





## Programming Parallel and Distributed Systems: Seminar Project Proposals

Frank Feinbube, Felix Eberhardt, Max Plauth, Prof. Andreas Polze Operating Systems and Middleware Research Group Hasso Plattner Institute

## Overview

#### Themenwünsche <u>bis zum 06.05.2015</u> per E-Mail an <u>Frank.Feinbube@hpi.de</u> oder einfach bei uns vorbeikommen :)



### Algorithm Optimization

- EDC Graph Search, Hyrise
- Speeded Up Robust Features
- ... or anything really

### Feature Benchmarks

- Intel Transactional Memory
- Stream Stores vs. Coherent Stores
- Prefetching

<u>Tools</u>

### Programming Languages / Models

- PGAS: Fortress, X10, UPC, ...
- Scala, Java, JavaScript, C#, ...
- CUDA, OpenCL, OpenACC, ...

### **Platforms**

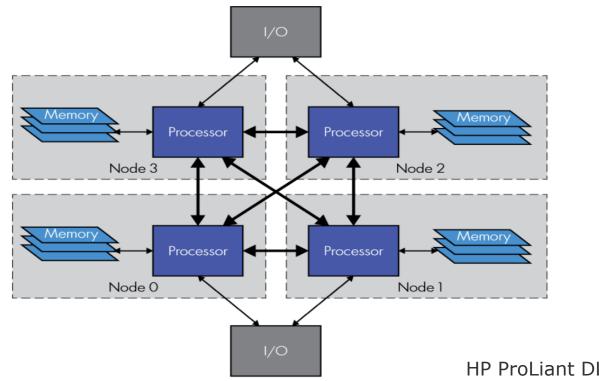
- (hierarchical) NUMA systems
- Intel Xeon Phi
- GPU Computing

### Linux Kernel experiments Performance Predictions

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm




### Platforms

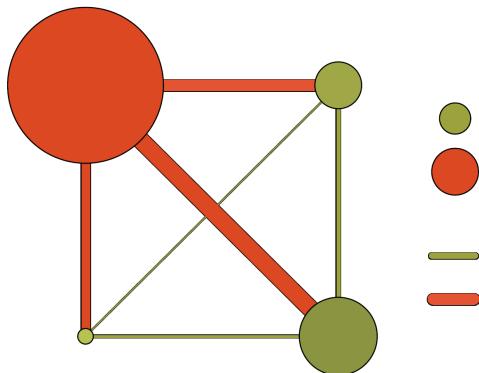


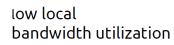
## (Hierarchical) NUMA Systems



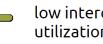
### **Classical NUMA-System**




### **PPV Project Proposals**


Frank Feinbube, hpi.de/osm

HP ProLiant DL580 G7


## NUMA challenges



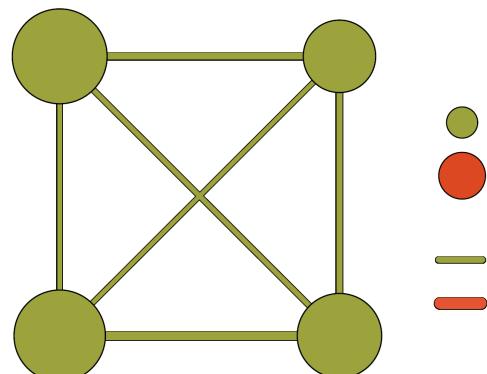




high local utilization / congestion



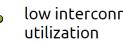
low interconnect utilization


high interconnect utilization / congestion

### **PPV Project Proposals**

Frank Feinbube, hpi.de/osm

## NUMA challenges





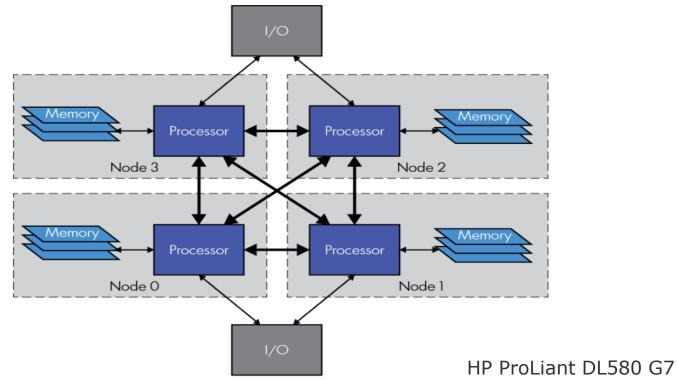



bandwidth utilization

high local utilization / congestion

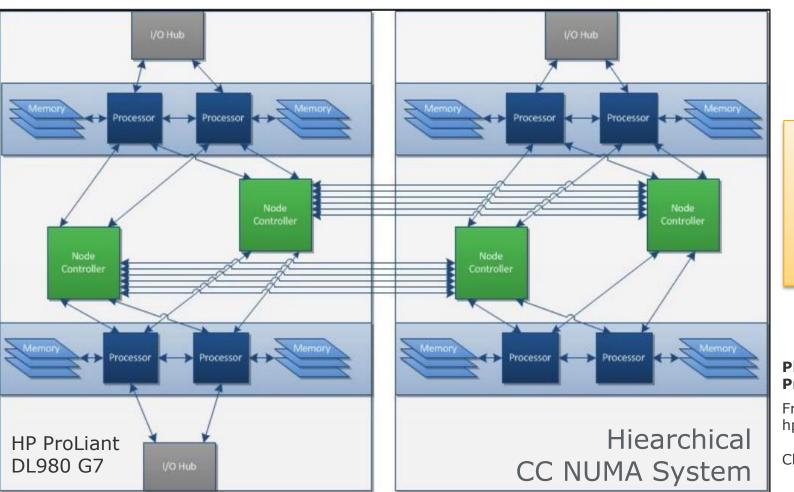


low interconnect


high interconnect utilization / congestion

### **PPV Project Proposals**

Frank Feinbube, hpi.de/osm

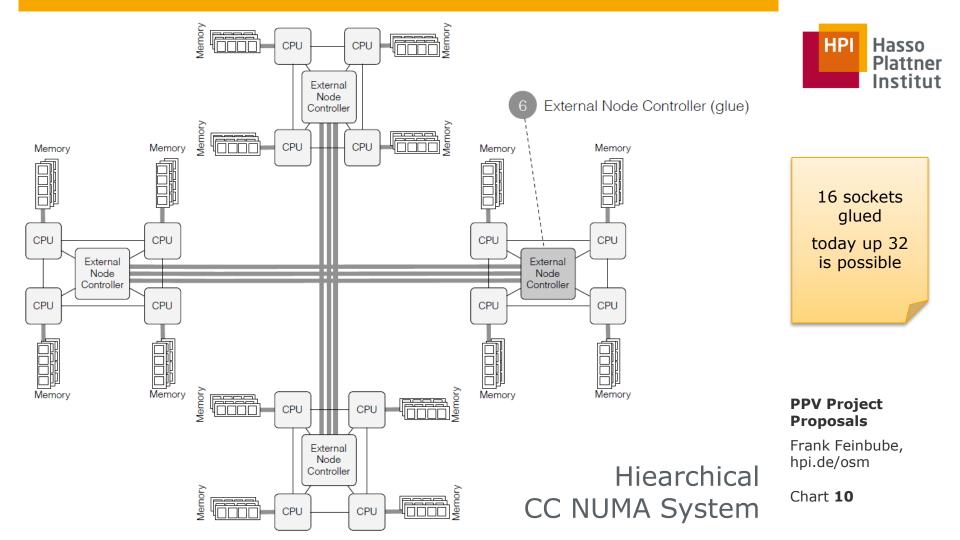



### **Classical NUMA-System**



**PPV Project Proposals** 

Frank Feinbube, hpi.de/osm






8 sockets glued

### PPV Project Proposals

Frank Feinbube, hpi.de/osm



## Core Research Question: Best practices for hierarchical NUMA environments?

**UMA** 

OpenMP

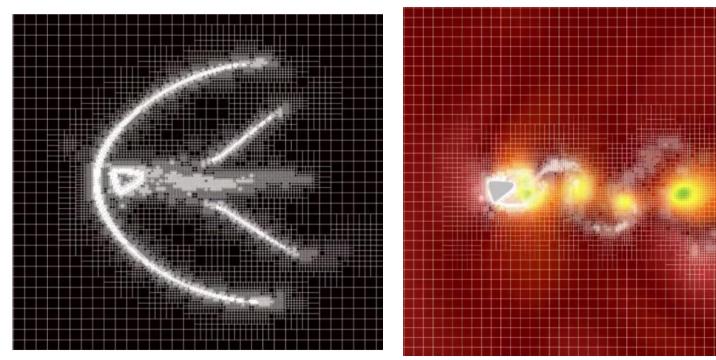
- To date: best practices and optimization techniques focus on either
  - Parallel Shared Memory Systems (UMA; e.g. with OpenMP)
  - Or Distributed Message-Passing Systems (e.g. with MPI)
- Pure NUMA optimizations have been mostly neglected, because
  - The performance penalties were moderate
  - There is no intuitive programming metaphor for NUMA so far (in contrast to UMA and Distributed scenarios)
  - UMA and Distributed allow for portable performance

- The emergence of hierarchical cachecoherent NUMA systems requires:
  - Novel Portable Optimization Techniques and Best Practices
  - NUMA-aware Tools, Libraries, Programming Models, Patterns, Distribution Schemes, ...
  - Considering Topology and Hardware Characteristics



### PPV Project Proposals

Frank Feinbube, hpi.de/osm



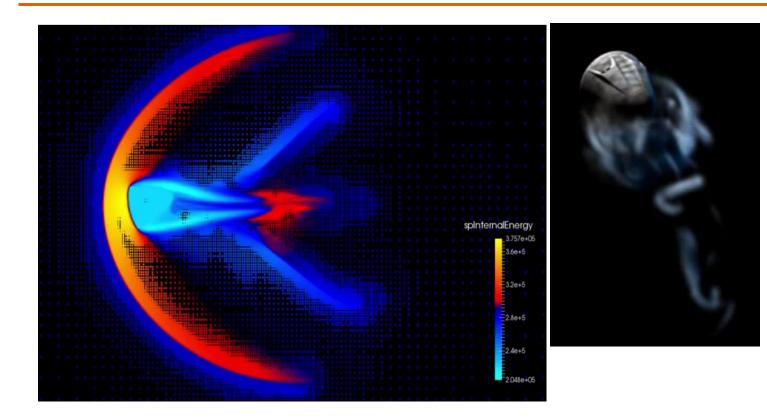



## **GPU** Computing

## GPU Computing + Dynamic Parallelism






### PPV Project Proposals

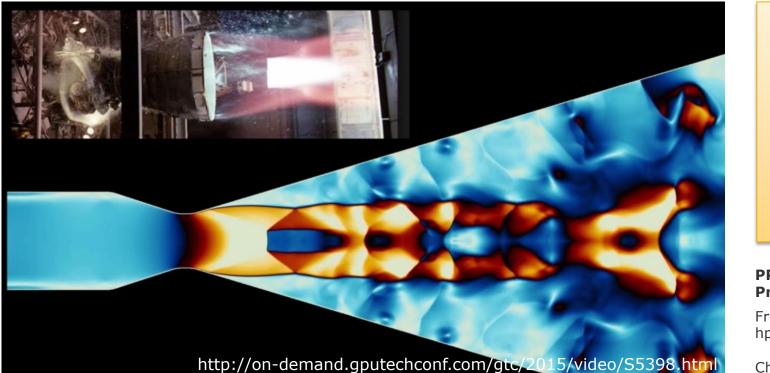
Frank Feinbube, hpi.de/osm

http://on-demand.gputechconf.com/gtc/2015/video/S5398.html



### = Science at the next Level




"[...] this would be 300 million grid nodes. We did this on a single GPU."

### PPV Project Proposals

Frank Feinbube, hpi.de/osm







Our FSOC K20 + Phi machine would have been the 3rd most powerful computer in the world in 2004

### **PPV Project Proposals**

Frank Feinbube, hpi.de/osm



## Intel Xeon Phi

## Xeon Phi Hardware



# 60 Cores based on P54C architecture (Pentium)

- > 1.0 Ghz clock speed; 64bit based x86 instructions + SIMD
- 1x 25 MB L2 Cache (=512KB per core) + 64 KB L1
  - Cache coherency
- 8 (to 32) GB of DDR5
- 4 Hardware Threads per Core (240 logical cores)
  - No Multicore / Hyper-Threading
  - $\hfill\square$  Think graphics-card hardware threads
  - Only one runs = memory latency hiding
  - Switched after each instruction!!
    - -> use 120 or 240 threads for the 60 cores

- 512 bit wide VPU with new ISA KCi
  - No support for MMX, SSE or AVX
  - Could handle 8 doule precision floats/16 single precision floats
  - Always structured in vectors with 16 elements



### PPV Project Proposals

Frank Feinbube, hpi.de/osm



## Operating System: minimal, embedded Linux

| 🥵 johannes.henning@tesla: ~ |                                    |                |                                                   |                         |                 |
|-----------------------------|------------------------------------|----------------|---------------------------------------------------|-------------------------|-----------------|
| [root@tesla-mic0 /r         | oot]# ls /bin/                     |                | ·                                                 |                         |                 |
| IMB-MPI1                    | fdflush                            | mknod          | powertop                                          |                         |                 |
| addgroup                    | fgrep                              | mktemp         | nrintenv                                          |                         | Linux           |
| adduser                     | fsync                              |                |                                                   |                         | Standard        |
| apr-1-config                | ganglia tesla:/ # s                |                |                                                   |                         | Stanuaru        |
| ash                         |                                    | -mic0 /root]#  | cat /proc/cpuinfo   tail -n 22                    |                         | Base (LSB)      |
| base64                      | gmetric model                      |                |                                                   |                         | Dase (LSD)      |
| ousybox                     | grep model name                    | : 0b/01        |                                                   |                         | Core libraries. |
| ousybox.setuidroot          | gstat stepping                     |                |                                                   |                         |                 |
| cat                         | gunzip cpu MHz                     | : 1052.63      | 0                                                 |                         |                 |
| catv                        | gzip cache size                    | : 512 KB       |                                                   |                         | Busybox         |
| chattr                      | hostnam physical id                |                |                                                   |                         | · ·             |
| chgrp                       | hush siblings                      | : 240          |                                                   |                         | minimal shell   |
| chmod                       | ionice <sup>core</sup> id          | : 59           |                                                   |                         |                 |
| chown                       | iostat <sup>cpu cores</sup>        | : 60           |                                                   |                         | environment     |
| coi daemon                  | ip apicid                          | : 239          |                                                   |                         |                 |
| cp _                        | ipaddr initial api                 |                |                                                   |                         |                 |
| cpio                        | ipcalc <sup>fpu</sup>              | : yes          |                                                   |                         | <b></b>         |
| cpuinfo                     | iplink fpu_excepti                 |                |                                                   |                         |                 |
| cttyhack                    | iproute cpuid level                |                |                                                   |                         |                 |
| date                        | iprule <sup>wp</sup>               | : yes          |                                                   |                         |                 |
| bb                          | iptunne flags                      |                | e de pse tsc msr pae mce cx8 apic mtrr mca pat f: | xsr ht syscall nx 1m re |                 |
| delgroup                    | kill p_good nopl                   | : 2114.13      |                                                   |                         |                 |
| deluser                     | limits bogomips<br>clflush siz     |                |                                                   |                         |                 |
| df                          | 1 1 1 1 2 3 2                      |                |                                                   |                         |                 |
| dmesg                       | linux64 cache_align<br>address siz |                | physical, 48 bits virtual                         |                         | PPV Project     |
| dnsdomainname               | in i                               |                | physical, 40 bits virtual                         |                         | Proposals       |
| dumpkmap                    | login power manag                  | ement:         |                                                   |                         | Fioposais       |
| echo                        | ls [root@togla                     | -mic0 /root]#  |                                                   |                         |                 |
| ed                          | lsattr                             | -11100 /1000]# |                                                   |                         | Frank Feinbube, |
| egrep                       | lzop                               |                |                                                   |                         | hpi.de/osm      |
| false                       | mkdir                              |                |                                                   |                         | nphue/usin      |
|                             |                                    |                |                                                   |                         |                 |

First step for portable applications: Discovering and assessing the NUMA topology



### **Objectives for portable performance:**

- Identify Application Bottlenecks
  - At development time
  - To (Re-)Design algorithm accordingly
- Acquiring Topology Information
   At application starting time
  - To create and map threads and data accordingly

### State-of-the-Art NUMA Tools:

- ACPI distance values
- Linux sysfs
- Libnuma: numactl
- Hwloc Istopo
- MemAxes
- Linux Perf
- numatop
- Intel Performance Counter Monitor
- Intel Vtune
- MLC (Memory Latency Checker)

### PPV Project Proposals

Frank Feinbube, hpi.de/osm

## Linux sysfs



- Nodes (sockets)
- ACPI distance values of nodes and CPUs
- Mapping of CPUs to nodes
- Cache sizes, levels, associativity, cacheline size
- Cache sharing of CPUs

Restrictions:

Linux only

| • • •                              | Macintosh HD -             | - ssh - 88×23                                         |
|------------------------------------|----------------------------|-------------------------------------------------------|
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | cpu0> ls                                              |
| ache cpufreq cras                  | h_notes node0 thermal_t    | hrottle topology                                      |
| ix.Eberhardt@side                  | :/sys/devices/system/cpu/  | cpu0> cd topology/                                    |
| elix.Eberhardt@side<br>-14,240-254 | :/sys/devices/system/cpu/  | cpu0/topology> cat core_siblings_list                 |
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | cpu0/topology> cd/node0/                              |
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | cpu0/node0> cat distance                              |
| 0 16 19 16 50 50 50                | 50 50 50 50 50 50 50 50 50 | 50                                                    |
| Felix.Eberhardt@side               | :/sys/devices/system/cpu/  | cpu0/node0> cat cpulist                               |
| -14,240-254                        |                            |                                                       |
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | cpu0/node0> cd                                        |
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | cpu0> cd topology/                                    |
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | <pre>cpu0/topology&gt; cat thread_siblings_list</pre> |
| 0,240                              |                            |                                                       |
| Felix.Eberhardt@side               | :/sys/devices/system/cpu/  | cpu0/topology> cd/cache/                              |
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | cpu0/cache> ls                                        |
| index0 index1 inde                 |                            |                                                       |
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | cpu0/cache> cd index0                                 |
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | cpu0/cache/index0> ls                                 |
| oherency_line_size                 | physical_line_partition    | size                                                  |
| evel                               | shared_cpu_list            | type                                                  |
| umber_of_sets                      | shared_cpu_map             | ways_of_associativity                                 |
| elix.Eberhardt@side                | :/sys/devices/system/cpu/  | cpu0/cache/index0>                                    |
|                                    |                            |                                                       |

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm

## Libnuma numactl --hardware



Information provided:

- Nodes (sockets)
- ACPI distance values of nodes and CPUs
- Mapping of CPUs to nodes

Restrictions:

- Linux only
- Available as library to be used in applications to query system devices

| • •   |     |       |      |       |     |     |     | Macir | ntosh | HD - | - ssh | - 8 | 8×23 |     |     |     |     |     |     |     |    |
|-------|-----|-------|------|-------|-----|-----|-----|-------|-------|------|-------|-----|------|-----|-----|-----|-----|-----|-----|-----|----|
| node  | 15  | cpus: | 225  | 226   | 227 | 228 | 229 | 230   | 231   | 232  | 233   | 234 | 235  | 236 | 237 | 238 | 239 | 465 | 466 | 467 | 46 |
| 8 469 | 47  | 0 471 | 472  | 473   | 474 | 475 | 476 | 477   | 478   | 479  |       |     |      |     |     |     |     |     |     |     |    |
| node  | 15  | size: | 753  | 648 I | 1B  |     |     |       |       |      |       |     |      |     |     |     |     |     |     |     |    |
| node  | 15  | free: | 622  | 078   | 1B  |     |     |       |       |      |       |     |      |     |     |     |     |     |     |     |    |
| node  | dis | tance | S:   |       |     |     |     |       |       |      |       |     |      |     |     |     |     |     |     |     |    |
| node  | 0   | 1     | 2    | 3     | 4   | 5   | 6   | 7     | 8     | 9    | 10    | 11  | 12   | 13  | 14  | 15  |     |     |     |     |    |
| 0:    | 10  |       | 19   | 16    | 50  | 50  | 50  | 50    | 50    | 50   | 50    | 50  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 1:    | 16  | 10    | 16   | 19    | 50  | 50  | 50  | 50    | 50    | 50   | 50    | 50  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 2:    | 19  | 16    | 10   | 16    | 50  | 50  | 50  | 50    | 50    | 50   | 50    | 50  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 3:    | 16  | 19    | 16   | 10    | 50  | 50  | 50  | 50    | 50    | 50   | 50    | 50  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 4:    | 50  |       | 50   | 50    | 10  | 16  | 19  | 16    | 50    | 50   | 50    | 50  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 5:    | 50  |       | 50   | 50    | 16  | 10  | 16  | 19    | 50    | 50   | 50    | 50  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 6:    | 50  |       | 50   | 50    | 19  | 16  | 10  | 16    | 50    | 50   | 50    | 50  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 7:    | 50  |       | 50   | 50    | 16  | 19  | 16  | 10    | 50    | 50   | 50    | 50  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 8:    | 50  | 50    | 50   | 50    | 50  | 50  | 50  | 50    | 10    | 16   | 19    | 16  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 9:    | 50  |       | 50   | 50    | 50  | 50  | 50  | 50    | 16    | 10   | 16    | 19  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 10:   | 50  |       | 50   | 50    | 50  | 50  | 50  | 50    | 19    | 16   | 10    | 16  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 11:   | 50  |       | 50   | 50    | 50  | 50  | 50  | 50    | 16    | 19   | 16    | 10  | 50   | 50  | 50  | 50  |     |     |     |     |    |
| 12:   | 50  |       | 50   | 50    | 50  | 50  | 50  | 50    | 50    | 50   | 50    | 50  | 10   | 16  | 19  | 16  |     |     |     |     |    |
| 13:   | 50  |       | 50   | 50    | 50  | 50  | 50  | 50    | 50    | 50   | 50    | 50  | 16   | 10  | 16  | 19  |     |     |     |     |    |
| 14:   | 50  |       | 50   | 50    | 50  | 50  | 50  | 50    | 50    | 50   | 50    | 50  | 19   | 16  | 10  | 16  |     |     |     |     |    |
| 15:   | 50  |       | 50   | 50    | 50  | 50  | 50  | 50    | 50    | 50   | 50    | 50  | 16   | 19  | 16  | 10  |     |     |     |     |    |
| Felix | .Eb | erhar | dt@s | ide:  | ~>  |     |     |       |       |      |       |     |      |     |     |     |     |     |     |     |    |

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm

## Hwloc Istopo

Information provided:

- Nodes (sockets)
- ACPI distance values of nodes and CPUs
- Mapping of CPUs to nodes
- Grouping of nodes according to distance values
- Whole memory hierarchy

Restrictions:

- Several platforms: Windows, Linux, BSD, ...
- Available as library to be used in applications to query system devices

|                        |           |                                |                                | X Istopo                       |                                |                                |                                |                        |
|------------------------|-----------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------|
| /lachine (1177         | 6GB total | )                              |                                |                                |                                |                                |                                |                        |
| Group0                 |           |                                |                                |                                |                                |                                |                                |                        |
| NUMAN                  | de P#0 (7 | 736GB)                         |                                |                                |                                |                                |                                |                        |
| Socket P               | #0        |                                |                                |                                |                                |                                |                                |                        |
| L3 (38                 | MB)       |                                |                                |                                |                                |                                |                                |                        |
| L2 (25                 | 6КВ)      | L2 (256KB)                     | L2 (25                 |
| L1 d (3                | 2КВ)      | L1 d (32KB)                    | L1 d (3                |
| L1i (32                | :КВ)      | L1i (32KB)                     | L1i (3:                |
| Core P<br>PU F<br>PU F |           | Core P#1<br>PU P#1<br>PU P#241 | Core P#2<br>PU P#2<br>PU P#242 | Core P#3<br>PU P#3<br>PU P#243 | Core P#4<br>PU P#4<br>PU P#244 | Core P#5<br>PU P#5<br>PU P#245 | Core P#6<br>PU P#6<br>PU P#246 | Core F<br>PU I<br>PU I |
|                        |           |                                |                                |                                |                                |                                |                                |                        |

### PPV Project Proposals

Frank Feinbube, hpi.de/osm



### MemAxes

Information provided:

- Nice visualization of several nodes and the memory hierarchy
- Able to see the bottleneck or misplacement of threads and data

Restrictions:

- Research prototype
- The data collection part is missing



### PPV Project Proposals

Frank Feinbube, hpi.de/osm

### Linux Perf



Information provided:

- Ability to read processor specific performance counter
- Can collect profile data and compare them to different runs
- Several extensions: memory profiling, cacheto-cache sharing
- Abstraction layer for kernel and hardware events

Restrictions:

Linux only

| • • •                               | 🔜 Macintosh H             | D —  | ssh — 88× | 23                      |
|-------------------------------------|---------------------------|------|-----------|-------------------------|
| Felix.Eberhardt@sid<br>hello world! | de:~> perf stat echo hell | o wo | rld!      |                         |
| Performance counte                  | er stats for 'echo hello  | worl | d!':      |                         |
| 0.668209                            | task-clock                | #    | 0.590     | CPUs utilized           |
| 1                                   | context-switches          | #    | 0.001     | M/sec                   |
| 0                                   | CPU-migrations            | #    | 0.000     | M/sec                   |
| 160                                 | page-faults               | #    | 0.239     | M/sec                   |
| 2126171                             | cycles                    | #    | 3.182     | GHz                     |
| 1717825                             | stalled-cycles-frontend   | #    | 80.79%    | frontend cycles idle    |
| <not counted=""></not>              | stalled-cycles-backend    |      |           |                         |
| 842824                              | instructions              | #    | 0.40      | insns per cycle         |
|                                     |                           | #    | 2.04      | stalled cycles per insn |
| 170968                              | branches                  | #    | 255.860   | M/sec                   |
| 8223                                | branch-misses             | #    | 4.81%     | of all branches         |
| 0.001131902                         | seconds time elapsed      |      |           |                         |
| Felix.Eberhardt@sid                 | de:~>                     |      |           |                         |
|                                     |                           |      |           |                         |

### PPV Project Proposals

Frank Feinbube, hpi.de/osm



### numatop

Information provided:

- Similar to top tool
- Shows NUMA specific metrics
- Uses instruction sampling
- Memory view to find out which memory addresses are accessed frequently by remote nodes
- Ability to collect stacktraces

Restrictions:

- Linux only, Kernel 3.9 or later
- Intel processors only

|                  | 🛃 numator     | o sample         |                |             |               |               | _ 0        | X |      |
|------------------|---------------|------------------|----------------|-------------|---------------|---------------|------------|---|------|
|                  |               | Numa             | TOP v1.0, (C)  | ) 2012 Inte | el Corporatio | n             |            | • |      |
|                  | Monitori      | ng 304 processes | and 428 three  | eads (inter | val: 5.0s)    |               |            |   |      |
|                  | PID           | PROC             | RMA (K)        | LMA (K)     | RMA/LMA       | CPI           | *CPU%      |   |      |
|                  | 7111<br>7113  | numatop          | 33097.5<br>0.2 | 3.7<br>0.5  | 8835.4<br>0.3 | 89.61<br>1.53 | 3.1<br>0.0 |   |      |
|                  | 4510          | irqbalance       | 1.5            | 1.2         | 1.3           | 1.17          | 0.0        |   |      |
|                  | 1289          | kworker/9:1      | 0.0            | 0.0         | 0.8           | 1.22          | 0.0        |   |      |
| 🧬 numatop        | sample        |                  |                |             |               |               | X          |   |      |
|                  | N             | JumaTOP v1.0, (C | c) 2012 Intel  | l Corporat  | ion           |               | ~          |   |      |
|                  |               | s "mgen" (7111)  | (              | F 0-1       |               |               |            |   |      |
| Monitori         | ng the proces | s "mgen" (/111)  | (interval:     | 5.0S)       |               |               |            |   |      |
| NODE             | RPI(K) LF     | I(K) RMA(K)      | LMA (K)        | RMA/LMA     | CPI           | CPU%          |            |   |      |
| 0                | 0.0           | 0.0 0.0          |                | 0.0         |               | 0.0           |            |   |      |
| 1                | 220.2         | 0.0 33088.0      | 3.7            | 8861.3      | 89.61         | 6.2           |            | = |      |
|                  |               |                  |                |             |               |               |            |   |      |
|                  |               |                  |                |             |               |               |            |   |      |
|                  |               |                  |                |             |               |               |            |   |      |
|                  |               |                  |                |             |               |               |            | - |      |
|                  |               |                  |                |             |               |               |            |   |      |
|                  |               |                  |                |             |               |               |            |   | PPV  |
|                  |               |                  |                |             |               |               |            |   |      |
|                  |               |                  |                |             |               |               |            |   | Pro  |
|                  |               |                  |                |             |               |               | =          |   | Frar |
|                  |               |                  |                |             |               |               |            |   |      |
| CRUS - D         | er-node CPU u | tilization       |                |             |               |               |            |   | hpi. |
| $c_{FO_0} = p_0$ | er-noue CFO u | ILIIIZALION      |                |             |               |               |            |   |      |
| Q: Quit;         | H: Home; B:   | Back; R: Refres  | sh; N: Node;   | L: Latenc   | y; C: Call-   | Chain         | ~          |   | Cha  |

PPV Project Proposals

Frank Feinbube, hpi.de/osm



## Intel Performance Counter Monitor

Information provided:

- API for Intel specific performance counters
- Core and Uncore events
- QPI links and memory controller utilization

**Restrictions:** 

- Available on Windows and Linux
- Intel processors only

| ime elapsed: 2 ms                                                          |                                                                                          |                                                                                                                            |                                                                                                                          |                                                                                                              |                                                                                             |                                                                             |                                                                                    |                 |         |           |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|---------|-----------|
| alled sleep function                                                       | for -100                                                                                 | 0 ms                                                                                                                       |                                                                                                                          |                                                                                                              |                                                                                             |                                                                             |                                                                                    |                 |         |           |
| - NODE0 Memory (MB/s)                                                      | : 1                                                                                      | 22.78                                                                                                                      | -   NODE                                                                                                                 | 1 Memory (I                                                                                                  | MB/s):                                                                                      | 96.8                                                                        | 3                                                                                  |                 |         |           |
| - NODE2 Memory (MB/s)                                                      | : 10                                                                                     | 08.48                                                                                                                      | -   NODE                                                                                                                 | 3 Memory (I                                                                                                  | MB/s):                                                                                      | 34.8                                                                        | 8                                                                                  |                 |         |           |
| - NODE4 Memory (MB/s)                                                      | : :                                                                                      | 27.90                                                                                                                      | -ii NODE                                                                                                                 | 5 Memory (I                                                                                                  | MB/s):                                                                                      | 30.3                                                                        | 7                                                                                  |                 |         |           |
| - NODE6 Memory (MB/s)                                                      |                                                                                          | 15.58                                                                                                                      | -II NODE                                                                                                                 | 7 Memory (I                                                                                                  | MB/s):                                                                                      | 22.0                                                                        |                                                                                    |                 |         |           |
| - NODE8 Memory (MB/s)                                                      |                                                                                          |                                                                                                                            |                                                                                                                          |                                                                                                              |                                                                                             |                                                                             | 7                                                                                  |                 |         |           |
| - NODE10 Memory (MB/s                                                      |                                                                                          |                                                                                                                            |                                                                                                                          | E11 Memory                                                                                                   |                                                                                             |                                                                             |                                                                                    |                 |         |           |
| - NODE12 Memory (MB/s                                                      | ).<br>).                                                                                 | 18 72 -                                                                                                                    |                                                                                                                          | E13 Memory                                                                                                   | (MB/s):                                                                                     | 20                                                                          | 38                                                                                 |                 |         |           |
| - NODE12 Memory (MB/s                                                      | · · ·                                                                                    | 20.00                                                                                                                      |                                                                                                                          | E15 Memory                                                                                                   | (MB/c)                                                                                      | 10945                                                                       | 02                                                                                 |                 |         |           |
| - NODE14 Melliol y (MB/S                                                   |                                                                                          |                                                                                                                            | -                                                                                                                        |                                                                                                              | (110/5/:                                                                                    | 19045                                                                       | .02                                                                                |                 |         |           |
|                                                                            |                                                                                          |                                                                                                                            |                                                                                                                          |                                                                                                              | 21                                                                                          |                                                                             |                                                                                    |                 |         |           |
|                                                                            |                                                                                          |                                                                                                                            |                                                                                                                          | ): 10757.                                                                                                    |                                                                                             |                                                                             |                                                                                    |                 |         |           |
|                                                                            |                                                                                          |                                                                                                                            |                                                                                                                          | ): 9687.                                                                                                     |                                                                                             |                                                                             |                                                                                    |                 |         |           |
| – Sys                                                                      | tem Memo                                                                                 | ry Throug                                                                                                                  |                                                                                                                          | ): 20444.                                                                                                    |                                                                                             |                                                                             |                                                                                    |                 |         |           |
|                                                                            |                                                                                          |                                                                                                                            |                                                                                                                          |                                                                                                              |                                                                                             |                                                                             |                                                                                    |                 |         |           |
|                                                                            |                                                                                          | traffic e<br>PI links<br>QPI0                                                                                              | stimation                                                                                                                | Macintosh<br>in bytes<br>QPI2                                                                                |                                                                                             | non-dat                                                                     | a traff:<br>QPI2                                                                   | .c outo         | going f | rom CPU/  |
|                                                                            |                                                                                          | PI links                                                                                                                   | estimation                                                                                                               | in bytes                                                                                                     | (data and                                                                                   | non-dat                                                                     |                                                                                    | .c outç         | going 1 | rom CPU/  |
| cket                                                                       | through (                                                                                | QPI links<br>QPI0                                                                                                          | estimation<br>;):<br>QPI1                                                                                                | QPI2                                                                                                         | (data and<br>  QPI0                                                                         | non-dat<br>QPI1                                                             | QP12                                                                               | .c out <u>c</u> | going f | rom CPU/  |
| cket                                                                       | through (                                                                                | PI links<br>QPI0<br>                                                                                                       | QPI1<br>29 M                                                                                                             | QPI2<br>30 M                                                                                                 | (data and<br>  QPI0<br>                                                                     | onn-dat<br>QPI1<br>0%                                                       | QPI2<br>                                                                           | .c out <u>c</u> | going f | rom CPU/  |
| cket                                                                       | through (                                                                                | QPI links<br>QPI0                                                                                                          | estimation<br>;):<br>QPI1                                                                                                | QPI2                                                                                                         | (data and<br>  QPI0                                                                         | non-dat<br>QPI1                                                             | QP12                                                                               | .c outo         | going f | rom CPU/  |
| cket<br><br>SKT<br>SKT                                                     | through (<br><br>_<br>_<br>1                                                             | QPI links<br>QPI0<br><br>114 M<br>46 M                                                                                     | QPI1<br>29 M<br>53 M                                                                                                     | QPI2<br>30 M<br>24 M                                                                                         | (data and<br>  QPI0<br>                                                                     | 0%<br>0%                                                                    | QPI2<br><br>0%<br>0%                                                               | .c out <u>c</u> | going f | rom CPU/  |
| cket<br><br>SKT<br>SKT<br>SKT                                              | through (<br>                                                                            | QPI links<br>QPI0<br><br>114 M<br>46 M<br>47 M                                                                             | QPI1<br>29 M<br>53 M<br>36 M                                                                                             | QPI2<br>30 M<br>24 M<br>27 M                                                                                 | (data and<br>  QPI0<br>                                                                     | non-dat<br>QPI1<br>0%<br>0%<br>0%                                           | QPI2<br><br>0%<br>0%<br>0%                                                         | .c outç         | going f | rom CPU/  |
| cket<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT                             | through (<br>                                                                            | 0PI links<br>0PI0<br>114 M<br>46 M<br>47 M<br>33 M<br>61 M<br>62 M                                                         | estimation<br>):<br>QPI1<br>29 M<br>53 M<br>36 M<br>35 M<br>35 M<br>22 M                                                 | 0PI2<br>30 M<br>24 M<br>27 M<br>44 M<br>22 M<br>15 M                                                         | (data and<br>  QPI0<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%                                 | 0%<br>0%<br>0%<br>0%<br>0%<br>0%                                            | QPI2<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                                           | .c outç         | going f | rom CPU/  |
| cket<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT                      | through (<br>                                                                            | 0PI links<br>0PI0<br>114 M<br>46 M<br>47 M<br>33 M<br>61 M<br>62 M<br>46 M                                                 | 29 M<br>53 M<br>36 M<br>35 M<br>35 M<br>15 M<br>15 M<br>16 M                                                             | QPI2<br>30 M<br>24 M<br>27 M<br>44 M<br>22 M<br>15 M<br>19 M                                                 | (data and<br>  QPI0<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%                         | 0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                                | QPI2<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                                           | .c outç         | going 1 | rom CPU/  |
| cket<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT                      | through (<br>                                                                            | QPI links<br>QPI0<br>114 M<br>46 M<br>47 M<br>33 M<br>61 M<br>62 M<br>46 M<br>19 M                                         | estimation<br>):<br>QPI1<br>29 M<br>53 M<br>35 M<br>35 M<br>15 M<br>22 M<br>16 M<br>16 M                                 | 0PI2<br>30 M<br>24 M<br>27 M<br>44 M<br>22 M<br>15 M<br>19 M<br>48 M                                         | (data and<br>  QPI0<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%                         | 0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                          | QPI2<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                                     | .c out <u>c</u> | going 1 | rom CPU/  |
| cket<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT               | through (<br><br>-<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                          | 0PI links<br>0PI0<br>114 M<br>46 M<br>47 M<br>33 M<br>61 M<br>62 M<br>46 M<br>46 M<br>19 M<br>89 M                         | stimation<br>):<br>QPI1<br>29 M<br>53 M<br>36 M<br>35 M<br>35 M<br>15 M<br>22 M<br>16 M<br>16 M<br>17 M                  | 0PI2<br>30 M<br>24 M<br>27 M<br>44 M<br>27 M<br>15 M<br>15 M<br>19 M<br>48 M<br>22 M                         | (data and<br>  QPI0<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%                 | non-dat<br>QPI1<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%             | QPI2<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                               | .c out <u>c</u> | going 1 | rom CPU/  |
| cket<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT               | through (<br>                                                                            | QPI links<br>QPI0<br>114 M<br>46 M<br>47 M<br>33 M<br>61 M<br>62 M<br>46 M<br>19 M<br>89 M<br>47 M                         | 29 M<br>36 M<br>36 M<br>36 M<br>35 M<br>15 M<br>12 M<br>16 M<br>16 M<br>16 M<br>17 M<br>37 M                             | 0PI2<br>30 M<br>24 M<br>27 M<br>44 M<br>22 M<br>15 M<br>19 M<br>48 M<br>22 M<br>21 M                         | (data and<br>  QPI0<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%         | non-dat<br>QPI1<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%             | QPI2<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                   | .c out <u>c</u> | going 1 | rom CPU/  |
| cket<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT | through (<br>                                                                            | QPI links<br>QPI0<br>114 M<br>46 M<br>47 M<br>33 M<br>61 M<br>62 M<br>46 M<br>19 M<br>89 M<br>89 M<br>35 M                 | cstimation<br>():<br>29 M<br>53 M<br>36 M<br>35 M<br>35 M<br>22 M<br>16 M<br>16 M<br>17 M<br>37 M<br>29 M                | QPI2<br>30 M<br>24 M<br>27 M<br>44 M<br>22 M<br>19 M<br>48 M<br>22 M<br>21 M<br>21 M<br>21 M                 | (data and<br>  QPI0<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0          | non-dat<br>QPI1<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%             | QPI2<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                   | .c outç         | going 1 | rom CPU/  |
| cket<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT               | through (<br>                                                                            | QPI links<br>QPI0<br>114 M<br>46 M<br>47 M<br>33 M<br>61 M<br>62 M<br>46 M<br>19 M<br>89 M<br>47 M                         | 29 M<br>36 M<br>36 M<br>36 M<br>35 M<br>15 M<br>12 M<br>16 M<br>16 M<br>16 M<br>17 M<br>37 M                             | 0PI2<br>30 M<br>24 M<br>27 M<br>44 M<br>22 M<br>15 M<br>19 M<br>48 M<br>22 M<br>21 M                         | (data and<br>  QPI0<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%         | non-dat<br>QPI1<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%             | QPI2<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                   | .c outç         | going 1 | rom CPU/  |
| Cket<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT | through (                                                                                | QPI links<br>QPI0<br>114 M<br>46 M<br>47 M<br>33 M<br>61 M<br>62 M<br>46 M<br>46 M<br>19 M<br>89 M<br>47 M<br>35 M<br>28 M | estimation<br>):<br>QPI1<br>29 M<br>53 M<br>36 M<br>35 M<br>15 M<br>15 M<br>16 M<br>16 M<br>17 M<br>37 M<br>29 M<br>26 M | 0PI2<br>30 M<br>24 M<br>27 M<br>44 M<br>22 M<br>15 M<br>19 M<br>48 M<br>21 M<br>21 M<br>22 M<br>21 M<br>35 M | (data and<br>  QPI0<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0% | non-dat<br>QPI1<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%       | QPI2<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%       | .c outç         | going 1 | 'rom CPU/ |
| cket<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT<br>SKT | through (<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>10<br>11<br>11<br>12 | OPI links<br>OPI0<br>114 M<br>46 M<br>47 M<br>33 M<br>61 M<br>62 M<br>46 M<br>19 M<br>89 M<br>47 M<br>35 M<br>28 M<br>28 M | stimation<br>):<br>QPI1<br>29 M<br>53 M<br>36 M<br>35 M<br>35 M<br>22 M<br>16 M<br>16 M<br>17 M<br>29 M<br>26 M<br>17 M  | 0PI2<br>30 M<br>24 M<br>27 M<br>44 M<br>22 M<br>15 M<br>19 M<br>48 M<br>22 M<br>21 M<br>22 M<br>35 M<br>22 M | (data and<br>  QPI0<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0%<br>  0% | non-dat<br>QPI1<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0% | QPI2<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0% | .c outç         | going 1 | 'rom CPU/ |

#### **PPV Project Proposals**

Frank Feinbube, hpi.de/osm

### Memory Latency Checker: mlc

Information provided:

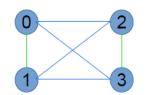
- Latency and Bandwidth measurements for various Read / Write Scenarios
- Measures caching performance as well
- Can modify prefetcher settings

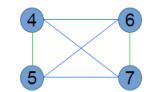
Restrictions:

- Available on Windows and Linux
- Intel processors only

| Idle | late | ency  |       |       |       |       |       |       |       |
|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Soc  |      | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|      | 0    | 37.30 | 49.90 | 74.70 | 73.50 | 84.40 | 82.60 | 80.30 | 82.00 |
|      | 1    | 49.40 | 36.30 | 73.80 | 76.90 | 85.00 | 82.30 | 84.40 | 86.10 |
|      | 2    | 75.00 | 75.60 | 35.00 | 46.40 | 75.30 | 75.40 | 78.10 | 81.80 |
|      | 3    | 69.60 | 67.60 | 47.30 | 35.10 | 83.50 | 81.70 | 78.20 | 81.50 |
|      | 4    | 77.10 | 78.60 | 77.50 | 78.90 | 34.80 | 48.90 | 70.00 | 75.30 |
|      | 5    | 79.80 | 76.50 | 79.80 | 80.90 | 46.20 | 35.10 | 69.20 | 69.80 |
|      | 6    | 75.70 | 74.10 | 80.00 | 77.10 | 67.60 | 67.80 | 35.10 | 46.50 |
|      | 7    | 83.70 | 84.00 | 84.00 | 82.70 | 69.90 | 70.30 | 47.40 | 34.90 |

HPI Hasso Plattner Institut


PPV Project Proposals


Frank Feinbube, hpi.de/osm

### mlc vs ACPI

### ACPI: SLIT

| []   |      |      |    |    |    |    |    |    |
|------|------|------|----|----|----|----|----|----|
| node | dist | ance | s: |    |    |    |    |    |
| node | 0    | 1    | 2  | 3  | 4  | 5  | 6  | 7  |
| 0:   | 10   | 12   | 17 | 17 | 19 | 19 | 19 | 19 |
| 1:   | 12   | 10   | 17 | 17 | 19 | 19 | 19 | 19 |
| 2:   | 17   | 17   | 10 | 12 | 19 | 19 | 19 | 19 |
| 3:   | 17   | 17   | 12 | 10 | 19 | 19 | 19 | 19 |
| 4:   | 19   | 19   | 19 | 19 | 10 | 12 | 17 | 17 |
| 5:   | 19   | 19   | 19 | 19 | 12 | 10 | 17 | 17 |
| 6:   | 19   | 19   | 19 | 19 | 17 | 17 | 10 | 12 |
| 7:   | 19   | 19   | 19 | 19 | 17 | 17 | 12 | 10 |





| Idle late | ency  |       |       |       |       |       |       |       |  |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Soc       | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     |  |
| 0         | 37.30 | 49.90 | 74.70 | 73.50 | 84.40 | 82.60 | 80.30 | 82.00 |  |
| 1         | 49.40 | 36.30 | 73.80 | 76.90 | 85.00 | 82.30 | 84.40 | 86.10 |  |
| 2         | 75.00 | 75.60 | 35.00 | 46.40 | 75.30 | 75.40 | 78.10 | 81.80 |  |
| 3         | 69.60 | 67.60 | 47.30 | 35.10 | 83.50 | 81.70 | 78.20 | 81.50 |  |
| 4         | 77.10 | 78.60 | 77.50 | 78.90 | 34.80 | 48.90 | 70.00 | 75.30 |  |
| 5         | 79.80 | 76.50 | 79.80 | 80.90 | 46.20 | 35.10 | 69.20 | 69.80 |  |
| 6         | 75.70 | 74.10 | 80.00 | 77.10 | 67.60 | 67.80 | 35.10 | 46.50 |  |
| 7         | 83.70 | 84.00 | 84.00 | 82.70 | 69.90 | 70.30 | 47.40 | 34.90 |  |
|           |       |       |       |       |       |       |       |       |  |

Normalized latency

10

11.1

22.7

25.5

**ACPI: SLIT** 

10

12

17

19



A hint, but not very accurate; Weird effects for larger machines

| PPV  | Project |
|------|---------|
| Prop | osals   |

Frank Feinbube, hpi.de/osm

## State-of-the-Art NUMA Tools by objective



- Acquiring Topology Information
   ACPI distance values
  - Linux sysfs
  - Libnuma: numactl
  - Hwloc Istopo
  - MemAxes
  - MLC (Memory Latency Checker)

- Identify Application Bottlenecks
  - Linux Perf
  - numatop
  - Intel Performance Counter Monitor
  - Intel Vtune

PPV Project Proposals

Frank Feinbube, hpi.de/osm



### One tool to rule them all

## Omnitool

...



Idea: Performance Engineer - 1:n tools -> 1:1 Tools 1:n Plugins

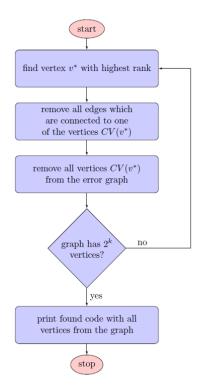
- Generic profiling tool with advanced visualization capabilities
- Use database as backend to store all results from different runs
  - □ Compare different runs, soucre code annotations, collect stacktraces, ...
- What information can be derived from the data provided by the tools?
- How can it be accumulated, digested, represented?
- How can it be visualized?
- How can workload be characterized?
- Can performance be predicted?
- What are the interesting metrics?

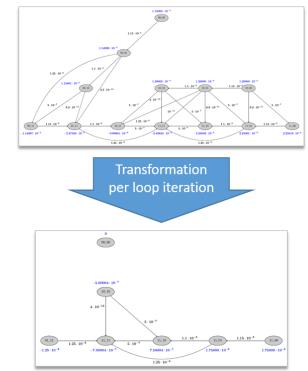
PPV Project Proposals

Frank Feinbube, hpi.de/osm



## Algorithm Optimizations





## EDC Graph Search

## Overview: EDC Graph Search Algorithm



- Graph-based algorithm used to derive error detection codes from error models
- Performance bottleneck is a maximum search in the graph
- Our straight forward UMA parallelization shows close to ideal speedups in a unified memory scenario
- And demonstrates severe performance degradations of NUMA





Represents Performance Bottlenecks #9 and #12 in Berkeley Taxonomy

### PPV Project Proposals

Frank Feinbube, hpi.de/osm

## Bottleneck: select\_codeword



```
int select_codeword()
```

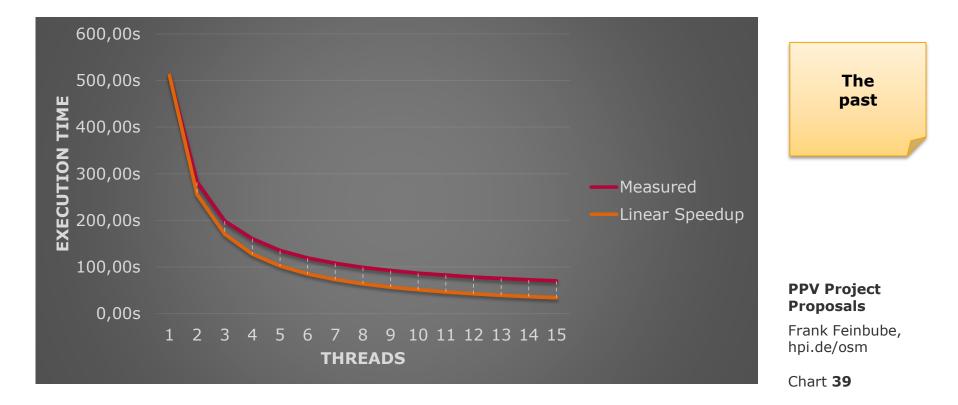
```
long long int best, i;
double best_rank, rank;
```

```
best = -1;
best_rank = -1;
```

```
for (i = 0; i<vertices; i++) {
    rank = get_rank(i);
    if (rank > best_rank) {
        best = i;
        best_rank = rank;
    }
}
return best;
```

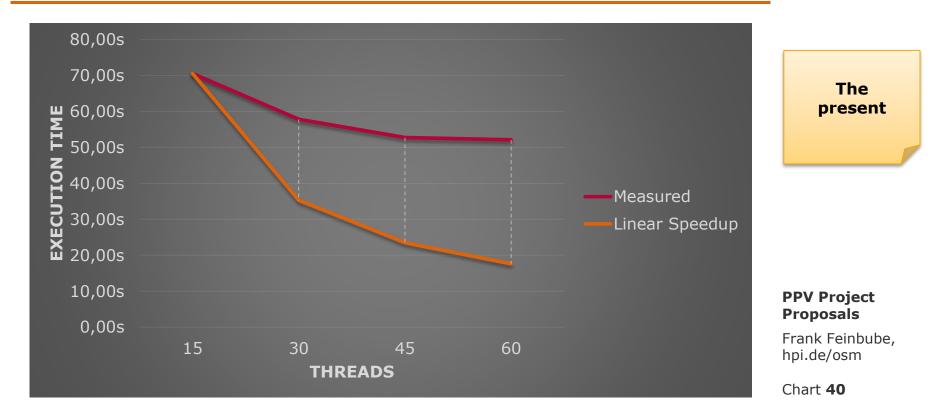
- Looking for a maximum
  - $\Box$  = Typical reduction operation
- Characteristics
  - Commutative, associative
  - Input-Array is not changed
- Special:
  - Looking for an index, comparing to a value
- Approach
  - Parallelization of the loop

### PPV Project Proposals


Frank Feinbube, hpi.de/osm

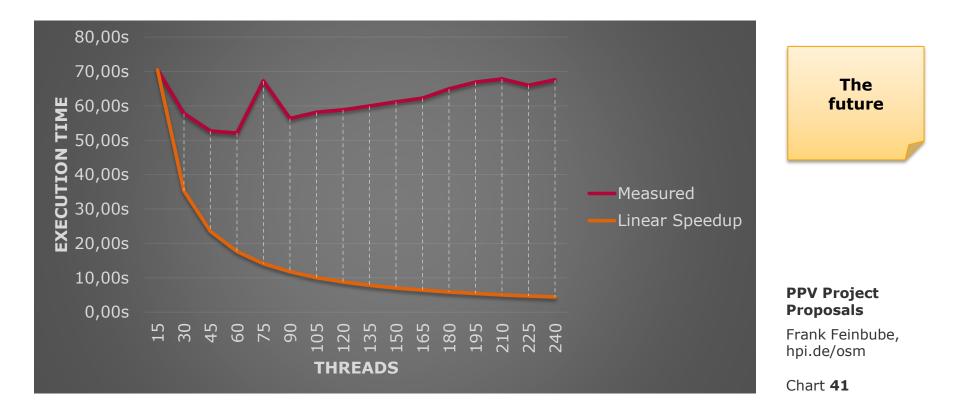
```
int select codeword()

Straight-forward UMA
                                                        long long int best, i;
                                                        double best rank, rank;
parallelization with OpenMP
                                                        double local_best, local_best_rank;
                                                        best
                                                               = -1;
                                                        best rank = -1;
int select codeword()
                                                    #pragma omp parallel private(rank, local_best, local_best_rank, i)
                    Local variables (copies)
     long long j
                                                            local best = -1;
     double best rank, rank;
                                                            local best rank = -1;
     best = -1
                                                    #pragma omp for schedule(guided)
                         Parallel for loop
     best_rank
                                                            for (i = 0; i<vertices; i++) {</pre>
                                                               rank = get rank(i);
                                                               if (rank > local best rank) {
     for (i = 0; i<vertices; i++) {</pre>
                                                                   local best = i;
          rank = get_rank(i);
                                                                   local best rank = rank;
          if (rank > best_rank) {
              best = i:
              bes Safe creation of the result
                                                    #pragma omp critical
                                                            if (local best rank > best rank) {
                                                               best = local best;
                                                               best rank = local best rank;
     return best;
                                                        return best;
```


Single-Processor execution times: We achieve close-to optimal speedup






Multi-Processor execution times: Speedup degradations with each additional processor





# Multi-Blade execution times: Using more blades decreases the performance





Conclusion: Case Study #1

## Lessons Learned:

- Hierarchical cache-coherent NUMA systems can become severe performance bottlenecks for naive UMA parallelizations
- Distributed execution performance is expected to experience even stronger performance degradations due to the bottleneck
- Especially problematic for Graphics Models and Graph Traversal Algorithms
  - Due to the strong interdependence and indirections

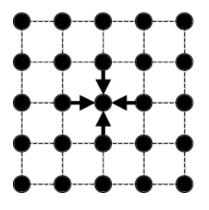
## **Next Steps:**

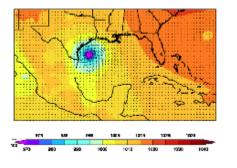
- Explore and generalizable algorithm redesign approaches to identify and exploit localities of clustered sub-graphs:
  - Multithreaded scaling is limited because of dependencies of different iterations
  - Only intra parallelization
  - Measure execution with respect to data and thread placement

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm







# Speeded Up Robust Features

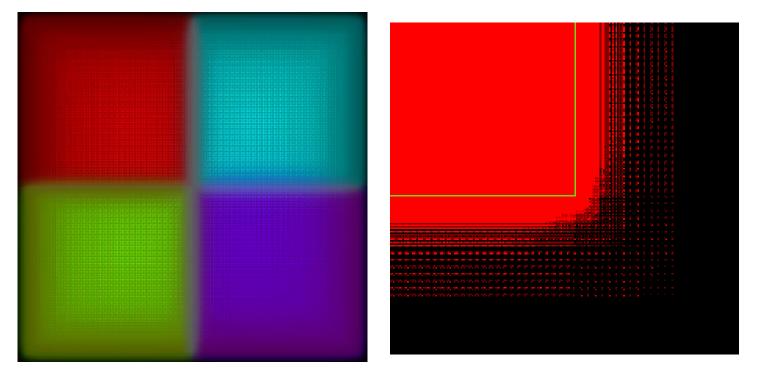


# Speeded Up Robust Features (SURF) Algorithm

- Data: a regular multidimensional grid; access is regular and statically determinable (strided)
- Computation: sequence of grid updates (all points are updated using values from a small neighborhood); updates are logically concurrent
- In practice implemented as sequential sweep through computation domain (in place or two grid versions)
- Uniprocessor Mapping: highly vectorizable, points can be visited in any order
  - □ Spatial locality to use of long cache lines
  - □ Temporal locality to allow cache reuse (small grids)
- Parallel Mapping: subgrid per processor
  - Communication and synchronization for boundaries (=ghost cells, surface to volume ratio important)
  - Latency hiding: increased number of overhead zones and exchanging more data less frequently






Represents Performance Bottlenecks #3 and #5 in Berkeley Taxonomy

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm

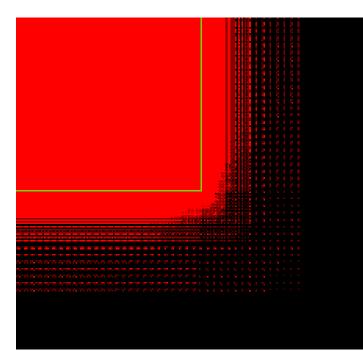
# Memory access pattern for SURF





#### PPV Project Proposals

Frank Feinbube, hpi.de/osm


# The golden ratio

## **Lessons Learned:**

- Perfect example for NUMA
  - Too large for UMA (huge images from astronomy, maps, medical systems, ...)
  - Huge overheads with Distributed approach

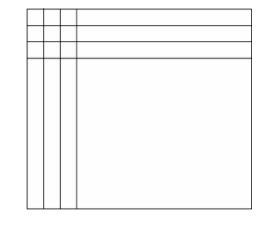
## Next Steps:

- Study the golden ratio
- Develop a cost model
- Generalize





#### PPV Project Proposals


Frank Feinbube, hpi.de/osm



# Matrix-Matrix-Multiplications

# Case Study #2: Matrix Multplications

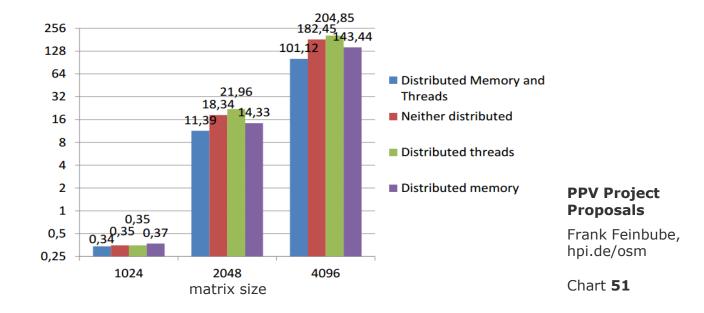
Classic <u>Vector and Matrix operations</u>: VxV, MxV, MxM



Represents Performance Bottleneck #1 in Berkeley Taxonomy: "Dense Linear Algebra"

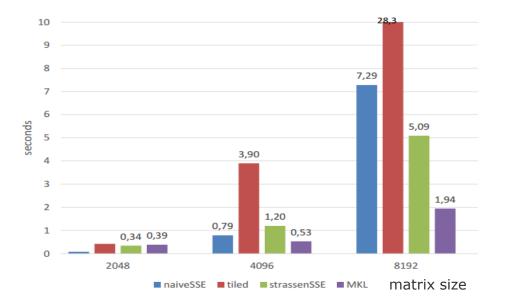
- **Data layout**: continuous array
- **Computation**: on elements, rows, columns or matrix blocks
- Uniprocessor Mapping: block algorithms to exploit cache
- Parallel Mapping:
  - □ **Issues**: memory hierarchy, data distribution for load balancing critical
  - Best: 2D block cyclic distributions and computation/communication overlap

PPV Project Proposals


Frank Feinbube, hpi.de/osm



Execution time of thread and memory placements on an 8-node NUMA system with 128




- Hardware is highly optimized for algorithm like this: caching, prefetching,...
- Thus the penalty for ignoring NUMA is only factor 1.5x to 2x



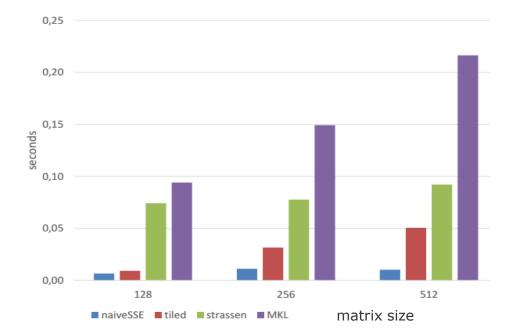
Execution time of naive, SSE-based, Strassen, and MKL matrix multiplications for larger matrices.

- Intel provides highly optimized implementations in the Math Kernal Library (MKL)
- MxM implementation is a collection of algorithms -> the best is selected



#### PPV Project Proposals

HPI


Hasso Plattner

Institut

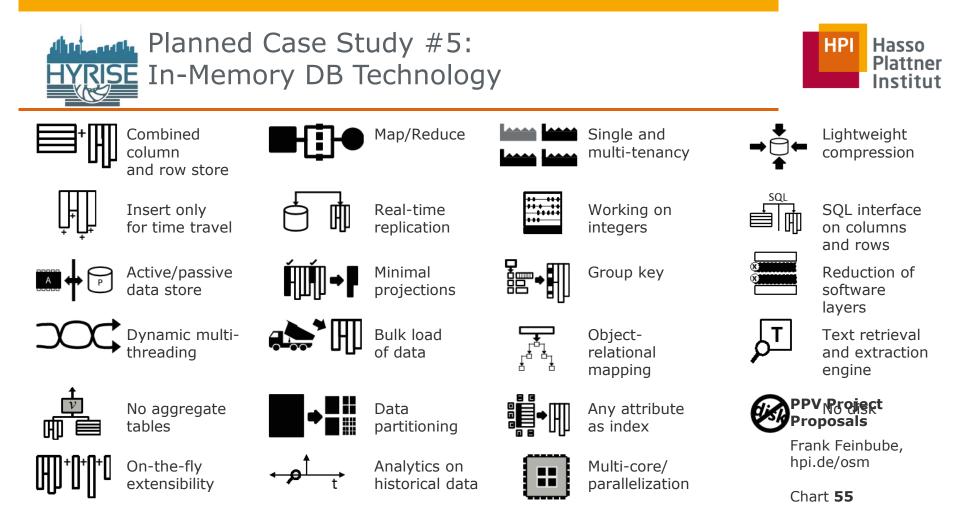
Frank Feinbube, hpi.de/osm

Execution time of naive, SSE-based, Strassen, and MKL matrix multiplications for small matrices.





## Lessons Learned:


With hierarchical NUMA there is room for improvement everywhere

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm



## HYRISE



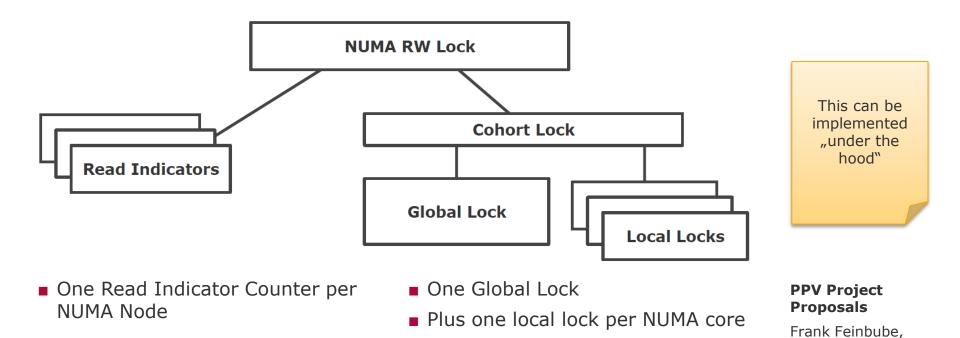


## Ideas

- Collect benchmarks with different workload characteristics
- Measure execution of workloads
- Review hotspots and bad placement of threads and data
- Extend memory allocator, thread scheduler

PPV Project Proposals

Frank Feinbube, hpi.de/osm




# Feature Benchmarks / Experiments



# Reader/Writer Locks

NUMA-aware Reader/Writer Locks



```
HPI Hasso
Plattner
Institut
```

Chart **59** 

hpi.de/osm



"Perf mem rec" for Pthread RW Lock

| San | nples: | 64K of event | <pre>'cpu/mem-loads/pp', Event count (approx.): 1322361</pre> |
|-----|--------|--------------|---------------------------------------------------------------|
| 52  | 2,27%  | 58183        | L1 hit                                                        |
| 18  | 3,35%  | 1969         | LFB hit                                                       |
| 10  | 0,80%  | 787          | L3 miss                                                       |
| 10  | 0,02%  | 2362         | L2 hit                                                        |
| 5   | 5,38%  | 511          | L3 hit                                                        |
| 2   | 2,06%  | 86           | Remote Cache (1 hop) hit                                      |
| 1   | L,01%  | 555          | Uncached hit                                                  |
| 0   | 0,10%  | 3            | Remote RAM (1 hop) hit                                        |

Execution time: 9.097s

PPV Project Proposals

Frank Feinbube, hpi.de/osm



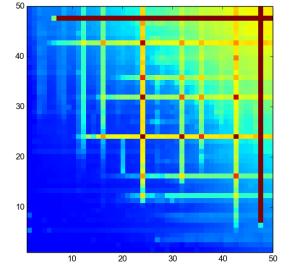
"Perf mem rec" for NUMA RW Lock with CK

| Samples: | 89K of event | <pre>'cpu/mem-loads/pp', Event count (approx.): 942862</pre> |
|----------|--------------|--------------------------------------------------------------|
| 80,00%   | 88295        | L1 hit                                                       |
| 9,17%    | 524          | LFB hit                                                      |
| 7,35%    | 699          | L2 hit                                                       |
| 2,33%    | 141          | L3 miss                                                      |
| 0,82%    | 101          | L3 hit                                                       |
| 0,32%    | 181          | Uncached hit                                                 |
|          |              |                                                              |

Execution time: 7.783s (85.6%)

PPV Project Proposals

Frank Feinbube, hpi.de/osm




# SSE Anomalies + Prefetching

Performance Anomalies for the Gaussian Blur: Non-Vectorized version, 15 threads, single socket

- Evaluation of input images ranging from 1000x1000 pixels to 50000x50000 pixels
- Observation (example):
  - □ 11999x11999: good performance
  - □ 12000x12000: 5 to 6 times slower!
  - 12001x12001: good performance
- Massive cache misses on store operations occur for particular image sizes resulting in enormous performance breakdown (bars in the heatmap)
- This anomaly occurred for various stencil sizes (we evaluated 9x9 to 21x21)





Bars: enormous **abrupt** performance breakdowns

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm

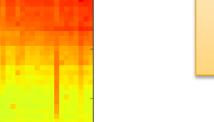
Chart 63



x/y: width/height of the image in kilopixelsColor: execution time per megapixelBlue ~ 10ms/megapixel; Red >= 100ms

 Evaluation of input images ranging from 1000x1000 pixels to 50000x50000 pixels

- More than 5 times faster than Non-Vectorized
- Observation:
  - Same anomalies as in the nonvectorised version
- Massive cache misses on store operations occur for particular image sizes resulting in enormous performance breakdown (bars in the heatmap)
- This anomaly occurred for various stencil sizes (we evaluated 9x9 to 21x21)


Heatmap: Average time per pixel

# x/y: width/height of the image in kilopixelsColor: execution time per megapixelBlue ~ 1ms/megapixel; Red >= 20ms

30

40

20



50

## Bars: enormous **abrupt** performance breakdowns

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm

Chart 64



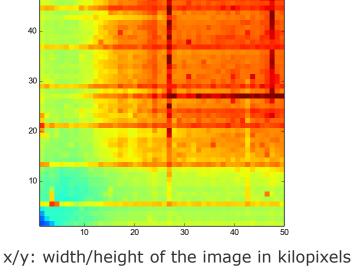
# Performance Anomalies for the Gaussian Blur: AVX2 Vectorized version, 15 threads, single socket

50

40

30

20


10

10

 Evaluation of input images ranging from 1000x1000 pixels to 50000x50000 pixels

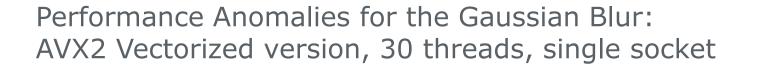
- Using hyperthreads: more than 6 times faster than Non-Vectorized
- Observation:
  - Same anomalies as in the nonvectorised version
- Massive cache misses on store operations occur for particular image sizes resulting in enormous performance breakdown (bars in the heatmap)
- This anomaly occurred for various stencil sizes (we evaluated 9x9 to 21x21)

Heatmap: Average time per pixel



Color: execution time per megapixel

Blue ~ 1ms/megapixel; Red >= 15ms


Bars: asymmetric enormous abrupt performance breakdowns

Hasso Plattner

Institut

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm





## Stream Stores vs. Coherent Stores



# Intel Transactional Memory



# **Object Orientation**



## **Object Orientation**

## **Runtimes:**

- Use one JVM per Node:
  - Two JVMs on two nodes -> 54% faster
     Four JVMs on four nodes -> 79% faster
- Objects are different from float arrays!
  - Huge overhead to copy / move objects in hierarchical NUMA systems
  - Various algorithms (methods) work on objects and collections of objects, each with its own NUMA friendly distribution requirements
  - Even worse: Dictionary-based object implementations (JavaScript)

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm



# Linux Kernel Experiments



- Compare different kernel versions with NUMA balancing on/off
- What can be done to solve the problems of higher layers?
  - Design extensions to the thread and data allocation API with respect to NUMA systems
  - Design necessary runtime collection of metrics for placement decisions
- Malloc anomalies: Linux start to zero pages, when we ask for them
   Instead of not doing so OR doing so, when it is idle...

Get creative! :)

Cooperating with Fujitsu?

PPV Project Proposals

Frank Feinbube, hpi.de/osm



# Performance Prediction / Planning

# Task / Data Mapping and Performance rating



- How many Threads do I need to start? Where?
- How do I need to distribute = move/copy the data?
- Queuing theory applied to hybrid systems, demonstrates the feasibility for CPU / GPU scenarios.
  - Can this be applied to hierarchical NUMA as well? How?
  - Are there other similar theories / models / methods?
- Related Work
  - IBM Paper: http://www.ac.uma.es/~siham/pact09\_workstealing.pdf
  - The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling"

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm







# Programming Parallel and Distributed Systems: Seminar Project Proposals

Frank Feinbube, Felix Eberhardt, Max Plauth, Prof. Andreas Polze Operating Systems and Middleware Research Group Hasso Plattner Institute

## Overview

#### Themenwünsche <u>bis zum 06.05.2015</u> per E-Mail an <u>Frank.Feinbube@hpi.de</u> oder einfach bei uns vorbeikommen :)



## Algorithm Optimization

- EDC Graph Search, Hyrise
- Speeded Up Robust Features
- ... or anything really

## Feature Benchmarks

- Intel Transactional Memory
- Stream Stores vs. Coherent Stores
- Prefetching

<u>Tools</u>

## Programming Languages / Models

- PGAS: Fortress, X10, UPC, ...
- Scala, Java, JavaScript, C#, ...
- CUDA, OpenCL, OpenACC, ...

## **Platforms**

- (hierarchical) NUMA systems
- Intel Xeon Phi
- GPU Computing

## Linux Kernel experiments Performance Predictions

#### PPV Project Proposals

Frank Feinbube, hpi.de/osm