
Programming Parallel and Distributed Systems:
Seminar Project Proposals

Frank Feinbube, Felix Eberhardt, Max Plauth, Prof. Andreas Polze
Operating Systems and Middleware Research Group

Hasso Plattner Institute

Algorithm Optimization

■ EDC Graph Search, Hyrise

■ Speeded Up Robust Features

■ … or anything really

Feature Benchmarks

■ Intel Transactional Memory

■ Stream Stores vs. Coherent Stores

■ Prefetching

Tools

Programming Languages / Models

■ PGAS: Fortress, X10, UPC, …

■ Scala, Java, JavaScript, C#, …

■ CUDA, OpenCL, OpenACC, …

Platforms

■ (hierarchical) NUMA systems

■ Intel Xeon Phi

■ GPU Computing

Linux Kernel experiments

Performance Predictions

Overview

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 2

Themenwünsche bis zum 06.05.2015 per E-Mail an
Frank.Feinbube@hpi.de oder einfach bei uns vorbeikommen :)

mailto:Frank.Feinbube@hpi.de

Platforms

(Hierarchical) NUMA Systems

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 5

Classical NUMA-System

HP ProLiant DL580 G7

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 6

NUMA challenges

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 7

NUMA challenges

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 8

Classical NUMA-System

HP ProLiant DL580 G7

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 9
HP ProLiant
DL980 G7

8 sockets
glued

Hiearchical
CC NUMA System

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 10

16 sockets
glued

today up 32
is possible

Hiearchical
CC NUMA System

■ To date: best practices and optimization
techniques focus on either

□ Parallel Shared Memory Systems
(UMA; e.g. with OpenMP)

□ Or Distributed Message-Passing
Systems (e.g. with MPI)

■ Pure NUMA optimizations have been
mostly neglected, because

□ The performance penalties were
moderate

□ There is no intuitive programming
metaphor for NUMA so far (in contrast
to UMA and Distributed scenarios)

□ UMA and Distributed allow
for portable performance

■ The emergence of hierarchical cache-
coherent NUMA systems requires:

□ Novel Portable Optimization
Techniques and Best Practices

□ NUMA-aware Tools, Libraries,
Programming Models, Patterns,
Distribution Schemes, …

□ Considering Topology and Hardware
Characteristics

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 11

Core Research Question:
Best practices for hierarchical NUMA environments?

NUMA
???

UMA
OpenMP

Distributed
MPI

GPU Computing

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 13

GPU Computing + Dynamic Parallelism

http://on-demand.gputechconf.com/gtc/2015/video/S5398.html

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 14

= Science at the next Level

„[…] this
would be 300
million grid
nodes. We

did this on a
single GPU.“

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 15

= Science at the next Level

http://on-demand.gputechconf.com/gtc/2015/video/S5398.html

Our FSOC
K20 + Phi
machine

would have
been the 3rd

most
powerful

computer in
the world in

2004

Intel Xeon Phi

60 Cores based on P54C architecture
(Pentium)

■ > 1.0 Ghz clock speed; 64bit based x86
instructions + SIMD

■ 1x 25 MB L2 Cache (=512KB per core)
+ 64 KB L1

□ Cache coherency

■ 8 (to 32) GB of DDR5

■ 4 Hardware Threads per Core
(240 logical cores)

□ No Multicore / Hyper-Threading

□ Think graphics-card hardware threads

□ Only one runs = memory latency hiding

□ Switched after each instruction!!
-> use 120 or 240 threads for the 60 cores

■ 512 bit wide VPU with new ISA KCi

□ No support for MMX, SSE or
AVX

□ Could handle 8 doule precision
floats/16 single precision floats

□ Always structured in vectors
with 16 elements

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 17

Xeon Phi Hardware

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 18

Operating System: minimal, embedded Linux

Linux
Standard

Base (LSB)
Core libraries.

Busybox
minimal shell
environment

Objectives for portable
performance:

■ Identify Application Bottlenecks

□ At development time

□ To (Re-)Design algorithm
accordingly

■ Acquiring Topology Information

□ At application starting time

□ To create and map threads and
data accordingly

State-of-the-Art NUMA Tools:

■ ACPI distance values

■ Linux sysfs

■ Libnuma: numactl

■ Hwloc lstopo

■ MemAxes

■ Linux Perf

■ numatop

■ Intel Performance Counter Monitor

■ Intel Vtune

■ MLC (Memory Latency Checker)

First step for portable applications:
Discovering and assessing the NUMA topology

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 19

Information provided:

■ Nodes (sockets)

■ ACPI distance values of
nodes and CPUs

■ Mapping of CPUs to
nodes

■ Cache sizes, levels,
associativity, cacheline
size

■ Cache sharing of CPUs

Restrictions:

■ Linux only
Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 20

Linux sysfs

Information provided:

■ Nodes (sockets)

■ ACPI distance values of
nodes and CPUs

■ Mapping of CPUs to
nodes

Restrictions:

■ Linux only

■ Available as library to be
used in applications to
query system devices

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 21

Libnuma
numactl --hardware

Information provided:

■ Nodes (sockets)

■ ACPI distance values of
nodes and CPUs

■ Mapping of CPUs to nodes

■ Grouping of nodes
according to distance
values

■ Whole memory hierarchy

Restrictions:

■ Several platforms:
Windows, Linux, BSD, ...

■ Available as library to be
used in applications to
query system devices

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 22

Hwloc
lstopo

Information provided:

■ Nice visualization of
several nodes and the
memory hierarchy

■ Able to see the bottleneck
or misplacement of threads
and data

Restrictions:

■ Research prototype

■ The data collection part is
missing

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 23

MemAxes

Information provided:

■ Ability to read processor
specific performance
counter

■ Can collect profile data and
compare them to different
runs

■ Several extensions:
memory profiling, cache-
to-cache sharing

■ Abstraction layer for kernel
and hardware events

Restrictions:

■ Linux only Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 24

Linux Perf

Information provided:

■ Similar to top tool

■ Shows NUMA specific
metrics

■ Uses instruction sampling

■ Memory view to find out
which memory addresses
are accessed frequently by
remote nodes

■ Ability to collect
stacktraces

Restrictions:

■ Linux only, Kernel 3.9 or
later

■ Intel processors only

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 25

numatop

Information provided:

■ API for Intel specific
performance counters

■ Core and Uncore events

■ QPI links and memory
controller utilization

Restrictions:

■ Available on Windows
and Linux

■ Intel processors only

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 26

Intel Performance Counter Monitor

Information provided:

■ Latency and Bandwidth measurements
for various Read / Write Scenarios

■ Measures caching performance as well

■ Can modify prefetcher settings

Restrictions:

■ Available on Windows and Linux

■ Intel processors only

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 27

Memory Latency Checker: mlc

ACPI: SLIT

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 28

mlc vs ACPI

ACPI: SLIT Normalized latency

10 10

12 11.1

17 22.7

19 25.5

A hint, but
not very
accurate;

Weird effects
for larger
machines

■ Acquiring Topology Information

□ ACPI distance values

□ Linux sysfs

□ Libnuma: numactl

□ Hwloc lstopo

□ MemAxes

□ MLC (Memory Latency Checker)

■ Identify Application Bottlenecks

□ Linux Perf

□ numatop

□ Intel Performance Counter
Monitor

□ Intel Vtune

State-of-the-Art NUMA Tools by objective

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 29

One tool to rule them all

Idea: Performance Engineer - 1:n tools -> 1:1 Tools 1:n Plugins

■ Generic profiling tool with advanced visualization capabilities

■ Use database as backend to store all results from different runs

□ Compare different runs, soucre code annotations, collect stacktraces, …

■ What information can be derived from the data provided by the tools?

■ How can it be accumulated, digested, represented?

■ How can it be visualized?

■ How can workload be characterized?

■ Can performance be predicted?

■ What are the interesting metrics?

■ …

Omnitool

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 31

Algorithm Optimizations

EDC Graph Search

■ Graph-based algorithm
used to derive error
detection codes from
error models

■ Performance
bottleneck is a
maximum search in
the graph

■ Our straight forward
UMA parallelization
shows close to ideal
speedups in a unified
memory scenario

■ And demonstrates
severe performance
degradations of NUMA

Overview:
EDC Graph Search Algorithm

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Represents
Performance
Bottlenecks

#9 and #12 in
Berkeley

Taxonomy

Chart 34

■ Looking for a maximum

□ = Typical reduction operation

■ Characteristics

□ Commutative, associative

□ Input-Array is not changed

■ Special:

□ Looking for an index, comparing
to a value

■ Approach

□ Parallelization of the loop

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Bottleneck: select_codeword

Chart 37

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Straight-forward UMA
parallelization with OpenMP

Local variables (copies)

Parallel for loop

Safe creation of the result

Chart 38

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Single-Processor execution times:
We achieve close-to optimal speedup

0,00s

100,00s

200,00s

300,00s

400,00s

500,00s

600,00s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
X

E
C

U
T
I
O

N
T
I
M

E

THREADS

Measured

Linear Speedup

The
past

Chart 39

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Multi-Processor execution times:
Speedup degradations with each additional processor

0,00s

10,00s

20,00s

30,00s

40,00s

50,00s

60,00s

70,00s

80,00s

15 30 45 60

E
X

E
C

U
T
I
O

N
T
I
M

E

THREADS

Measured

Linear Speedup

The
present

Chart 40

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Multi-Blade execution times:
Using more blades decreases the performance

0,00s

10,00s

20,00s

30,00s

40,00s

50,00s

60,00s

70,00s

80,00s
1
5

3
0

4
5

6
0

7
5

9
0

1
0
5

1
2
0

1
3
5

1
5
0

1
6
5

1
8
0

1
9
5

2
1
0

2
2
5

2
4
0

E
X

E
C

U
T
I
O

N
T
I
M

E

THREADS

Measured

Linear Speedup

The
future

Chart 41

Lessons Learned:

■ Hierarchical cache-coherent NUMA
systems can become severe
performance bottlenecks for naive
UMA parallelizations

■ Distributed execution performance
is expected to experience even
stronger performance degradations
due to the bottleneck

■ Especially problematic for Graphics
Models and Graph Traversal
Algorithms

□ Due to the strong
interdependence and indirections

Next Steps:

■ Explore and generalizable
algorithm redesign approaches to
identify and exploit localities of
clustered sub-graphs:

□ Multithreaded scaling is limited
because of dependencies of
different iterations

□ Only intra parallelization

□ Measure execution with respect
to data and thread placement

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Conclusion:
Case Study #1

Chart 42

Speeded Up Robust Features

■ Data: a regular multidimensional grid; access is regular and
statically determinable (strided)

■ Computation: sequence of grid updates (all points are updated
using values from a small neighborhood); updates are logically
concurrent

■ In practice implemented as sequential sweep through
computation domain (in place or two grid versions)

■ Uniprocessor Mapping: highly vectorizable, points can be
visited in any order

□ Spatial locality to use of long cache lines

□ Temporal locality to allow cache reuse (small grids)

■ Parallel Mapping: subgrid per processor

□ Communication and synchronization for boundaries
(=ghost cells, surface to volume ratio important)

□ Latency hiding: increased number of overhead zones
and exchanging more data less frequently

Speeded Up Robust Features (SURF) Algorithm

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Represents
Performance
Bottlenecks

#3 and #5 in
Berkeley

Taxonomy

Chart 44

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Memory access pattern for SURF

Chart 47

Lessons Learned:

■ Perfect example for NUMA

□ Too large for UMA (huge images
from astronomy, maps, medical
systems, …)

□ Huge overheads with Distributed
approach

■ Next Steps:

□ Study the golden ratio

□ Develop a cost model

□ Generalize Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

The golden ratio

Chart 48

Matrix-Matrix-Multiplications

■ Classic Vector and Matrix operations: VxV, MxV, MxM

■ Example:
do i=1,n
do j=1,n

do k=1,n
a(i,j) = a(i,j) + b(i,k)*c(k,j)

enddo
enddo

enddo

■ Data layout: continuous array

■ Computation: on elements, rows, columns or matrix blocks

■ Uniprocessor Mapping: block algorithms to exploit cache

■ Parallel Mapping:

□ Issues: memory hierarchy, data distribution for load balancing critical

□ Best: 2D block cyclic distributions and computation/communication overlap

Case Study #2: Matrix Multplications

Represents
Performance
Bottleneck

#1 in Berkeley
Taxonomy:

„Dense Linear
Algebra“

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 50

■ Hardware is highly optimized for algorithm like this: caching, prefetching,…

■ Thus the penalty for ignoring NUMA is only factor 1.5x to 2x

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Execution time of thread and memory placements on
an 8-node NUMA system with 128

matrix size Chart 51

■ Intel provides highly optimized implementations in the Math Kernal
Library (MKL)

■ MxM implementation is a collection of algorithms -> the best is selected

Execution time of naive, SSE-based, Strassen, and
MKL matrix multiplications for larger matrices.

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

matrix size Chart 52

■ Lessons Learned:

□ With hierarchical NUMA there is room for improvement everywhere

Execution time of naive, SSE-based, Strassen, and
MKL matrix multiplications for small matrices.

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

matrix size

Chart 53

HYRISE

Chart 55

Planned Case Study #5:
In-Memory DB Technology

Combined
column
and row store

Map/Reduce Single and
multi-tenancy

Lightweight
compression

Insert only
for time travel

Real-time
replication

Working on
integers

SQL interface
on columns
and rows

Active/passive
data store

Minimal
projections

Group key Reduction of
software
layers

Dynamic multi-
threading

Bulk load
of data

Object-
relational
mapping

Text retrieval
and extraction
engine

No aggregate
tables

Data
partitioning

Any attribute
as index

No disk

On-the-fly
extensibility

Analytics on
historical data

Multi-core/
parallelization

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

■ Collect benchmarks with different workload characteristics

■ Measure execution of workloads

■ Review hotspots and bad placement of threads and data

■ Extend memory allocator, thread scheduler

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 56

Ideas

Feature Benchmarks / Experiments

Reader/Writer Locks

■ One Read Indicator Counter per
NUMA Node

■ One Global Lock

■ Plus one local lock per NUMA core
Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

NUMA-aware Reader/Writer Locks

This can be
implemented
„under the

hood“

Chart 59

Execution time: 9.097s Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 60

Execution time: 7.783s (85.6%) Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 61

SSE Anomalies + Prefetching

■ Evaluation of input images ranging from
1000x1000 pixels to 50000x50000 pixels

■ Observation (example):

□ 11999x11999: good performance

□ 12000x12000: 5 to 6 times slower!

□ 12001x12001: good performance

■ Massive cache misses on store
operations occur for particular image
sizes resulting in enormous performance
breakdown (bars in the heatmap)

■ This anomaly occurred for various stencil
sizes (we evaluated 9x9 to 21x21)

Heatmap: Average time per pixel

x/y: width/height of the image in kilopixels

Color: execution time per megapixel

Blue ~ 10ms/megapixel; Red >= 100ms

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 63

Performance Anomalies for the Gaussian Blur:
Non-Vectorized version, 15 threads, single socket

Bars:
enormous
abrupt

performance
breakdowns

■ Evaluation of input images ranging from
1000x1000 pixels to 50000x50000 pixels

■ More than 5 times faster than Non-
Vectorized

■ Observation:

□ Same anomalies as in the non-
vectorised version

■ Massive cache misses on store
operations occur for particular image
sizes resulting in enormous performance
breakdown (bars in the heatmap)

■ This anomaly occurred for various stencil
sizes (we evaluated 9x9 to 21x21)

Heatmap: Average time per pixel

x/y: width/height of the image in kilopixels

Color: execution time per megapixel

Blue ~ 1ms/megapixel; Red >= 20ms

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 64

Performance Anomalies for the Gaussian Blur:
AVX2 Vectorized version, 15 threads, single socket

Bars:
enormous
abrupt

performance
breakdowns

■ Evaluation of input images ranging from
1000x1000 pixels to 50000x50000 pixels

■ Using hyperthreads: more than 6 times
faster than Non-Vectorized

■ Observation:

□ Same anomalies as in the non-
vectorised version

■ Massive cache misses on store
operations occur for particular image
sizes resulting in enormous performance
breakdown (bars in the heatmap)

■ This anomaly occurred for various stencil
sizes (we evaluated 9x9 to 21x21)

Heatmap: Average time per pixel

x/y: width/height of the image in kilopixels

Color: execution time per megapixel

Blue ~ 1ms/megapixel; Red >= 15ms

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 65

Performance Anomalies for the Gaussian Blur:
AVX2 Vectorized version, 30 threads, single socket

Bars:
asymmetric

enormous
abrupt

performance
breakdowns

Stream Stores vs. Coherent Stores

Intel Transactional Memory

Object Orientation

Runtimes:

■ Use one JVM per Node:

□ Two JVMs on two nodes -> 54% faster

□ Four JVMs on four nodes -> 79% faster

■ Objects are different from float arrays!

□ Huge overhead to copy / move objects in hierarchical NUMA systems

□ Various algorithms (methods) work on objects and collections of
objects, each with its own NUMA friendly distribution requirements

□ Even worse: Dictionary-based object implementations (JavaScript)

Object Orientation

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 69

Linux Kernel Experiments

■ Compare different kernel versions with NUMA balancing on/off

■ What can be done to solve the problems of higher layers?

□ Design extensions to the thread and data allocation API with respect to
NUMA systems

□ Design necessary runtime collection of metrics for placement decisions

■ Malloc anomalies: Linux start to zero pages, when we ask for them

□ Instead of not doing so OR doing so, when it is idle…

■ Get creative! :)

Cooperating with Fujitsu?

Linux Kernel Experiments

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 71

Performance Prediction / Planning

■ How many Threads do I need to start? Where?

■ How do I need to distribute = move/copy the data?

■ Queuing theory applied to hybrid systems, demonstrates the feasibility for
CPU / GPU scenarios.

□ Can this be applied to hierarchical NUMA as well? How?

□ Are there other similar theories / models / methods?

■ Related Work

□ IBM Paper: http://www.ac.uma.es/~siham/pact09_workstealing.pdf

□ “The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling”

Task / Data Mapping and Performance rating

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 73

Programming Parallel and Distributed Systems:
Seminar Project Proposals

Frank Feinbube, Felix Eberhardt, Max Plauth, Prof. Andreas Polze
Operating Systems and Middleware Research Group

Hasso Plattner Institute

Algorithm Optimization

■ EDC Graph Search, Hyrise

■ Speeded Up Robust Features

■ … or anything really

Feature Benchmarks

■ Intel Transactional Memory

■ Stream Stores vs. Coherent Stores

■ Prefetching

Tools

Programming Languages / Models

■ PGAS: Fortress, X10, UPC, …

■ Scala, Java, JavaScript, C#, …

■ CUDA, OpenCL, OpenACC, …

Platforms

■ (hierarchical) NUMA systems

■ Intel Xeon Phi

■ GPU Computing

Linux Kernel experiments

Performance Predictions

Overview

Frank Feinbube,
hpi.de/osm

PPV Project
Proposals

Chart 75

Themenwünsche bis zum 06.05.2015 per E-Mail an
Frank.Feinbube@hpi.de oder einfach bei uns vorbeikommen :)

mailto:Frank.Feinbube@hpi.de

