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Algorithm Optimization

■ EDC Graph Search, Hyrise

■ Speeded Up Robust Features

■ … or anything really

Feature Benchmarks

■ Intel Transactional Memory

■ Stream Stores vs. Coherent Stores

■ Prefetching

Tools

Programming Languages / Models

■ PGAS: Fortress, X10, UPC, …

■ Scala, Java, JavaScript, C#, …

■ CUDA, OpenCL, OpenACC, …

Platforms

■ (hierarchical) NUMA systems

■ Intel Xeon Phi

■ GPU Computing

Linux Kernel experiments

Performance Predictions

Overview
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Platforms



(Hierarchical) NUMA Systems
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Classical NUMA-System

HP ProLiant DL580 G7
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NUMA challenges



Frank Feinbube, 
hpi.de/osm

PPV Project 
Proposals

Chart 7

NUMA challenges
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Classical NUMA-System

HP ProLiant DL580 G7
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HP ProLiant 
DL980 G7 

8 sockets
glued

Hiearchical
CC NUMA System
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16 sockets
glued

today up 32 
is possible

Hiearchical
CC NUMA System



■ To date: best practices and optimization 
techniques focus on either

□ Parallel Shared Memory Systems 
(UMA; e.g. with OpenMP)

□ Or Distributed Message-Passing 
Systems (e.g. with MPI)

■ Pure NUMA optimizations have been 
mostly neglected, because 

□ The performance penalties were 
moderate

□ There is no intuitive programming 
metaphor for NUMA so far (in contrast 
to UMA and Distributed scenarios)

□ UMA and Distributed allow
for portable performance

■ The emergence of hierarchical cache-
coherent NUMA systems requires:

□ Novel Portable Optimization 
Techniques and Best Practices 

□ NUMA-aware Tools, Libraries, 
Programming Models, Patterns, 
Distribution Schemes, …

□ Considering Topology and Hardware 
Characteristics
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Core Research Question:
Best practices for hierarchical NUMA environments?

NUMA
???

UMA
OpenMP

Distributed
MPI



GPU Computing
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GPU Computing + Dynamic Parallelism

http://on-demand.gputechconf.com/gtc/2015/video/S5398.html
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= Science at the next Level

„[…] this
would be 300 
million grid
nodes. We

did this on a 
single GPU.“
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= Science at the next Level

http://on-demand.gputechconf.com/gtc/2015/video/S5398.html

Our FSOC 
K20 + Phi 
machine

would have
been the 3rd 

most
powerful 

computer in 
the world in 

2004



Intel Xeon Phi



60 Cores based on P54C architecture 
(Pentium)

■ > 1.0 Ghz clock speed; 64bit based x86 
instructions + SIMD

■ 1x 25 MB L2 Cache (=512KB per core) 
+ 64 KB L1

□ Cache coherency

■ 8 (to 32) GB of DDR5 

■ 4 Hardware Threads per Core
(240 logical cores)

□ No Multicore / Hyper-Threading

□ Think graphics-card hardware threads

□ Only one runs = memory latency hiding

□ Switched after each instruction!!
-> use 120 or 240 threads for the 60 cores

■ 512 bit wide VPU with new ISA KCi

□ No support for MMX, SSE or 
AVX

□ Could handle 8 doule precision 
floats/16 single precision floats

□ Always structured in vectors 
with 16 elements
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Xeon Phi Hardware
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Operating System: minimal, embedded Linux

Linux 
Standard 

Base (LSB) 
Core libraries. 

Busybox
minimal shell
environment



Objectives for portable 
performance:

■ Identify Application Bottlenecks

□ At development time

□ To (Re-)Design algorithm 
accordingly

■ Acquiring Topology Information

□ At application starting time

□ To create and map threads and 
data accordingly

State-of-the-Art NUMA Tools:

■ ACPI distance values

■ Linux sysfs

■ Libnuma: numactl

■ Hwloc lstopo

■ MemAxes

■ Linux Perf

■ numatop

■ Intel Performance Counter Monitor

■ Intel Vtune

■ MLC (Memory Latency Checker)

First step for portable applications:
Discovering and assessing the NUMA topology
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Information provided:

■ Nodes (sockets)

■ ACPI distance values of 
nodes and CPUs

■ Mapping of CPUs to 
nodes

■ Cache sizes, levels, 
associativity, cacheline
size

■ Cache sharing of CPUs

Restrictions:

■ Linux only
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Linux sysfs



Information provided:

■ Nodes (sockets)

■ ACPI distance values of 
nodes and CPUs

■ Mapping of CPUs to 
nodes

Restrictions:

■ Linux only

■ Available as library to be 
used in applications to 
query system devices
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Libnuma
numactl --hardware



Information provided:

■ Nodes (sockets)

■ ACPI distance values of 
nodes and CPUs

■ Mapping of CPUs to nodes

■ Grouping of nodes 
according to distance 
values

■ Whole memory hierarchy

Restrictions:

■ Several platforms: 
Windows, Linux, BSD, ...

■ Available as library to be 
used in applications to 
query system devices
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Hwloc
lstopo



Information provided:

■ Nice visualization of 
several nodes and the 
memory hierarchy

■ Able to see the bottleneck 
or misplacement of threads 
and data

Restrictions:

■ Research prototype

■ The data collection part is 
missing
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MemAxes



Information provided:

■ Ability to read processor 
specific performance 
counter

■ Can collect profile data and 
compare them to different 
runs

■ Several extensions: 
memory profiling, cache-
to-cache sharing

■ Abstraction layer for kernel 
and hardware events

Restrictions:

■ Linux only Frank Feinbube, 
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Linux Perf



Information provided:

■ Similar to top tool

■ Shows NUMA specific 
metrics

■ Uses instruction sampling

■ Memory view to find out 
which memory addresses 
are accessed frequently by 
remote nodes

■ Ability to collect 
stacktraces

Restrictions:

■ Linux only, Kernel 3.9 or 
later

■ Intel processors only
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numatop



Information provided:

■ API for Intel specific 
performance counters

■ Core and Uncore events

■ QPI links and memory 
controller utilization

Restrictions:

■ Available on Windows 
and Linux

■ Intel processors only
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Intel Performance Counter Monitor



Information provided:

■ Latency and Bandwidth measurements 
for various Read / Write Scenarios

■ Measures caching performance as well

■ Can modify prefetcher settings

Restrictions:

■ Available on Windows and Linux

■ Intel processors only
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Memory Latency Checker: mlc



ACPI: SLIT
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mlc vs ACPI

ACPI: SLIT Normalized latency

10 10

12 11.1

17 22.7

19 25.5

A hint, but 
not very
accurate;

Weird effects
for larger 
machines



■ Acquiring Topology Information

□ ACPI distance values

□ Linux sysfs

□ Libnuma: numactl

□ Hwloc lstopo

□ MemAxes

□ MLC (Memory Latency Checker)

■ Identify Application Bottlenecks

□ Linux Perf

□ numatop

□ Intel Performance Counter 
Monitor

□ Intel Vtune

State-of-the-Art NUMA Tools by objective
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One tool to rule them all



Idea: Performance Engineer - 1:n tools -> 1:1 Tools 1:n Plugins

■ Generic profiling tool with advanced visualization capabilities

■ Use database as backend to store all results from different runs

□ Compare different runs, soucre code annotations, collect stacktraces, …

■ What information can be derived from the data provided by the tools?

■ How can it be accumulated, digested, represented?

■ How can it be visualized?

■ How can workload be characterized?

■ Can performance be predicted?

■ What are the interesting metrics?

■ …

Omnitool
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Algorithm Optimizations



EDC Graph Search



■ Graph-based algorithm
used to derive error 
detection codes from 
error models

■ Performance 
bottleneck is a 
maximum search in 
the graph

■ Our straight forward 
UMA parallelization 
shows close to ideal 
speedups in a unified 
memory scenario

■ And demonstrates 
severe performance 
degradations of NUMA

Overview:
EDC Graph Search Algorithm

Frank Feinbube, 
hpi.de/osm

PPV Project 
Proposals

Represents
Performance 
Bottlenecks

#9 and #12 in 
Berkeley 

Taxonomy
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■ Looking for a maximum

□ = Typical reduction operation

■ Characteristics

□ Commutative, associative

□ Input-Array is not changed

■ Special:

□ Looking for an index, comparing 
to a value

■ Approach

□ Parallelization of the loop
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parallelization with OpenMP

Local variables (copies)

Parallel for loop

Safe creation of the result
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Single-Processor execution times:
We achieve close-to optimal speedup
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Multi-Processor execution times:
Speedup degradations with each additional processor
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Multi-Blade execution times:
Using more blades decreases the performance
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Lessons Learned:

■ Hierarchical cache-coherent NUMA 
systems can become severe 
performance bottlenecks for naive 
UMA parallelizations

■ Distributed execution performance 
is expected to experience even 
stronger performance degradations 
due to the bottleneck

■ Especially problematic for Graphics 
Models and Graph Traversal 
Algorithms

□ Due to the strong 
interdependence and indirections

Next Steps:

■ Explore and generalizable 
algorithm redesign approaches to 
identify and exploit localities of 
clustered sub-graphs:

□ Multithreaded scaling is limited 
because of dependencies of 
different iterations

□ Only intra parallelization

□ Measure execution with respect 
to data and thread placement
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Conclusion:
Case Study #1
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Speeded Up Robust Features



■ Data: a regular multidimensional grid; access is regular and 
statically determinable (strided)

■ Computation: sequence of grid updates (all points are updated 
using values from a small neighborhood); updates are logically 
concurrent

■ In practice implemented as sequential sweep through 
computation domain (in place or two grid versions)

■ Uniprocessor Mapping: highly vectorizable, points can be 
visited in any order

□ Spatial locality to use of long cache lines

□ Temporal locality to allow cache reuse (small grids)

■ Parallel Mapping: subgrid per processor

□ Communication and synchronization for boundaries 
(=ghost cells, surface to volume ratio important)

□ Latency hiding: increased number of overhead zones 
and exchanging more data less frequently

Speeded Up Robust Features (SURF) Algorithm
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Performance 
Bottlenecks

#3 and #5 in 
Berkeley 

Taxonomy
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Lessons Learned:

■ Perfect example for NUMA

□ Too large for UMA (huge images 
from astronomy, maps, medical 
systems, …)

□ Huge overheads with Distributed 
approach

■ Next Steps:

□ Study the golden ratio

□ Develop a cost model

□ Generalize Frank Feinbube, 
hpi.de/osm
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Proposals

The golden ratio

Chart 48



Matrix-Matrix-Multiplications



■ Classic Vector and Matrix operations: VxV, MxV, MxM

■ Example:
do i=1,n
do j=1,n

do k=1,n
a(i,j) = a(i,j) + b(i,k)*c(k,j)

enddo
enddo

enddo

■ Data layout: continuous array

■ Computation: on elements, rows, columns or matrix blocks

■ Uniprocessor Mapping: block algorithms to exploit cache

■ Parallel Mapping: 

□ Issues: memory hierarchy, data distribution for load balancing critical

□ Best: 2D block cyclic distributions and computation/communication overlap

Case Study #2: Matrix Multplications

Represents
Performance 
Bottleneck

#1 in Berkeley 
Taxonomy: 

„Dense Linear 
Algebra“
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■ Hardware is highly optimized for algorithm like this: caching, prefetching,…

■ Thus the penalty for ignoring NUMA is only factor 1.5x to 2x
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Execution time of thread and memory placements on 
an 8-node NUMA system with 128

matrix size Chart 51



■ Intel provides highly optimized implementations in the Math Kernal
Library (MKL)

■ MxM implementation is a collection of algorithms -> the best is selected

Execution time of naive, SSE-based, Strassen, and 
MKL matrix multiplications for larger matrices.
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■ Lessons Learned:

□ With hierarchical NUMA there is room for improvement everywhere

Execution time of naive, SSE-based, Strassen, and 
MKL matrix multiplications for small matrices.

Frank Feinbube, 
hpi.de/osm

PPV Project 
Proposals

matrix size

Chart 53



HYRISE



Chart 55

Planned Case Study #5:
In-Memory DB Technology

Combined 
column
and row store

Map/Reduce Single and
multi-tenancy

Lightweight
compression

Insert only
for time travel

Real-time 
replication

Working on
integers

SQL interface 
on columns 
and rows 

Active/passive
data store

Minimal
projections

Group key Reduction of
software 
layers

Dynamic multi-
threading

Bulk load
of data

Object-
relational
mapping

Text retrieval
and extraction 
engine

No aggregate
tables

Data
partitioning

Any attribute
as index 

No disk

On-the-fly
extensibility

Analytics on
historical data

Multi-core/
parallelization
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■ Collect benchmarks with different workload characteristics

■ Measure execution of workloads

■ Review hotspots and bad placement of threads and data

■ Extend memory allocator, thread scheduler
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Ideas



Feature Benchmarks / Experiments



Reader/Writer Locks



■ One Read Indicator Counter per 
NUMA Node

■ One Global Lock

■ Plus one local lock per NUMA core
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This can be
implemented
„under the

hood“
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Execution time: 9.097s Frank Feinbube, 
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Execution time: 7.783s (85.6%) Frank Feinbube, 
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SSE Anomalies + Prefetching



■ Evaluation of input images ranging from 
1000x1000 pixels to 50000x50000 pixels

■ Observation (example):

□ 11999x11999: good performance

□ 12000x12000: 5 to 6 times slower!

□ 12001x12001: good performance

■ Massive cache misses on store 
operations occur for particular image 
sizes resulting in enormous performance 
breakdown (bars in the heatmap)

■ This anomaly occurred for various stencil 
sizes (we evaluated 9x9 to 21x21)

Heatmap: Average time per pixel

x/y: width/height of the image in kilopixels

Color: execution time per megapixel

Blue ~ 10ms/megapixel; Red >= 100ms
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Performance Anomalies for the Gaussian Blur:
Non-Vectorized version, 15 threads, single socket

Bars:  
enormous 
abrupt

performance 
breakdowns



■ Evaluation of input images ranging from 
1000x1000 pixels to 50000x50000 pixels

■ More than 5 times faster than Non-
Vectorized

■ Observation:

□ Same anomalies as in the non-
vectorised version

■ Massive cache misses on store 
operations occur for particular image 
sizes resulting in enormous performance 
breakdown (bars in the heatmap)

■ This anomaly occurred for various stencil 
sizes (we evaluated 9x9 to 21x21)

Heatmap: Average time per pixel

x/y: width/height of the image in kilopixels

Color: execution time per megapixel

Blue ~ 1ms/megapixel; Red >= 20ms
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Performance Anomalies for the Gaussian Blur:
AVX2 Vectorized version, 15 threads, single socket

Bars:  
enormous 
abrupt

performance 
breakdowns



■ Evaluation of input images ranging from 
1000x1000 pixels to 50000x50000 pixels

■ Using hyperthreads: more than 6 times 
faster than Non-Vectorized

■ Observation:

□ Same anomalies as in the non-
vectorised version

■ Massive cache misses on store 
operations occur for particular image 
sizes resulting in enormous performance 
breakdown (bars in the heatmap)

■ This anomaly occurred for various stencil 
sizes (we evaluated 9x9 to 21x21)

Heatmap: Average time per pixel

x/y: width/height of the image in kilopixels

Color: execution time per megapixel

Blue ~ 1ms/megapixel; Red >= 15ms

Frank Feinbube, 
hpi.de/osm

PPV Project 
Proposals

Chart 65

Performance Anomalies for the Gaussian Blur:
AVX2 Vectorized version, 30 threads, single socket

Bars:  
asymmetric

enormous 
abrupt

performance 
breakdowns



Stream Stores vs. Coherent Stores



Intel Transactional Memory



Object Orientation



Runtimes:

■ Use one JVM per Node:

□ Two JVMs on two nodes -> 54% faster

□ Four JVMs on four nodes -> 79% faster

■ Objects are different from float arrays!

□ Huge overhead to copy / move objects in hierarchical NUMA systems

□ Various algorithms (methods) work on objects and collections of 
objects, each with its own NUMA friendly distribution requirements

□ Even worse: Dictionary-based object implementations (JavaScript)

Object Orientation

Frank Feinbube, 
hpi.de/osm

PPV Project 
Proposals

Chart 69



Linux Kernel Experiments



■ Compare different kernel versions with NUMA balancing on/off

■ What can be done to solve the problems of higher layers?

□ Design extensions to the thread and data allocation API with respect to 
NUMA systems

□ Design necessary runtime collection of metrics for placement decisions

■ Malloc anomalies: Linux start to zero pages, when we ask for them

□ Instead of not doing so OR doing so, when it is idle…

■ Get creative! :)

Cooperating with Fujitsu?

Linux Kernel Experiments
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Performance Prediction / Planning



■ How many Threads do I need to start? Where?

■ How do I need to distribute = move/copy the data?

■ Queuing theory applied to hybrid systems, demonstrates the feasibility for 
CPU / GPU scenarios.

□ Can this be applied to hierarchical NUMA as well? How?

□ Are there other similar theories / models / methods?

■ Related Work

□ IBM Paper: http://www.ac.uma.es/~siham/pact09_workstealing.pdf

□ “The Art of Computer Systems Performance Analysis: Techniques for 
Experimental Design, Measurement, Simulation, and Modeling”

Task / Data Mapping and Performance rating
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Algorithm Optimization

■ EDC Graph Search, Hyrise

■ Speeded Up Robust Features

■ … or anything really

Feature Benchmarks

■ Intel Transactional Memory

■ Stream Stores vs. Coherent Stores

■ Prefetching

Tools

Programming Languages / Models

■ PGAS: Fortress, X10, UPC, …

■ Scala, Java, JavaScript, C#, …

■ CUDA, OpenCL, OpenACC, …

Platforms

■ (hierarchical) NUMA systems

■ Intel Xeon Phi

■ GPU Computing

Linux Kernel experiments

Performance Predictions

Overview
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