables register enables …

Load Operand 1
 …
Load Operand n
Opcode Operation

ISA Instruction Local Control
Signals

Same ISA can have different microcode designs

Microcode - Programming
Sample microcode for MicroVAX:

 Use microcode routines to implement ISA instructions

Microprogrammed Pipeline

Microcode optimization, no hardware cost,
horizontal microcode only.

Micropipeline

Translate every CISC instruction to RISC-like
microinstructions. Pipeline microinstructions like MIPS

ADDL2 byte-disp(R1), R2

 FIRST OPERAND: VA ← R1+disp, READ to MD0, New Decode
SECOND OPERAND: Rptr ← 2, MD1 ← R[Rptr], New Decode
 ADDL2: R[Rptr] ← MD0 + MD1, New Decode
Start of next Instruction: …

Macropipeline

First, pipeline at VAX instruction level
Second, pipeline at microcode instruction level in some macro stages.

Instruction Flow

Execution Macro Stages

Microcode &
Micropipeline Stage

Summary

 VAX and its history
Virtual Address eXtension, classic VAX 11-780

 VAX ISA
32-bit Variable length CISC ISA

 VAX Virtual Address
4GB VA, 1GB PA, 512bytes page size

 Microcode
A generic way to control circuit

 Microcode Pipeline
Microprogrammed pipeline, Micropipeline, Macropipeline

Thank you.

Project References

Hennessy, John L., and David A. Patterson.
Computer Architecture A Quantitative
Approach. 3. San Francisco: Morgan
Kaufmann Publishers, 2003.

VAX Architecture Handbook. Digital
Equipment Corporation, 1981.

