
1

Zhao Xia

zhaoxia@os.pku.edu.cn

Chapter 2 Chapter 2
ProcessProcess，， thread, and thread, and
schedulingscheduling

—— kernel services

2

Outline

 Kernel Services Kernel Services

 System call

 Trap

 Interrupt

 kernel callout

 system clock

3

Access to Kernel Services

User mode

 kernel mode
Access Kernel data structures and hardware

devices

When a user process needs to access
kernel system services
 thread within the process transitions from

user mode to kernel mode through a set of
interfaces known as system calls

4

Enter the kernel mode

 system call
user process requests a kernel service

 processor trap
vectored transfer of control into the kernel,

initiated by the processor

 interrupt
vectored transfer of control into the kernel,

typically initiated by a hardware device

5

Context of thread

 describes the environment for a thread of
execution

 Execution Context
 thread stacks, open file lists, resource accounting,

etc.

 virtual memory context
 set of virtual-to-physical address translations
 Each process has its own virtual memory context
 each process context has kernel’s virtual memory

mapped within it

6

Execution Context

 Process Context
 acts on behalf of the user process
 access to the process’s user area (uarea), and process

structures for resource accounting
 Interrupt Context

 Interrupt threads execute in an interrupt context
 have their own stack and can access only kernel data

structures
 Kernel Context

 Kernel management threads run in the kernel context
 share the kernel’s environment with each other
 typically cannot access process-related data
 E.g. Page scanner

7

Threads in Kernel and Interrupt Context

 Interrupt Handlers
 Kernel threads handle all but high-priority interrupts.

 Kernel Management Threads
 kernel has own threads to carry out system

management tasks
 kernel management threads execute in the kernel’s

execution context
 scheduled in the system (SYS) scheduling class at

a higher priority than most other threads on the
system.

8

Process, Interrupt, and Kernel Threads

9

Outline

 Kernel Services

 system callsystem call

 Trap

 Interrupt

 kernel callout

 system clock

10

Enter the kernel mode by System Calls

 User processes/applications access kernel services
through the system call facility

 Modes of execution (kernel & user) provide protection
 invocation of a system call causes the processor to

change from user mode to kernel mode

11

Regular System Calls

 kernel sysent table
contains an entry for every system call

supported on the system

an array populated with sysent structures

12

Execution of System Calls
 results in the software issuing a trap instruction
 is executed on behalf of the calling thread

13

Fast Trap System Calls

 Solaris kernel’s feature

 user processes can
 jump into protected kernel mode
 do minimal processing and thenreturn
without the overhead of saving all the state that a

regular system call does

 only be used when the processing required in
the kernel does not significantly interfere with
registers and stacks.

14

Outline

 Kernel Services

 system call

 TrapTrap

 Interrupt

 kernel callout

 system clock

15

UltraSPARC I & II Traps

 SPARC processor architecture uses traps as a
unified mechanism to handle
 system calls
 processor exceptions
 interrupts

 A SPARC trap is a procedure call as a result of
 synchronous processor exception,
 an asynchronous processor exception
 a software-initiated trap instruction
 a device interrupt

16

Processing of Traps

 hardware do
Save certain processor state
enters privileged mode
executing code in the corresponding trap

table slot

 And go on
Execute trap handler for the type of trap
Once interrupt handler has finished, control

is returned to the interrupted thread

17

UltraSPARC I & II Trap Types(1)

 Processor resets
 Power-on reset, machine resets, software-initiated

resets

 Memory management exceptions
MMU page faults, page protection violations,

memory errors, misaligned accesses, etc.

 Instruction exceptions
 Attempts to execute privileged instructions from

nonprivileged mode, illegal instructions, etc.

18

UltraSPARC I & II Trap Types(2)

 Floating-point exceptions
 Floating-point exceptions, floating-point mode

instruction attempted when floating point unit
disabled, etc.

 SPARC register management
 Traps for SPARC register window spilling, filling, or

cleaning.

 Software-initiated traps
 Traps initiated by the SPARC trap instruction (Tcc);

primarily used for system call entry in Solaris.

19

UltraSPARC I & II Trap Priority Levels

 Each UltraSPARC I & II trap has an
associated priority level

Highest-priority trap is taken first
0 is the highest priority

 Interrupt traps are subject to trap priority
precedence
compared against the processor interrupt

level (PIL)

20

UltraSPARC I & II Trap Levels

Nested traps
a trap can be received while another trap is

being handled

Nested traps have five levels
From trap level 0 (normal execution, no trap)

To trap level 4 (an error handling state and
should not be reached during normal
processing)

21

UltraSPARC I & II Trap Table Layout（ 1）

UltraSPARC I & II trap table is halved
 the lower half contains trap handlers for traps

taken at trap level 0
 the upper half contains handlers for traps

taken when the trap level is 1 or greater

 Each half of the trap table is further
divided into two sections
256 hardware traps in the lower section
256 software traps in the upper section (for

the SPARC Tcc software trap instructions)

22

UltraSPARC I & II Trap Table Layout（ 2）

23

Software Traps

 Software traps are initiated by the SPARC trap
instruction, Tcc.

 used primarily for system calls in the Solaris
kernel

 three software traps for system calls
 native system calls
 32-bit system calls (when 32-bit applications are

run on a 64-bit kernel)
 SunOS 4.x binary compatibility system calls

 several ultra-fast system calls implemented as
their own trap

24

UltraSPARC Software Traps

25

A Utility for Trap Analysis

 Trapstat
dynamically

monitors trap
activity

analyze the traps
taken on each
processor installed
in the system

26

Outline

 Kernel Services

 system call

 Trap

 InterruptInterrupt

 kernel callout

 system clock

27

Interrupts

 An asynchronous event, not associated with the
currently executing instruction

 Like traps
 interrupts result in a vectored transfer of control to

a specific routine
> a device interrupt handler (part of the device driver).

 interrupts are hardware architecture specific

 Interrupts can be “hardware” or “software”
 “Hard”ware interrupts generated by I/O devices
 Soft interrupts are established via a call to the

kernel add_softintr() function

28

Interrupt priority

 based on interrupt level
 higher levels have higher priority

 15 (1-15) interrupt levels defined
 Levels 1-9 are serviced by an interrupt thread

linked to the processor that took the interrupt
 Level 10 is the clock, and is handled by a dedicated

clock_intr_thread
 Levels 11-15 are handled in the context of the

thread that was executing
> these are considered high priority interrupts

 Dispatcher locks are held at level 11

29

Interrupt priority

30

Interrupt Thread Priorities

31

interrupt threads

 When a CPU takes an interrupt, the currently
running thread is “pinned” (not context switched
out), some context is “borrowed”, and the
interrupt thread runs

 If the interrupt thread completes
 Simply unpin the pinned thread, and let it resume

 If the interrupt thread blocks
Must be upgraded to a “complete” thread, so it can

block
> This is the ithr column in mpstat

 Allow the pinned thread to resume

32

Handling Interrupts with Threads

33

Outline

 Kernel Services

 system call

 Trap

 Interrupt

 kernel calloutkernel callout

 system clock

34

Kernel Callout

 general-purpose, time-based event
scheduling

 kernel routines can place functions on the
callout table through the timeout(9F)
interface.

With each clock interrupt, the tick value is
tested and the function is executed when
the time interval expires

35

Solaris 2.6 and 7 Callout Tables

36

Outline

 Kernel Services

 system call

 Trap

 Interrupt

 kernel callout

 system clocksystem clock

37

System Clocks

 All Sun systems implement a Time-Of-Day
(TOD) clock chip that keeps time

 TOD clock circuitry is part of the system
EEPROM

 TOD device driver implemented to read/write
TOD -accessable as a device

 Clock interrupts generated 100 times a second
- every 10 milliseconds

 Clock interrupt handler performs generic
housekeeping functions

38

System Clocks

39

Clock interrupt handler

 Calculate free anon space
 Calculate freemem
 Calculate waitio
 Calculate usr, sys & idle for each cpu
 Do dispatcher tick processing
 Increment lbolt
 Check the callout queue
 Update vminfo stats
 Calculate runq and swapq sizes
 Run fsflush if it’s time
 Wake up the memory scheduler if necessary

40

High-Resolution Timer

 nanosecond-level timing functions

 internal gethrestime() (get high-resolution time)
function

 System call API
 setitimer(2)

> support for real-time interval timers

 gethrtime(3C)
> provides programs with nanosecond-level granularity for timing

 gethrtime(3C)
> read the TICK register and return a normalized (converted to nanoseconds) value

41

Reference

 Solaris Internals-Core Kernel Components, Jim
Mauro, Richard McDougall, Sun Microsystems Press,
2000

 SOLARIS Kernel Performance, Observability &
Debugging, Richard McDougall, James
Mauro,USENIX’05 ,2005

 Solaris Internals and Performance Management,
Richard McDougall,2002

42

End

•Last.first@Sun.COM

